PROPUESTA DE MEJORA PARA EL SISTEMA PRODUCTIVO DE LA EMPRESA RUSTICOS MÍ VIEJO BAUL A PARTIR DE LA METODOLOGIA LEAN SIX SIGMA.

Por Sebastian Eslava Fonseca

PROPUESTA DE MEJORA PARA EL SISTEMA PRODUCTIVO DE LA EMPRESA RUSTICOS MÍ VIEJO BAUL A PARTIR DE LA METODOLOGIA LEAN SIX SIGMA.

SEBASTIAN ESLAVA FONSECA

UNIVERSIDAD ANTONIO NARIÑO
FACULTAD DE INGENIERÍA INDUSTRIAL
DUITAMA
2020

PROPUESTA DE MEJORA PARA EL SISTEMA PRODUCTIVO DE LA EMPRESA RUSTICOS MÍ VIEJO BAUL A PARTIR DE LA METODOLOGIA LEAN SIX SIGMA.

SEBASTIAN ESLAVA FONSECA

TRABAJO DE GRADO PARA OPTAR POR EL TÍTULO PROFESIONAL DE INGENIERÍO INDUSTRIAL

Director del trabajo:
ING. LUIS FELIPE AMAYA GONZALEZ

UNIVERSIDAD ANTONIO NARIÑO
FACULTAD DE INGENIERÍA INDUSTRIAL
DUITAMA
2020

Nota de aceptación	
Firma del presidente del jurado	
Firma del jurado	
Firma del jurado	
Duitama	
	3

AGRADECIMIENTOS

A mis padres y familia primeramente infinitas gracias por brindarme día a día sus mensajes de fuerza y el apoyo necesario e incondicional para permitirme afrontar y culminar este objetivo personal

A mi director de tesis ING Luis Felipe Amaya Gonzales y demás cuerpo docente de la universidad Antonio Nariño que contribuyó con su experiencia y sabiduría en la excelente formación de un nuevo profesional ético e íntegro.

Y finalmente a cada uno de aquellos colegas que estuvieron a mi lado en cada clase y cada proyecto a realizar brindando su apoyo y amistad haciendo de este proceso formativo una experiencia muy agradable e inolvidable.

RESUMEN

La calidad en contexto internacional en el presente siglo XXI ha creado importantes cambios en el entorno competitivo empresarial que han llevado a las empresas manufactureras a integrar sistemas productivos basados en la calidad y satisfacción del cliente respondiendo a las nuevas exigencias del mercado garantizando a las organizaciones su supervivencia, desarrollo integral y crecimiento empresarial, cada día son más las empresas que apuestan por la gestión de la calidad como factor generador de utilidades y ventajas competitivas al ver los resultados obtenidos por algunas empresas de gran reputación como Toyota, Motorola, Samsung.s.a, allied signal y General Electric entre otras muchas más empresas que han implementado un sistema de gestión de la calidad dentro de sus organizaciones y han generado un incremento notable en su desarrollo y crecimiento empresarial.

El objetivo central de este proyecto de investigación es demostrar la viabilidad de la implementación de la filosofía de calidad lean six sigma en una empresa manufacturera productora de muebles rústicos llamada "RUSTICOS MI VIEJO BAUL" exponiendo los resultados positivos encontrados en el análisis de calidad de la empresa estableciendo las mejoras correctivas y controles preventivos pertinentes para demostrar un aumento en la calidad de los procesos y producto final directamente empleando debidamente las herramientas de calidad necesarias para Definir, Medir, Analizar, Mejorar y Controlar todas las variables que afectan la calidad de los procesos productivos de la planta y directamente la calidad del producto final y satisfacción del cliente, eliminando y/o mitigando al máximo esas fallas y defectos encontrados en los procesos o productos fabricados por la empresa que generan sobrecostos por reproceso, perdidas de material y pérdidas de tiempo que afectan las utilidades de la empresa y el desarrollo integral de la organización.

Palabras clave:

Lean six sigma, Toyota, Motorola, Samsung.s.a, Allied Signal y General Electric

SUMMARY

Quality in the international context in the present 21st century has created important changes in the competitive business environment that have led manufacturing companies to integrate production systems based on quality and customer satisfaction, responding to new market demands, guaranteeing organizations their survival, comprehensive development and business growth, every day more companies are betting on quality management as a factor generating profits and competitive advantages when seeing the results obtained by some highly reputable companies such as Toyota, Samsung.sa, Motorola, Allied Signal and General Electric among many other companies that have implemented a quality management system within their organizations and have generated a notable increase in their perce Cived profits and business development.

The main objective of this research project is to demonstrate the feasibility of implementing the quality philosophy lean six sigma in a manufacturing company that produces rustic furniture called "RUSTICOS MI VIEJO BAUL", exposing the positive results found in the quality analysis of the company establishing the corrective improvements and pertinent preventive controls to demonstrate an increase in the quality of the processes and final product directly, properly using the necessary quality tools to Define, Measure, Analyze, Improve and Control all the variables that affect the quality of the production processes of the plant and directly the quality of the final product and customer satisfaction, eliminating and / or mitigating to the maximum those faults and defects found in the processes or products manufactured by the company that generate cost overruns due to reprocessing, material losses and losses of time that affect the utilities from the company and the integral development of the organization.

Keyword:

Lean six sigma, Toyota, Motorola, Samsung.s.a, Allied Signal y General Electric

TABLA DE CONTENIDO

1.	INTRODUCCIÓN	Pág. 11
2.	PLANTEAMIENTO DEL PROBLEMA	
3.	OBJETIVOS	
	3.1 Objetivo general	
	3.2 Objetivos específicos	155
4.	MARCO REFERENCIAL	166
5.	METODOLOGIA	311
	5.1 TIPO DE ESTUDIO	311
	5.1.1 Línea de investigación.	311
	5.1.2 Tipo de investigación:	311
	5.2 METODOS UTILIZADOS	311
	5.2.1 Instrumentos:	312
6. I	DIAGNOSTICO Y CONTEXTO	333
	6.1 Definir el proyecto (D)	333
	6.2 Medir la situacion actual (M).	411
7. A	ANALISIS DE CAUSAS Y EFECTOS	5454
	7.1 Analizar las causas raiz (A)	5454
8. <i>A</i>	ACCIONES CORRECTIVAS	622
	8.1 Mejorar (I)	622
	8.2 Controlar parea mantener la mejora (C)	67
9.]	NUEVO PLAN ESTRATEGICO DE PRODUCCION	711
	9.1 Direccionamiento estratégico de la organización	721
	9.2 Objetivos e indicadores estrategicos	7272
	9.3 Guia de impelmentacion del nuevo plan estrategico de produccion	76
10.	CONCLUSIONES	78
11.	BIBLIOGRAFIA	79
12	ANEXOS	82

LISTA DE TABLAS

Tabla 1 Lecturas preliminares para el cálculo de las observaciones	411
Tabla 2.Toma de tiempos No, Me y Es para elaboración de silla sencilla	422
Tabla 3 Análisis de tiempos y movimientos elaboración silla sencilla	47
Tabla 4.Venta de muebles periodo 2015-2019	49
Tabla 5.Fallas y defectos encontrados	49
Tabla 6.Cuadro resumen nivel de calidad six sigma	.5050
Tabla 7.Tabla de priorización de defectos y fallas	522
Tabla 8.Diagrama de Pareto(descripcion de fallas)	533
Tabla 9.Priorización de resultados Ishikawa "madera rajada"	54
Tabla 10. Priorización de resultados Ishikawa "varían las tonalidades"	
Tabla 11. Priorización de resultados Ishikawa "madera rajada"	56
Tabla 12. Priorización de resultados Ishikawa "excesiva exposición al fuego"	57
Tabla 13.Priorización de resultados Ishikawa "piezas que no cumplen las dimens	
establecidas"	58
Tabla 14. Priorización de resultados Ishikawa "superficie rugosa"	59
Tabla 15. Priorización de resultados Ishikawa "golpes en el producto"	600
Tabla 16. Priorización de resultados Ishikawa "astillas en el producto"	611
Tabla 17.Matriz de acciones de mejora para calibración de equipos de manufactura	622
Tabla 18.Matriz de acciones de mejora para control de materia prima y proveedores.	633
Tabla 19.Matriz de acciones de mejora para talento humano	644
Tabla 20. Matriz de acciones de mejora para control del entorno	65
Tabla 21.Matriz de acciones de mejora para medida	
Tabla 22.Cronograma de mantenimientos preventivos	67
Tabla 23. Planilla de verificación de materia prima	68
Tabla 24.Planilla de inspección de MP-trabajadores	69
Tabla 25.Planilla de inspección y control de calidad	700
Tabla 26.Objetivos e indicadores – perspectiva financiera	733
Tabla 27.Objetivos e indicadores - perspectiva del cliente	74
Tabla 28.Objetivos e indicadores – perspectiva interna de procesos	75
Tabla 29.Objetivos e indicadores – perspectiva de crecimiento	75
Tabla 30.Matriz de implementación del plan estratégico de producción	77

LISTA DE ILUSTRACIONES

Ilustración 1. Diagrama de calidad	27
Ilustración 2. Diagrama de satisfacción al cliente	28
Ilustración 3. Diagrama de variables de salida	29
Ilustración 4. Organigrama de la empresa RUSTICOS MI VIEJO BAUL	333
Ilustración 5. Mapa de procesos de la empresa RUSTICOS MI VIEJO BAUL	333
Ilustración 6. Layaout planta de producción	344
Ilustración 7. Diagrama general de procesos de transformación	355
Ilustración 8. Diagrama de flujo de proceso – cama doble	36
Ilustración 9. Diagrama de flujo de proceso – silla sencilla	37
Ilustración 10. Diagrama de flujo de proceso – mueble de T.V	38
Ilustración 11. Diagrama de flujo de proceso – cajonera	39
Ilustración 12. Diagrama de flujo de proceso – biblioteca	400
Ilustración 13. Factores de valoración para el estudio de tiempos	444
Ilustración 14. Sumplentos del estudio de tiempos	45
Ilustración 15. Suplementos por descanso para el estudio de tiempos	46
Ilustración 16. Tabla de valoración convencional de calidad six sigma	511
Ilustración 17. Diagrama de pareto	533
Ilustración 18. Diagrama Ishikawa de "madera rajada"	544
Ilustración 19. Diagrama Ishikawa "varían las tonalidades"	55
Ilustración 20. Diagrama Ishikawa "madera rajada"	56
Ilustración 21.Diagrama Ishikawa "excesiva exposición al fuego"	57
Ilustración 22.Diagrama Ishikawa "piezas que no cumplen las dimensiones esta	ıblecidas"
Ilustración 23. Diagrama Ishikawa "superficies rugosas"	59
Ilustración 24. Diagrama Ishikawa "golpes en el producto"	600
Ilustración 25. Diagrama Ishikawa "astillas en el producto"	611

LISTA DE ANEXOS

Anexos	A. Toma de tiempos No, Me y Es para elaboración de cajonera	82
Anexos	B. Toma de tiempos No, Me y Es para elaboración de mueble de tv	84
Anexos	C. Toma de tiempos No, Me y Es para elaboración de cama doble	86
Anexos	D. Toma de tiempos No, Me y Es para elaboración de biblioteca	88
Anexos	E.Análisis de tiempos y movimientos elaboración cajonera	90
Anexos	F.Análisis de tiempos y movimientos elaboración mueble pata T.V	92
Anexos	G. Análisis de tiempos y movimientos elaboración cama doble	94
Anexos	H. Análisis de tiempos y movimientos elaboración biblioteca.	96

1. INTRODUCCIÓN

La metodología Six Sigma en la actualidad atrae cada vez más atención dentro de la gestión de la calidad, "El objetivo de Six Sigma es mejorar el rendimiento del producto y servicio mediante la reducción de los defectos inherentes en los procesos y materiales utilizados para producirlos" (Torode, 1998) (General Electric (GE) Capital ITS). Six sigma se ha puesto en marcha en el primer lugar como un método de gestión de la calidad pura y fue diseñada sólo para los procesos de fabricación y producción. Sin embargo, con décadas de desarrollo, cada vez más empresas descubren las ventajas de Six Sigma y Se ha convertido en sinónimo de mejorar la calidad, reducir costos y aumentar la fidelidad de los clientes, una de las estrategias más importantes para las empresas. (Blasco, M. Gisbert, V y Pérez, E. 2015.P.1-14.)

La calidad en general implica aumentar los niveles de productividad y consecuentemente reducir los costos de producción, pero también los costos generales de la empresa, aumentando la competitividad tanto por la mayor calidad, como por los menores costos.

La empresa RUSTICOS MI VIEJO BAÚL dedicada a la fabricación y comercialización de muebles rústicos a nivel regional durante sus años de producción y comercialización de muebles en la región ha presentado diversas fallas en el proceso productivo que han afectado la calidad no solo de los procesos de producción si no directamente los productos finales y la rentabilidad de la empresa, las causas más comunes de error están relacionadas a fallos en la calibración de la maquinaria, falla en el talento humano, materia prima no apta entre otros que se han visto reflejadas en la no conformidad del cliente al obtener su producto terminado, debido a que no cuenta con un plan estratégico de producción establecido para ejecutar los procesos productivos enfocados a la eficiencia y satisfacción del cliente.

El objetivo central del presente proyecto es diseñar una propuesta de mejora de los procesos productivos que cumpla los estándares de calidad, satisfaga las necesidades y supere las expectativas del cliente generando una mayor utilidad, mejor productividad, una reducción

en los costos y como principal objetivo aumentar la competitividad entre las empresas de mayor renombre en la región.

Esta propuesta de mejora de calidad de los procesos productivos busca realizar un diagnóstico mediante el correcto análisis e interpretación de la información y los datos cualitativos y cuantitativos de diversas herramientas de calidad y control realizando una mejora en el nivel de desempeño del proceso productivo eliminando y/o mitigando al máximo esas fallas que están afectando el proceso productivo y generan sobrecostos como:

- Fallas de calibración de los equipos
- Reprocesos
- Pérdidas o desperdicios de materia prima
- Pérdidas de tiempo y mano de obra
- Fallas de evaluación y selección de materia prima

Fallas que fueron determinadas y priorizadas por las herramientas de calidad, hasta conseguir que cada uno de los procesos involucrados esté libre de imperfecciones y así obtener un producto final que esté acorde a un estándar pre-establecido y cumpla las especificaciones, necesidades y expectativas que tiene el cliente, logrando mediante la correcta ejecución de todos estos análisis e interpretaciones, posicionar los productos en una escala superior de calidad obteniendo un notable incremento en sus utilidades su eficiencia productiva y su competitividad en los mercados regionales y nacionales.

2. PLANTEAMIENTO DEL PROBLEMA

2.1 DESCRIPCIÓN DEL PROBLEMA

La empresa "RUSTICOS MI VIEJO BAUL" ya hace varios años ha venido identificando mediante encuestas de satisfacción al cliente e inspecciones a los procesos y productos finales algunas fallas y defectos como fallas de calibración en las maquinarias de corte, torneado, acanalado y pintura, fallas en la materia prima por alteraciones de humedad en el almacenamiento o por deformaciones y defectos de dureza naturales de la materia prima y fallas en la mano de obra por falta de capacitación o falla humana y tiempo perdido de producción que afectan la calidad de los procesos de producción y directamente el producto final que han afectado la rentabilidad de la organización debido a los sobrecostos por reproceso, perdidas de materia prima, mano de obra y tiempo de producción disminuyendo la satisfacción del cliente y la posición de la empresa en el mercado afectando sus utilidades percibidas en la organización por los productos fabricados y comercializados.

2.2 FORMULACIÓN DEL PROBLEMA

¿Cómo la aplicación de la metodología de calidad lean six sigma conllevara a la empresa "RUSTICOS MI VIEJO BAUL" a obtener una mejora e incremento en la calidad de los procesos productivos y productos de la fábrica generando un aumento gradual de las utilidades, demanda y competitividad en los mercados nacionales?

2.3 JUSTIFICACIÓN

Dado que existen procesos y productos que no cumplen las expectativas del cliente o no alcanzan las metas de productividad debido al deficiente control de calidad en el sistema productivo, la estrategia Seis Sigma se apoya de manera especial en las ideas y metodologías ligadas a lo que se conoce como proceso esbelto. El objetivo de esta sección es presentar los aspectos principales del proceso esbelto, para concluir con su integración a Seis Sigma, resultando lo que se conoce como Lean Seis Sigma Los conceptos de proceso esbelto están enfocados al flujo de los procesos y a reducir la cantidad de actividades que no agregan valor y que impiden el flujo, algo característico de varias de las metodologías del SPT. (Gutiérrez, H. y de la vara, R.2013.P.415).

Una de las metas que se busca en este proyecto es lograr adoptar una filosofía de calidad y satisfacción de los clientes de la fábrica enfocada en el mejoramiento continuo de los procesos de transformación de la empresa de muebles RUSTICOS MI VIEJO BAUL para lograr maximizar las utilidades y rentabilidad de la organización gracias a sus excelentes procesos productivos involucrados en la fabricación de los distintos productos de la empresa y así conseguir un crecimiento empresarial constante incrementando así la competitividad de la empresa gracias a los altos estándares de calidad de los productos fabricados y satisfacción de las necesidades de los clientes frente a las principales empresas de competencia directa como la fábrica "El Campanario" y otras más ubicadas en el sector, de acuerdo a los niveles de ventas en el ranking de las principales empresas a nivel nacional del sector del mobiliario lo ocupa "Madecentro S.A.S" gracias a su altos estándares de calidad de sus procesos de producción y calidad del producto terminado obtenido y en segundo lugar la empresa fabricante y comercializadora de muebles "Challenger S.A.S" que igualmente cuenta con un sistema de calidad productiva bastante eficiente.

"En los últimos cinco años, la cadena industrial del mueble y la madera ha mantenido una participación constante en el PIB total de Colombia., según los datos más recientes publicados por el Dane: en promedio en el último lapso esta industria mantuvo una participación de 0,67% en el PIB, alcanzando un valor en el 2017 de \$3.76 billones lo que equivale a US\$1.300 millones, sumando los tres subsectores: forestal, productos de madera y muebles. En Colombia existen alrededor de 4.781 empresas fabricantes de muebles inscritas en las Cámaras de Comercio, las cuales tienen una participación en la generación de empleo de 3.5% con 22.858 puestos y una producción que contribuye al sector industrial con 1.44%, aunque estas cifras comparadas con las de otros sectores de la economía colombiana, como el financiero y el minero-energético, parecen poco significativas, lo cierto es que la industria del mueble y la madera tiene un impacto muy importante en materia de producción, ventas y especialmente en el empleo nacional". (Dane, Eam, 2017.P.1.)

3. OBJETIVOS

3.1 OBJETIVO GENERAL.

Proponer una mejora para el sistema productivo para la fábrica de muebles RUSTICOS MI VIEJO BAUL a partir de la implementación de las herramientas de calidad de la metodología six sigma.

3.2 OBJETIVOS ESPECÍFICOS.

- Realizar un diagnóstico y análisis del estado actual en el que se encuentra el proceso de producción de la fábrica de muebles rústicos.
- Establecer y priorizar mediante diversas herramientas de calidad las causas especificas por las cuales se presentan las fallas.
- Proponer las acciones correctivas para eliminar o mitigar al máximo las falencias presentadas en el sistema de producción.
- Proponer un nuevo plan estratégico de producción basado en el análisis e interpretación DMAIC (Definir, Medir, Analizar, Mejorar y Controlar) que genere a la compañía una mayor utilidad una mejora y estandarización en los procesos utilizados.

4. MARCO REFERENCIAL

La metodología de calidad six sigma es un modelo de organización y gestión del sistema de fabricación –personas, materiales, máquinas y métodos que a través de la mejora continua persigue aumentar la calidad, el servicio y la eficiencia, mediante la identificación y eliminación del desperdicio; entendiendo como desperdicio todas aquellas actividades que no aportan valor al producto y por las cuales el cliente no está dispuesto a pagar. En los últimos años en distintos sectores de la industria colombiana como el sector químico, sector manufacturero y de servicios ha tenido una gran acogida dentro de los sistemas de producción implementado estrategias de mejora continua, control, evaluación y seguimiento enfocadas en los procesos productivos y el aumento de la rentabilidad de la organización. (León, G. y Marulanda, N. 2016. P.8)

Lean six sigma establece como un objetivo de investigación realizar un análisis integrado a la evaluación de eficiencia operativa y financiera, para el desarrollo del objeto de estudio se aborda el conocimiento desde una perspectiva racional al definir las variables y criterios de evaluación de los métodos desarrollados en la organización, sin embargo también se abordó desde una perspectiva cuantitativa, considerando diferentes criterios cuantitativos y niveles de desempeño en las empresas del mismo ámbito productivo aportando una estructura de evaluación seguimiento y control de la eficiencia operativa y financiera apoyada en las herramientas y estrategias de la metodología lean seis sigma. (Fontalvo, T. De la hoz, E. y Fontalvo, O. 2019. P.1-13).

La metodología DMAIC (Definir, Medir, Analizar; Mejorar y controlar) tiene como fin la reducción de la variación en los procesos, a través de la identificación y posterior control de las variables críticas de calidad (Xs). Estableciendo medidas orientadas a mantener en el tiempo las mejoras implementadas como el objetivo de monitorear los procesos de manufactura realizados, mediadas de evaluación, control y seguimiento de actividades críticas y diseño de formatos de control con el fin de establecer y comunicar las variables productivas presentes. La investigación concluye que la efectividad de la aplicación puede notarse por los resultados que superan las expectativas planteadas al inicio como factores de

éxito podemos destacar el soporte de la gerencia, y el involucramiento constante del personal durante todo el desarrollo del proyecto. Adicionalmente la experiencia y el conocimiento del proceso por parte del desarrollador del proyecto (Green Belt) durante el análisis de las causas potenciales (Análisis) y el Diseño del Experimento (Mejora). (Buestan, M. 2013.P.1-10).

El proyecto de mejora de calidad sigma iniciará con la búsqueda y toma de datos operacionales necesarios como tiempos de producción, holguras, desperdicios entre otros, para posteriormente iniciar la etapa de medición donde se contextualiza y establece en una escala de priorización de las variaciones de calidad halladas en la toma de datos que afectan la calidad del sistema productivo y calidad final del producto fabricado, luego en la etapa analizar se utilizarán los datos obtenidos y se buscará llegar a la causa raíz del problema utilizando diversas herramientas y estrategias de calidad necesarias estudiadas y buscadas para el desarrollo del proyecto además de utilizar Minitab y todas las funciones que brindan la oportunidad de hacer diferentes análisis con los datos obtenidos para el estudio para dar con la situación actual de la empresa y así evidenciar los resultados y la mejora al proceso productivo de la organización, realizando nuevamente el análisis de calidad con los datos obtenidos después de la fase controlar donde se visualiza si las medidas de mejora preventivas/correctivas, control evaluación y seguimientos obtuvieron positivos frente al nivel de calidad operativa y financiera. (Daza, D y Salazar, J. 2019.P.1-61)

Lean Six Sigma (LSS) es una metodología que proporciona los métodos y herramientas para mejorar el rendimiento de los procesos, por lo que podría aplicarse tanto en compañías de fabricación como de servicios. (Serrano, G y Ruiz, F. 2018. P.6.)

Empresas colombianas de manufactura, transporte y servicios entre otras han adoptado estas filosofías en los últimos años obteniendo grandes resultados en materia de utilidades percibidas y mejoras sistemáticas de sus procesos de manufactura. Por medio de la metodología lean six sigma se logró cumplir con el objetivo de reducir el nivel de inventario en la empresa Alexander Muebles (Rimax), mediante herramientas que ayudaron a conocer el proceso y detectar puntos clave los cuales se deberían atacar para controlar el nivel de inventarios generando un valor agregado al proceso de la compañía, debido a que se reduce gastos y costos,

se mejora la fluidez de caja y obtiene una mayor retribución de inversión obteniendo un resultado mayor al que se tenía previsto, fue consecuencia de realizar seguimiento a los datos encontrados en la etapa de Medir y Analizar, lo cual fue clave para mejorar la eficiencia en el proceso. Muebles rimax logra obtener un beneficio económico de 32.753.218 millones ahorrados al mes debido a las medidas implementadas. (Daza, D y Salazar, J. 2019.P.1-61)

4.1 ESTADO DE ARTE

SIX SIGMA Y MANUFACTURA ESBELTA son enfoques de mejora de la calidad y productividad que han sido implementados con gran éxito en grandes empresas a nivel mundial, en el ámbito de la manufactura y los servicios como una estrategia de negocios para mejorar la calidad de los productos y servicios, mejorar la eficiencia de los procesos, aumentar la satisfacción del cliente y aumentar la rentabilidad. (Jiménez, H y Amaya, C. 2014. P.1.)

La metodología de calidad Six Sigma es una iniciativa estratégica y táctica para la gestión del negocio, que tiene la capacidad de enfocar la empresa hacia las necesidades de los clientes y alcanzar su satisfacción. En su nivel más elemental la meta de 6σ , que le da el nombre, es lograr procesos con una calidad Seis Sigma, es decir, que como máximo generen 3.4 defectos por millón de oportunidades de error. Esta meta se pretende alcanzar mediante un programa vigoroso de mejora, diseñado e impulsado por la alta dirección de una organización, en el que se desarrollan proyectos 6σ a lo largo y ancho de la organización con el objetivo de lograr mejoras, así como eliminar defectos y retrasos de productos, procesos y transacciones innecesarios. (Gutiérrez, H. 2009. P.398.)

Sigma (σ) es la letra griega que se usa para denotar la desviación estándar poblacional (proceso), la cual proporciona una forma de cuantificar la variación, el nivel de sigmas que tiene un proceso es una forma de describir qué tan bien la variación del proceso cumple las especificaciones o requerimientos del cliente. En este sentido la meta ideal es que el proceso

tenga un nivel de calidad de Seis Sigmas (6σ). La metodología de calidad *Seis Sigma* (6σ) es una estrategia de mejora continua del negocio, que tiene diferentes significados para diferentes grupos dentro de una organización a nivel empresarial es una iniciativa estratégica que busca alcanzar una mejora significativa en el crecimiento del negocio, su capacidad y en la satisfacción de los clientes. En el nivel operacional, Seis Sigma tiene una naturaleza táctica que se enfoca a mejorar métricas de eficiencia operacional, como tiempos de entrega, costos de no calidad y defectos por unidad. Mientras que a nivel proceso Seis Sigma es utilizada para reducir la variabilidad, y con ello es posible encontrar y eliminar las causas de los errores, defectos y retrasos en los procesos del negocio, así como disminuir los costos directos. (Gutiérrez, H. 2009. P.398.)

ETAPAS DE UN PROYECTO SIX SIGMA (DMAIC)

A continuación se presentan de manera general los objetivos herramientas y estrategias empleadas en cada una de las etapas de desarrollo que se aplican a cada proyecto six sigma basadas en la metodología de calidad DMAIC:

Definir el proyecto (D)

al finalizar esta fase se debe tener claro el objetivo del proyecto la forma de medir su éxito, su alcance, los beneficios potenciales y las personas que intervienen en éste, el primer paso para lograr un proyecto exitoso será su selección adecuada de una lista de los aspectos a considerar en la selección y definición de un proyecto, la adecuada selección de proyectos es un aspecto crítico para el éxito de Seis Sigma; los proyectos deben estar alineados con los objetivos estratégicos de la organización, con un objetivo claro, conciso, específico, alcanzable, realista y medible con una alta probabilidad de éxito. (Gutiérrez, H. 2009. P.404.)

Medir la situación actual (M)

El objetivo general de esta segunda fase es entender y cuantificar mejor la magnitud del problema o situación que se aborda con el proyecto. Por ello, el proceso se define a un nivel más detallado para entender el flujo del trabajo, los puntos de decisión y los detalles de su funcionamiento; asimismo se establecen con mayor detalle las variables con las

que se evaluará el éxito del proyecto. Además se analiza y valida el sistema de medición para garantizar que las variables pueden medirse en forma consistente. Además, con el sistema de medición validado se mide la situación actual (o línea base) para clarificar el punto de arranque del proyecto con respecto a las variables actuales del sistema análisis de calidad sigma. Las herramientas de mayor utilidad en esta etapa son: mapeo de procesos a un nivel detallado, métodos para realizar estudios de repetibilidad y reproducibilidad y otras técnicas. (Gutiérrez, H. 2009. P.406.)

Analizar las causas raíz (A)

La meta de esta fase es identificar las causas raíz del problema, entender cómo es que éstas generan el problema y confirmar las causas con datos. Entonces, se trata de entender cómo y por qué se genera el problema, buscando llegar hasta las causas más profundas y confirmarlas con datos. Las herramientas de utilidad en esta fase son muy variadas, por ejemplo lluvia de ideas, diagrama de Ishikawa, Pareto de segundo nivel, estratificación, cartas de control, mapeo de procesos, los cinco por qué, despliegue de la función de calidad para relacionar variables de entrada con variables de salida, diseño de experimentos, prueba de hipótesis, diagrama de dispersión, entre otras. (Gutiérrez, H. 2009. P.406.)

Mejorar (M)

El objetivo de esta etapa es proponer e implementar soluciones que atiendan las causas raíz; es decir, asegurarse de que se corrige o reduce el problema. Es recomendable generar diferentes alternativas de solución que atiendan las diversas causas, apoyándose en algunas de las siguientes herramientas: lluvia de ideas, técnicas de creatividad, hojas de verificación de calidad, diseño de matrices, poka-yoke, etc. La clave es pensar en soluciones que ataquen la fuente del problema (causas) y no el efecto. Una vez que se generan diferentes alternativas de solución es importante evaluarlas mediante una matriz que refleje los diferentes criterios o prioridades sobre los que se debe tomar la solución. (Gutiérrez, H. 2009. P.406.)

• Controlar para mantener la mejora (C)

Una vez que las mejoras deseadas han sido alcanzadas, en esta etapa se diseña un sistema que mantenga las mejoras logradas y se cierra el proyecto. Muchas veces esta etapa es la más dolorosa o difícil, puesto que se trata de que los cambios realizados para evaluar las acciones de mejora se vuelvan permanentes, se institucionalicen y generalicen. Esto implica la participación y adaptación a los cambios de toda la gente involucrada en el proceso, por lo que se pueden presentar resistencias y complicaciones. Al final de cuentas, el reto de la etapa de control es que las mejoras soporten la prueba del tiempo. (Gutiérrez, H. 2009. P.407.)

En este sentido es necesario establecer un sistema de control para:

- Prevenir que los problemas que tenía el proceso no se vuelvan a repetir (mantener las ganancias).
- Impedir que las mejoras y conocimiento obtenido se olviden.
- Mantener el desempeño del proceso.
- Alentar la mejora continua.

4.2 MARCO TEORICO

4.2.1 FILOSOFIA LEAN SIX SIGMA ANTECEDENTES.

4.2.2 EVOLUCIÓN DEL SIX SIGMA

Motorola fue una de las primeras empresas en adoptar el concepto Six Sigma como un enfoque para medir la calidad de productos y servicios. Al finado Bill Smith, ingeniero de confiabilidad en Motorola, se le atribuye haber originado el concepto a mediados de la década de 1980 y venderlo al director ejecutivo de Motorola, Robert Galvin. Smith señaló que los índices de fallas en el sistema eran mucho más altos que los pronosticados por las pruebas de

producto terminado y sugirió varias causas, entre otras una mayor complejidad del sistema, que daba como resultado más probabilidades de fracaso, y una falla fundamental en el pensamiento de calidad tradicional. Smith llegó a la conclusión de que era necesario un nivel mucho más alto de calidad interna y convenció a Galvin de su importancia, Como resultado en 1987, Motorola estableció la siguiente meta:

"Mejorar la calidad de productos y servicios 10 veces para 1989 y por lo menos 100 veces para 1991. Lograr la capacidad Six Sigma para 1992. Con un profundo sentido de urgencia, expandir la dedicación a la calidad a cada faceta de la corporación y lograr una cultura de mejora continua para garantizar la total satisfacción del cliente. Hay sólo una meta última: cero defectos, en todo lo que hacemos". (Evans, J y Lindsay, W.2008.P. 124)

En 1987, Seis Sigma fue introducido por primera vez en Motorola por un equipo de directivos encabezados por Bob Galvin, presidente de la compañía, con el propósito de reducir los defectos de productos electrónicos. Desde ese entonces 6σ ha sido adoptada, enriquecida y generalizada por un gran número de compañías. Además de Motorola, dos organizaciones que contribuyeron a consolidar la estrategia Seis Sigma y sus herramientas son allied signal, que inició su programa en 1994, y General Electric (ge), que inició en 1995. Un factor decisivo de su éxito fue que sus presidentes, Larry Bossidy y Jack Welch, respectivamente que encabezaron de manera entusiasta y firme el programa en sus organizaciones. En Latinoamérica, la empresa MABE es una de las organizaciones que ha logrado conformar uno de los programas Seis Sigma más exitosos.

Los resultados logrados por Motorola, Allied Signal y General Electric gracias a Seis Sigma se muestran en seguida. (Vea Hahn *et al.*, 2000 y Harry, 1998):

- MOTOROLA logró aproximadamente 1 000 millones de dólares en ahorros durante tres años, y el premio a la calidad Malcolm Baldrige en 1988.
- ALLIED SIGNAL ahorró más de 2 000 millones de dólares entre 1994 y 1999.
- GENERAL ELECTRIC alcanzó más de 2 570 millones de dólares en ahorros en tres años (1997-1999).

Esto que pasó en estas tres grandes empresas se empezó a generalizar en los siguientes años, de tal forma que las grandes empresas de manufactura han buscado aplicar la estrategia 6 σ , con resultados diversos. Se puede decir que en pleno siglo XXI, en este tipo de empresas, la estrategia se ha institucionalizado como parte de las buenas prácticas organizacionales, con frecuencia reforzada con otros elementos, como por ejemplo con lo que se conoce como lean manufacturing. Ésta es la razón por la que Calidad Seis Sigma se ha convertido en parte de nuestra cultura"; Esto fortalece el hecho de que Seis Sigma ha tenido un alto nivel de popularidad por un largo periodo de tiempo, cosa que no es común. Adicionalmente la estrategia se viene enriqueciendo para aplicarse a procesos de servicios y a empresas pequeñas. Por todo esto en los países latinoamericanos hay una gran brecha por recorrer en cuanto a lograr difundir y aplicar adecuadamente 6 σ en organizaciones de todo tipo, para aspirar que la gestión se haga con base en los principios de 6σ . (Gutiérrez, H. y de la vara, R.2013.P.398).

Six Sigma, que ha acumulado una cantidad significativa de credibilidad durante la última década debido a su aceptación en empresas tan importantes como Allied Signal (que ahora forma parte de Honeywell y General Electric, no es un concepto tan nuevo como parece. Este concepto se logra a través del uso de herramientas básicas y avanzadas de mejora y control de la calidad por parte de equipos cuyos miembros están capacitados para proporcionar información útil para la toma de decisiones con base en hechos. (Evans, J y Lindsay, W.2008.P. 124)

El punto de referencia reconocido para la ejecución de Six Sigma es General Electric, los esfuerzos de esta empresa en particular impulsados por su exdirector ejecutivo Jack Welch, atrajeron la atención de los medios de comunicación hacia el concepto e hicieron de Six Sigma una estrategia popular para el mejoramiento de la calidad. A mediados de la década de 1990, la calidad surgió como una preocupación de muchos empleados en General Electric. Jack Welch invitó a Larry Bossidy, entonces director ejecutivo de Allied signal, y quien tuvo gran éxito con six sigma, a platicar al respecto en una junta del consejo ejecutivo corporativo. La junta captó la atención de los directores de General Electric y, como dijo Welch: "Me volví loco con Six Sigma y adopté el concepto", considerándolo la tarea más ambiciosa que había emprendido la empresa. (Evans, J y Lindsay, W.2008.P. 125)

Para garantizar el éxito, General Electric cambió su plan de remuneración a base de incentivos de modo que 60 % de los bonos se basara en los aspectos financieros y 40 % en Six Sigma, y proporcionó concesiones de opción de compra de acciones a los empleados en vías de capacitación para Six Sigma. Durante el primer año, capacitaron a 30 000 empleados a un costo de 200 millones de dólares y se recuperaron alrededor de 150 millones por concepto de ahorros. De 1996 a 1997, GE incrementó el número de proyectos Six Sigma de 3 000 a 6 000 y se obtuvieron 320 millones de dólares en utilidades y ganancias en productividad. Para 1998, la empresa había generado 750 millones de dólares en ahorros sobre la inversión debidos a Six Sigma, y recibiría 1 500 millones en ahorros para el año siguiente. (Evans, J y Lindsay, W.2008.P. 125)

4.2.3 INTEGRACION DEL SIX SIGMA EN SAMSUNG

Samsung electronics co. (SEC) de Seúl, Corea, se fundó en 1969 y vendió su primer producto, un televisor, en 1971. En la actualidad, la marca Samsung es muy conocida en los negocios doméstico, móvil, de redes para oficina y de componentes base. Desde su creación, SEC ha utilizado gran variedad de herramientas y enfoques de calidad, pero adoptó el concepto Six Sigma para elevar el nivel de sus enfoques y mejorar su posición competitiva en los mercados mundiales. Desde el punto de vista estratégico, SEC quiere ser una marca global sin fronteras que sea una palabra común en todos los hogares de los países en los que sus productos y servicios estén disponibles. Como base para su impulso en Six Sigma, SEC empezó a buscar la meta de desarrollar sus recursos internos, sobre todo el recurso humano, a fin de integrar la innovación primero en el desarrollo y diseño de productos, en la manufactura y la mercadotecnia y en el crecimiento de los empleados. El proceso Six Sigma se inició a finales de 1999 y principios de 2000 con la capacitación de la dirección, los adalides o campeones y otros empleados de SEC responsables de la planificación y la ejecución. En tres años, alrededor de una tercera parte de sus 49 000 empleados recibieron capacitación formal. En 2000, la manufactura empezó a utilizar los procesos de mejora de Six Sigma y luego amplió su alcance para incluir el "Diseño para Six Sigma" en el diseño de nuevos productos. (Evans, J y Lindsay, W.2008.P. 140-141)

4.2.4 SIX SIGMA Y PRODUCCIÓN ESBELTA

la producción esbelta se refiere a los enfoques desarrollados en un principio por Toyota motor corporación, que se concentran en la eliminación del desperdicio en todas sus formas, incluidos los defectos que requieren del reproceso, los pasos innecesarios en los procesos, el movimiento innecesario de materiales o personas, el tiempo de espera, el inventario en exceso y la sobreproducción. Una forma sencilla de definirla es "hacer más con menos". Comprende la identificación y eliminación de las actividades sin valor agregado en toda la cadena de valor para lograr una respuesta más rápida para el cliente, inventarios reducidos, mejor calidad y mejores recursos humanos. Como comenta un artículo acerca de Toyota, ver en acción el sistema de Toyota es "contemplar algo muy bello". (Evans, J y Lindsay, W.2008.P. 520)

LA PRODUCCIÓN ESBELTA se facilita con un enfoque en la medición y mejora continua, trabajadores capacitados para todas las funciones, equipo flexible y cada vez más automatizado, una distribución eficiente de la maquinaria, instalación y cambios de moldes rápidos, entrega y programación justo a tiempo, normas de trabajo realistas, empoderamiento de los trabajadores para realizar inspecciones y emprender acciones correctivas, asociaciones con los proveedores y mantenimiento preventivo. (Evans, J y Lindsay, W.2008.P. 520)

TOYOTA MOTOR CORPORATION, LTD.37

La marca Toyota se ha ganado una reputación internacional por su calidad. Las raíces de que se fundó en 1937, se derivan de la fabricación de telares Toyoda Automatic Loom Works. Esta estrategia se integró en las líneas de ensamble automotrices para mejorar la calidad y la productividad y dio lugar al desarrollo del "sistema de producción Toyota", que se conoce como producción esbelta. Una característica significativa de la producción esbelta es la mejora continua de todos los trabajadores, que exige el cuestionamiento de cada proceso y la comprobación de todas las suposiciones. Los errores y defectos se consideran como oportunidades de aprendizaje para eliminar el desperdicio y mejorar la eficiencia.

En 1951, Eiji Toyota instituyó un sistema de sugerencias creativas basado en el lema "Buenas ideas, buenos productos", que aparece en lugares muy visibles de todas las plantas. En

Toyota, todos ayudan cuando pueden hacerlo. Incluso los directivos y gerentes son famosos porque "se ensucian las manos" para ayudar a los obreros en la línea de producción, siempre que es necesario. Toyota utiliza juegos, competencias y eventos culturales para promover sus tres C: creatividad, desafío, y valor. Capacita muy bien a los trabajadores y no sólo en las habilidades requeridas para su puesto, sino también en el desarrollo personal, que se enfoca en las actitudes positivas y un sentido de responsabilidad. El sistema educativo de Toyota incluye educación formal, capacitación en el puesto y educación informal. (Evans, J y Lindsay, W.2008.P. 85-86)

4.3 MARCO CONCEPTUAL

- METODOLOGÍA DMAIC: Acrónimo de las etapas de un proyectos 6σ, y consiste en definir, medir, analizar, mejorar y controlar. (Gutiérrez, H. y de la vara, R.2013.P.403)
- PROCESO: Conjunto de actividades mutuamente relacionadas o que interactúan, las cuales transforman elementos de entrada en resultados. (Pérez, J.2004.P.5)
- CONSINTENCIA: Es el grado de variación en los tiempos transcurridos, mínimos y
 máximos, en relación con la media, juzgado con arreglo a la naturaleza de las operaciones
 y a la habilidad y esfuerzo del operador.
- HABILIDAD: Se define como el aprovechamiento al seguir un método dado, el
 observador debe de evaluar y calificar dentro de seis (6) clases la habilidad desplegada
 por el operario: habilísimo, excelente, bueno, medio, regular y malo.
- CALIDAD: Es el juicio que el cliente tiene sobre un producto o servicio, resultado del grado con el cual Un conjunto de características inherentes al producto cumple con sus requerimientos. (Gutiérrez, H. y de la vara, R.2013.P.5)

Calidad del producto

Calidad del servicio

Precio

Eficiencia

Productividad

Proceso (6 M)

Variabilidad

Pensamiento estadístico

Acciones correctivas y preventivas

El ciclo de la calidad (PHVA)

Ilustración 1. Diagrama de calidad

Tomado de: Gutiérrez, H. y de la vara, R. 2013.P.3

- CONTROL: Es un mecanismo preventivo y/o correctivo por la administración de una dependencia o entidad que permiten la oportuna detección y corrección de desviaciones, ineficiencias o incongruencias en el curso de la formulación, instrumentación, ejecución y evaluación de las acciones con el propósito de procurar el cumplimiento de la normatividad que las rigüe y las estrategias objetivos metas y asignaciones de recursos.
- SATISFACCION AL CLIENTE: Es la percepción de éste acerca del grado con el cual sus necesidades o expectativas han sido cumplidas. (Gutiérrez, H. y de la vara, R.2013.P.5)
- CONDICIONES: Son aquellas circunstancias que afectan solo al operador y no a la operación. Los elementos que pueden afectar las condiciones de trabajo incluyen: temperatura, ventilación, monotonía, alumbrado, ruido, etc.

Ilustración 2. Diagrama de satisfacción al cliente

Tomado de: Gutiérrez, H. y de la vara, R.2013.P.5

- REQUERIMIENTOS DEL CLIENTE: Son las descripciones del servicio y las limitaciones que se generan durante el proceso de requerimientos.
- EFICIENCIA: Relación entre los resultados logrados y los recursos empleados. Se mejora optimizando recursos y reduciendo tiempos desperdiciados por paros de equipo, falta de material, retrasos, etcétera. (Gutiérrez, H. y de la vara, R.2013.P.7)
- ACTIVIDAD: Es el conjunto de acciones que se llevan a cabo para cumplir las metas
 de un programa o subprograma de operación, que consiste en la ejecución de ciertos
 procesos o tareas (mediante la utilización de los recursos humanos, materiales, técnicos,
 y financieros asignados a la actividad con un costo determinado), y que queda a cargo
 de una entidad administrativa de nivel intermedio o bajo.
- ACCIONES PREVENTIVAS: Son aquellas que se implementan para eliminar la causa de una inconformidad u otra situación potencial indeseable. (Gutiérrez, H. y de la vara, R.2013.P.8)

- ACCIONES CORRECTIVAS: Se emplean para eliminar la causa de una no conformidad detectada. Es decir, están orientadas a prevenir recurrencias. (Gutiérrez, H. y de la vara, R.2013.P.8)
- PRODUCTO: El producto es lo que resulta de un proceso derivado de un estudio, planificación, <u>producción</u> y, finalmente, algo terminado que busca, en principio, un beneficio desde el punto de vista económico. Su finalidad es el que sea conocido y vendido.
- PRODUCTO NO CONFORME: Un producto no conforme es todo aquel que no cumple con algún requisitos determinado por el sistema de gestión de calidad
- ESTANDAR: modelo o punto de referencia para medir o valorar cosas de la misma especie
- 6 M: Son los materiales, mano de obra, mediciones, medio ambiente, máquinas y métodos que conforman un proceso. (Gutiérrez, H. y de la vara, R.2013.P.11)

Ilustración 3. Diagrama de variables de salida

Tomado de: Gutiérrez, H. y de la vara, R.2009.P.12

- SEIS SIGMA (6 σ): Estrategia de mejora continua del negocio enfocada al cliente, que busca encontrar y eliminar las causas de errores, defectos y retrasos en los procesos.(Gutiérrez, H. y de la vara, R.2013.P.420)
- DMADV: Acrónimo de las etapas de un proyecto six sigma enfocada al diseño, que consiste en: definir, medir, analizar, diseñar y verificar. (Gutiérrez, H. y de la vara, R.2013.P.435)
- TIEMPO MEDIO: El tiempo en el que el operador hace normalmente la operación (promedio de las lecturas.
- TIEMPO NORMAL: Tiempo requerido para realizar la actividad tomando en cuenta el factor de valoración.
- TIEMPO ESTANDAR: Tiempo requerido para realizar la actividad bajo ciertas condiciones de la persona que la realiza.
- FACTOR DE VALORACION: La valoración del ritmo de trabajo es la justipreciación por correlación con el concepto que se tiene de lo que es el ritmo estándar.
- SUPLEMENTOS: Es el valor que se añade al tiempo básico para dar al trabajador la
 posibilidad de reponerse de los efectos fisiológicos y psicológicos causados por la
 ejecución de determinado trabajo en determinadas condiciones y para que pueda atender
 a sus necesidades personales. Su cuantía depende de la naturaleza del trabajo.
- **ESFUERZO:** se define como una demostración de la voluntad para trabajar con eficiencia. El esfuerzo es representativo de la velocidad con que se aplica la habilidad y es normalmente controlada en un alto grado por el operario.

5. METODOLOGIA

Para el desarrollo de este proyecto primero se identificó la línea de investigación productividad, competitividad e innovación, donde se recurrió a la búsqueda de información y herramientas de calidad de la metodología lean six sigma para diseñar y proponer estrategias enfocadas en la mejora de la calidad de las actividades y procesos productivos de la fábrica, aumentando la satisfacción final de los clientes regionales y nacionales

5.1 TIPO DE ESTUDIO

5.1.1 Línea de investigación. Productividad, competitividad e innovación

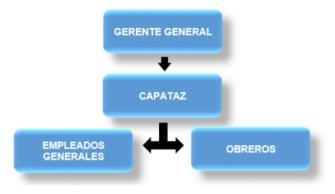
5.1.2 Tipo de investigación: El tipo de investigación empleado en este proyecto de mejora productiva de la fábrica RUSTICOS MI VIEJO BAUL se enfoca en el tipo de investigación descriptivo, en ésta investigación se ven y se analizan las características y propiedades para que con un poco de criterio se las pueda clasificar, agrupar o sintetizar, para luego poder profundizar más en cada tema logrando establecer una mejora continua en la calidad del sistema productivo de la organización. En la investigación descriptiva se trabaja sobre la realidad de los hechos y su correcta interpretación". (Miler, D. 2011. P, 1-1.)

5.1.3 LOCALIZACION DE LA MUESTRA:

La investigación se desarrolló en el extremo occidental del municipio de Tibasosa, vereda punta larga (km 8 vía Duitama – Nobsa) en la fábrica de muebles "RUSTICOS MI VIEJO BAUL"

5.2 METODOS UTILIZADOS

5.2.1 Instrumentos: Para llevar a cabo el desarrollo de la investigación six sigma se utilizaron un gran número de herramientas y metodologías de calidad para determinar y recopilar datos que nos permitirán determinar las fallas presentes dentro del proceso productivo y establecer un plan de mejora que elimine o mitigue al máximo esas fallas presentadas en el proceso de producción de la fábrica de muebles "RUSTICOS MI VIEJO BAUL":


- Diagramas de tiempos estándar, normal y medio.
- Diagramas de flujo de procesos.
- Diagrama de Pareto.
- Diagrama de clasificación ABC.
- Diagramas Ishikawa.
- Gráficos de control.
- Diagramas de dispersión.
- Planillas de inspección y control.

6. DIAGNOSTICO Y CONTEXTO

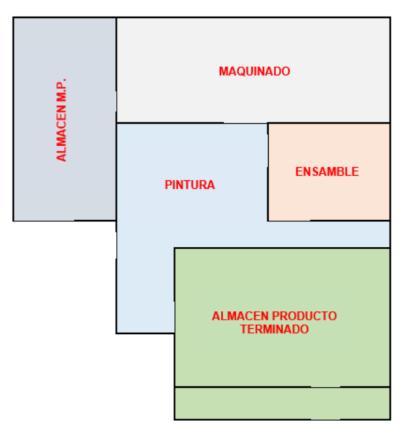
6.1 Definir el proyecto (D): Para el desarrollo de esta etapa de la investigación se define el contexto general de la organización, estructura de mando y se determina e ilustrar la secuencia de las operaciones de transformación realizadas en la planta.

6.1.1 ORGANIGRAMA.

Ilustración 4. Organigrama de la empresa RUSTICOS MI VIEJO BAUL.

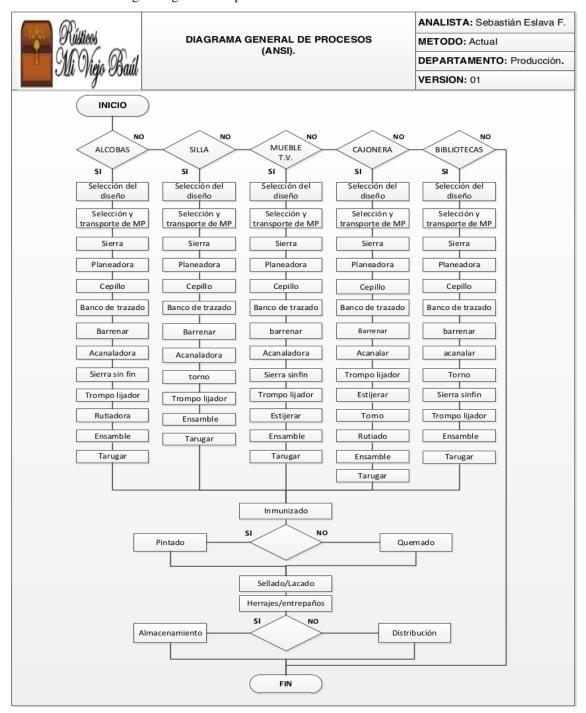
Fuente: Autor

6.1.2 MAPA DE PROCESOS DE LA ORGANIZACION.


Ilustración 5. Mapa de procesos de la empresa RUSTICOS MI VIEJO BAUL.

Fuente: Autor

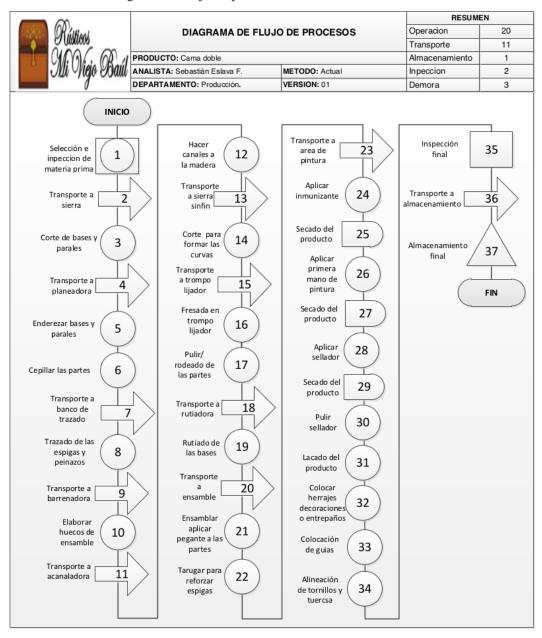
6.1.3 LAYAOUT - PLANTA DE PRODUCCION ACTUAL


Ilustración 6. Layaout planta de producción

Fuente: Autor

6.1.4 DIAGRAMA GENERAL DE PROCESOS

Ilustración 7. Diagrama general de procesos de transformación.



Fuente: Autor

6.1.5 DIAGRAMAS DE FLUJO DE PROCESOS

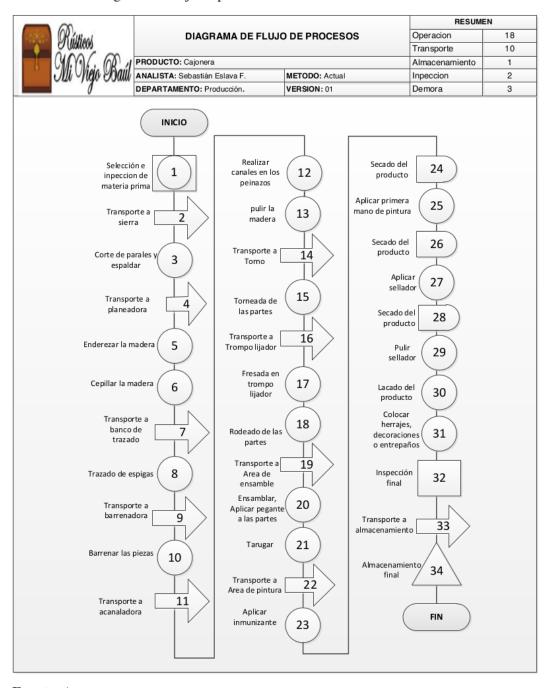

DIAGRAMA DE FLUJO DE PROCESO (ALCOBA - CAMA DOBLE)

Ilustración 8. Diagrama de flujo de proceso – cama doble

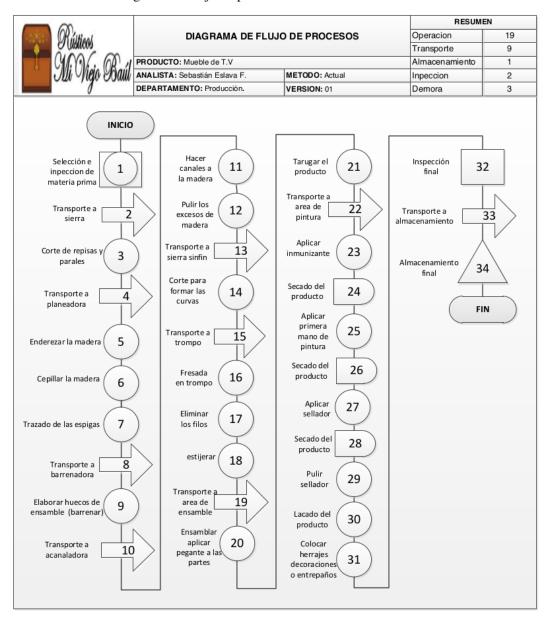

DIAGRAMA DE FLUJO DE PROCESO (SILLAS)

Ilustración 9. Diagrama de flujo de proceso – silla sencilla

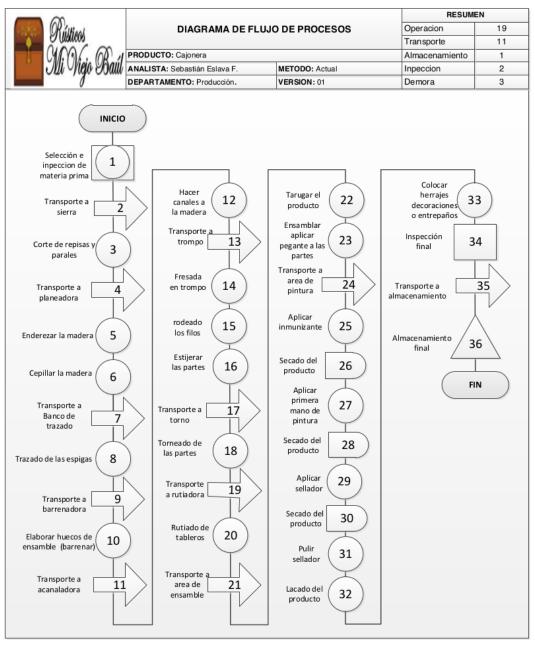

DIAGRAMA DE FLUJO DE PROCESO (MUEBLES T.V)

Ilustración 10. Diagrama de flujo de proceso – mueble de T.V.

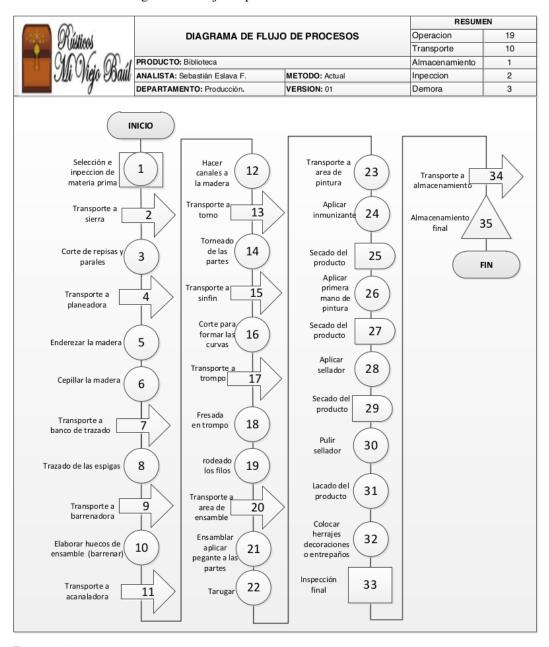

DIAGRAMA DE FLUJO DE PROCESO (CAJONERA)

Ilustración 11. Diagrama de flujo de proceso – cajonera

DIAGRAMA DE FLUJO DE PROCESO (BIBLIOTECA)

Ilustración 12. Diagrama de flujo de proceso – biblioteca

Medir la situacion actual de la empresa (M)

6.2.1 METODO ESTADISTICO PARA ESTABLECER EL NUMERO DE OBSERVACIONES

1. Para realizar el cálculo estadístico del número de observaciones se realizó una muestra preliminar tomando (5) lecturas de los todos los ciclos de producción de la empresa para así poder establecer las variables necesarias para determinar el número de observaciones a realizar para obtener un nivel de confianza del 95,45% y un margen de error de ±5% en el estudio estadístico de tiempos.

Tabla 1.Lecturas preliminares para el cálculo de las observaciones

#	X	X ²
1	8,12	65,77
2	7,11	50,56
3	6,24	38,94
4	8,1	65,61
5	7,25	52,56
	∑x = 37,13	$\sum x^2 = 274,59$

Fuente: Autor

2. Remplazamos las variables en la fórmula para obtener el número de observaciones.

$$n = \left(\frac{40\sqrt{n'\sum x^2 - \sum(x)^2}}{\sum x}\right)^2$$

Siendo:

n = Tamaño de la muestra que deseamos calcular (número de observaciones)

n' = Número de observaciones del estudio preliminar

 Σ = Suma de los valores

 $\mathbf{x} = \text{Valor de las observaciones}.$

40 = Constante para un nivel de confianza del 95,45% y un margen de error de \pm 5%

$$n = (\frac{40\sqrt{5(274,59) - (37)^2}}{37})^2 = 4,616 \cong 5 \text{ Observaciones}$$

Dado que el número de observaciones preliminares (5) es igual al requerido (5), se procede con el estudio y análisis de tiempos medio, normal y estándar para establecer el tiempo de procesamiento estándar de cada producto fabricado en la empresa.

6.2.2 ANALISIS DE TIEMPOS ESTANDAR MEDIO Y NORMAL.

Tabla 2. Toma de tiempos No, Me y Es para elaboración de silla sencilla

ESTUDIO DE TIEMPOS NORMAL MEDIO Y ESTANDAR.

Departa	mento: Producción								R	ESUM	EN	
								Hoja	n :	01	De:	02
Operacio	ón: Elaboración de silla se	ncilla						Comi	enzo:	Selec	ión de	MP
								Term	ino:	Alma	cenami	ento
Estudio	de métodos N : 1		Insta / maq				Tiem					
Método	utilizado: Actual	Pieza unida			5	Opera	ador:					
Product	o: Silla sencilla			Diseñ	0:	1-	2-3	Anali	sta:	Sebas	tián E	
Ficha:	1			Mater	ial:	Pino	-cedro	Fecha	a:			
#	Descripción	1	2	3	4	5	Sm	Те	Fv	Tn	TI	Tt
1	Inspección y selección de MP	522	364	452	418	431	2187	437	0,99	433	489	453
2	Transporte a sierra	283	263	338	297	375	1656	331	0,96	318	353	334
3	Corte de repisas, parales	1729	1618	1661	1782	1699	8489	1698	1,00	1698	1919	1771
4	Transporte a planeadora	278	238	339	254	323	1436	286	0,96	275	305	289
5	Enderezar la madera	1247	1307	1246	1268	1428	6496	1299	0,99	1286	1453	1346
6	Cepillar la madera	1538	1658	1606	1679	1683	8164	1633	0,93	1519	1716	1622
7	Transporte banco de trazado	278	199	261	316	286	1340	268	0,96	257	286	270
8	Trazado de espigas	1312	1212	1373	1428	1461	6786	1357	0,99	1344	1518	1406
9	Transporte a barrenadora	339	227	261	236	246	1309	262	0,96	251	279	264
10	hacer huecos de ensamble	1241	1083	1178	1138	1161	5801	1160	0,99	1149	1298	1202
11	Transporte a acanaladora	268	221	289	354	261	1393	279	0,96	267	297	281
12	Hacer canales a la madera	1084	1009	1051	1012	1172	5328	1066	0,99	1055	1192	1104
13	Pulir la madera	1059	846	957	995	1011	4868	974	0,99	964	1089	1009
14	Transporte a torno	328	289	399	293	312	1621	324	0,96	311	345	327
15	Torneado de las partes	1782	1581	1739	1393	1684	8179	1636	0,99	1619	1830	1695

#	Descripción	1	2	3	4	5	Sm	Те	Fv	Tn	TI	Tt
16	Transporte a torno lijador	329	207	242	357	277	1412	282	0,96	271	301	285
17	Fresada en trompo lijador	1549	1619		1699	1634	8038	1608	0,99	1592		
18	Rodeado de las partes	1298	1248	1538	1311	1442	6837	1367	0,99	1354	1530	1447
19	Transporte área de ensamble	338	256	343	357	272	1566	313	0,96	301	334	316
20	Ensamblar, aplicar pegante	1443	1608	2576	2592	2537	12756	2551	0,99	2526	2905	2660
21	Tarugar las partes	2241	2308	2248	2336	2361	11494	2299	0,99	2276	2617	2397
22	Transporte a área de pintura	332	296	242	312	352	1534	207	0,96	295	327	309
23	Aplicar inmunizante	1114	1189	1253	1171	1232	5959	1192	1,00	1192	1371	1251
24	Secado del producto	1669	1658	1771	1623	1729	8450	1690	0.96	1622	1833	1715
25	Aplicar 1ra mano de pintura	1411	1502	1488	1553	1595	7549	1510	1,00	1510	1736	1585
26	Secado del producto	1729	1653	1693	1621	1667	8363	1673	0,96	1606	1814	1698
27	Aplicar sellador	1227	1194	1363	1211	1265	6260	1252	1,00	1252	1440	1315
28	Secado del producto	2138	2187	2263	2102	2209	10899	2180	0,96	2093	1365	2212
29	Pulir sellador	1245	1438	1487	1363	1434	6967	1393	0,99	1379	1559	1444
30	Lacado del producto	1249	1177	1306	1142	1243	6117	1223	1,00	1223	1407	1285
31	Colocar herrajes y detalles	1598	1673		1739	1562	8129	1626	0,99	1610		2098
32	Inspección final	375	416	452	349	397	1989	398	0,99	394	748	513
33	Transporte almacenamiento	381	454	417	436	385	2073	415	0,96	398	454	422
34	Almacenamiento final	-	-	-	-	-	_	-	-	-	-	-
	TIEMPO TOTAL =	593	580	607	599	614						37964

FACTOR DE VALORACION (RITMO DE TRABAJO)

Para establecer el factor de valoración de cada operación del estudio se empleo el **METODO DE NIVELACION** que considera 4 aspectos (**habilidad**, **esfuerzo**, **las condiciones** y la **consistencia**) para la valoración del ritmo; El desempeño estándar de un trabajador calificado se asume como el 100/100 de rendimiento, por ello a esta valoración se deben adicionar los valores de la tabla percibidos en el análisis y de esta manera determinar el grado de desempeño del operador que ejecutó el proceso (125 %, 120 %, 95 %, 88 % etc.).

Ilustración 13. Factores de valoración para el estudio de tiempos

	HABILIDAD		ESFUERZO
+0.15	A1	+0.13	A1
+0.13	A2 – Habilísimo	+0.12	A2 – Excesivo
+0.11	B1	+0.10	B1
+0.08	B2 – Excelente	+0.08	B2 – Excelente
+0.06	C1	+0.05	C1
+0.03	C2 – Bueno	+0.02	C2 – Bueno
0.00	D – Promedio	0.00	D – Promedio
-0.05	E1	-0.04	E1
-0.10	E2 – Regular	-0.08	E2 – Regular
-0.15	F1	-0.12	F1
-0.22	F2 – Deficiente	-0.17	F2 – Deficiente

CONDICIONE	s	CONSISTENC	A
+0.06	A – Ideales	+0.04	A – Perfecto
+0.04	B – Excelentes	+0.03	B – Excelente
+0.02	C – Buenas	+0.01	C – Buena
0.00	D – Promedio	0.00	D – Promedio
-0.03	E – Regulares	-0.02	E – Regular
-0.07	F – Malas	-0.04	F – Deficiente

Tomado de: Ingenieriaindustrial, Online. 2020. Factor de valoración.

SUPLEMENTOS

Según la **OIT** existe una clasificación más detallada para segmentar los suplementos (suplementos fijos, suplementos variables y suplementos especiales) como se aprecia en el siguiente gráfico, la OIT establece que los SUPLEMENTOS POR DESCANSO son la única parte esencial del tiempo que se añade al tiempo básico. Los demás suplementos solo se aplican bajo ciertas condiciones.

Suplementos Necesidades Fatiga Fatiga Demoras Demoras Suplementos variable inevitables evitables por política personales básica Suplementos constantes Suplementos especiales Tiempo Tiempo Suplementos totales normal estándar

Ilustración 14. Suplementos del estudio de tiempos

Tomado de: Benjamin, W. 1990. P.434. 11aed

SUPLEMENTOS POR DESCANSO (método de valoración objetiva con estándares de fatiga) En la siguiente tabla se ilustra los factores de evaluación de los suplementos por descanso utilizados en el estudio de tiempos, Este método divide los factores de los suplementos en constantes y variables. Para el análisis de calidad sigma se estableció el grupo de factores variables que agrupan las necesidades personales estableciendo un porcentaje básico de fatiga para hombres y mujeres en los diferentes aspectos de evaluación. A continuación se muestra la formula general utilizada para establecer los suplementos por descanso de cada una de las actividades realizadas en el proceso productivo:

SLP =
$$\sum$$
(a,b,c,d,e,f,g,h,i,j) =____

Ilustración 15. Suplementos por descanso para el estudio de tiempos

INGENIERÍA IND	ONLINE	ECOM			
SUPLEMENTOS CONSTANTES	HOMBRE	MUJER	SUPLEMENTOS VARIABLES	HOMBRE	MUJE
Necesidades personales	5	7	e) Condiciones atmosféricas		
Básico por fatiga	4	4	Índice de enfriamiento, termómetro		
SUPLEMENTOS VARIABLES	HOMBRE	MUJER	de KATA (milicalorías/cm2/segundo)		
) Trabajo de pie			16	0	
Trabajo se realiza sentado(a)	0	0	14	0	
Trabajo se realiza de pie	2	4	12	0	
) Postura normal			10	3	
Ligeramete incómoda	0	1	8	10	1
Incómoda (inclinación del cuerpo)	2	3	6	21	
Muy incómoda (Cuerpo estirado)	7	7	5	31	25
			4	45	
			3	64	
Uso de la fuerza o energia muscular levantar, tirar o empujar)			2	100	
ievantar, tirar o empujar)			f) Tensión visual		
Peso levantado por kilogramo			Trabajos de cierta precisión	0	0
2,5	0	1	Trabajos de precisión o fatigosos	2	2
5	1	2	Trabajos de gran precisión	5	5
7,5	2	3	g) Ruido		
10	3	4	Sonido continuo	0	0
12,5	4	6	Sonidos intermitentes y fuertes	2	2
15	5	8	Sonidos intermitentes y muy fuertes	5	5
17,5	7	10	Sonidos estridentes	7	7
20	9	13	h) Tensión mental		
22,5	11	16	Proceso algo complejo	1	1
25	13	20 (máx)	Proceso complejo o de atención		
30	17	50	dividida	4	4
33,5	22		Proceso muy complejo	8	8
d) Iluminación			i) Monotonia mental		
Ligeramente por debajo de la potencia				0	0
calculada	0	0	Trabajo monótono		
			Trabajo bastante monótono	1	1
Bastante por debajo	2	2	Trabajo muy monótono	4	4
Absolutamente insuficiente	5	5	j) Monotonía física		
			Trabajo algo aburrido	0	0
			Trabajo aburrido	2	2
			Trabajo muy aburrido	5	5

Tomado de: Ingenieriaindustrial, Online. 2020. Suplementos por descanso.

6.2.3 ANALISIS DE TIEMPOS Y MOVIMIENTOS.

Tabla 3. Análisis de tiempos y movimientos elaboración silla sencilla

100	Rústicos	Proc Elab		n de s	silla se	encilla			RESUMEN		
	MAN AM							Actividad	t	#	
1	– Mli Viejo Ybaúl							Operación	28276	17	
								Transporte	3097	10	
Ana	llista: Sebastián Eslava	Inicia: Selección de MP						Almacenamiento	-	1	
		Term	nina: /	Almac	enam	iento		Demora	5625 4		
	do Propuesto:	Fech						Inspección	2	2 34	
Méto	odo Actual: x	Hoja	<u>1</u> de					TOTAL 37964			
	Actividad		_		Símbolo			Tiempo	Distanc		
#	Descripción	0		⇒	lacksquare	D		(Seg)	(Pies)		
1	Inspección y selección de MP						_ •	453			
2	Transporte a sierra							334	17		
3	Corte de repisas, parales	<						1771			
4	Transporte a planeadora			>				289	5		
5	Enderezar la madera							1346			
6	Cepillar la madera	T.						1622			
7	Transporte banco de trazado			>				270	11		
8	Trazado de espigas	$<$						1406			
9	Transporte a barrenadora			>				264	4		
10	Elaborar huecos de ensamble	<						1202			
11	Transporte a acanaladora			>•				281	16		
12	Hacer canales a la madera							1104			
13	Pulir la madera	_						1009			
14	Transporte a torno			>				327	23		
15	Torneado de las partes	<						1695			
16	Transporte a torno lijador			>				285	29		
17	Fresada en trompo lijador							1666			
18	Rodeado de las partes	_						1447			
19	Transporte área de ensamble			•				316	30		

#					bolo			Tiempo	Distancia
		0		\Rightarrow	∇	D		(seg)	(pies)
20	Ensamblar, aplicar pegante	i						2660	
21	Tarugar las partes							2397	
22	Transporte a área de pintura			>				309	17
23	Aplicar inmunizante	<						1251	
24	Secado del producto					>		1715	
25	Aplicar 1ra mano de pintura	\checkmark						1585	
26	Secado del producto					>		1698	
27	Aplicar sellador	<						1315	
28	Secado del producto					>		2212	
29	Pulir sellador							1444	
30	Lacado del producto	•						1285	
31	Colocar herrajes y detalles	•						2098	
32	Inspección final		A					513	
33	Transporte almacenamiento			•				422	43
34	Almacenamiento final				•			-	
				Т	IEMP	о то	TAL =	37964	

6.2.4 NIVEL SIGMA DE CALIDAD DE PRODUCCION ACTUAL

VENTA DE MUEBLES (2015 – 2019)

Tabla 4. Venta de muebles periodo 2015-2019

									_	_	_	_	_	
	VENTA DE MUEBLES AÑO (2015 - 2019)													
APTICULO COSTO ÉUNIO			C	ANTIDA	D				DELEC	TUOSOS				QUEJAS/OBSERVACIONES
ARTICULO	COSTO/UNID	2015	2016	2017	2018	2019			DEFEC	100303				QUEIAS/OBSERVACIONES
Cama doble	\$950.000,00	41	54	39	56	49	1	1	3	4			9	-* Mala resistencia de la madera (madera rajada)
Silla sencilla	\$140.000,00	79	84	98	88	104	1	4	2	3	5	3	19	* Imperfecciones en la pintura del mueble (varian las tonalidades)
Mueble para tv	\$800.000,00	63	67	51	62	57	1	2	1	1	2		7	* Nudos en la madera * Excesiva exposicion de los productos al fuego (terminados)
Biblioteca	\$650.000,00	54	41	53	46	38	1	2	1	2			6	* Piezas que no cumplen las dimenciones establecidas
Cajonera	\$550.000,00	38	46	53	35	49	1	1	1	1	2		6	* Superficies del producto rasposa/rugosa * El producto presenta golpes
TOTAL		275	292	294	287	297		47						* partes de los productos que presentan astillas
				1445										

Fuente: Autor

Tabla 5. Fallas y defectos encontrados

FALLAS	#
Mala resistencia de la madera (madera rajada)	14
Imperfecciones en la pintura del mueble (varian las tonalidades)	9
Nudos en la madera	8
Excesiva exposicion de los productos al fuego (terminados)	6
Piezas que no cumplen las dimenciones establecidas	4
Superficies del producto rasposa/rugosa	3
El producto presenta golpes	2
Partes en los productos presentan astillas	1

Fuente: Autor

D = 47 (defectos observados en la muestra)

U = 1445 (unidades en la muestra) (5 años)

O = 8 (oportunidades de defectos)

VARIABLES:

• **DPMO:** Defectos por 10.000 oportunidades

DPMO =
$$\frac{10000 * D}{U * O}$$
 =
DPMO = $\frac{10000 * 47}{1445 * 8}$ = **40,67**

• **DPO**: Defectos por oportunidad

DPO =
$$\frac{D}{U*O}$$
 =
DPO = $\frac{47}{1445*8}$ = **0,00406**

• Yield: Desempeño del proceso

Yield =
$$(1 - DPO) * 100 =$$

Yield =
$$(1 - DPO) * 100 = 99,594 \%$$

NIVEL SIGMA DE CALIDAD ≈ 4.1 (calidad convencional)

Tabla 6. Cuadro resumen nivel de calidad six sigma

Nivel σ	DPM	% Defectos	Rendimiento(%)	
0	933,193	93 %	6.7%	0-3
1	690,000	69 %	31%	Necesita
2	308,537	31 %	69%	Mejorar
2.5	158,655	15.86 %	84.14 %	
3	66,807	7 %	93%	3 - 4.5
4	6,210	0.6 %	99.4%	Calidad
4.5	1350	0.14%	99.86%	Convencional
5	233	0.02%	99.97%	4.5 - 6
5.5	32	0.003 %	99.997%	Buen Proceso
6	3.40	0.0 %	100.0%	6 Proceso óptimo

Ilustración 16. Tabla de valoración convencional de calidad six sigma

Abridged Process Sigma Conversion Table

Long-Term Yield	Process Sigma	Defects Per 1,000,000	Defects Per 100,000	Defects Per 10,000	Defects Per 1,000	Defects Per 100
99.99966%	6.0	3.4	0.34	0.034	0.0034	0.00034
99.9995%	5.9	5	0.5	0.05	0.005	0.0005
99.9992%	5.8	8	0.8	0.08	0.008	0.0008
99.9990%	5.7	10	1	0.1	0.01	0.001
99.9980%	5.6	20	1 2 3	0.2	0.02	0.002
99.9970%	5.5	30	3	0.3	0.03	0.003
99.9960%	5.4	40	4	0.4	0.04	0.004
99.9930%	5.3	70	7	0.7	0.07	0.007
99.9900%	5.2	100	10	1.0	0.1	0.01
99.9850%	5.1	150	15	1.5	0.15	0.015
99.9770%	5.0	230	23	2.3	0.23	0.023
99.9670%	4.9	330	33	3.3	0.33	0.033
99.9520%	4.8	480	48	4.8	0.48	0.048
99.9302%	4.7	680	68	6.8	0.68	0.068
99.9040%	4.6	960	96	9.6	0.96	0.096
99.8650%	4.5	1,350	135	13.5	1.35	0.135
99.8140%	4.4	1,860	186	18.6	1.86	0.186
99.7450%	4.3	2,550	255	25.5	2.55	0.255
99.6540%	4.2	3 4 6 0	346	34.6	3.46	0.346
99.5340%	4.1	4,660	466	46.6	4.66	0.466
99.3790%	4.0	6,210	621	62.1	6.21	0.621
99.1810%	3.9	8,190	819	81.9	8.19	0.819
98.930%	3.8	10,700	1,070	107	10.7	1.07
98.610%	3.7	13,900	1.390	139	13.9	1.39
98.220%	3.6	17,800	1,780	178	17.8	1.78
97.730%	3.5	22,700	2,270	227	22.7	2.27
97.130%	3.4	28,700	2,870	287	28.7	2.87
96.410%	3.3	35,900	3,590	359	35.9	3.59
95.540%	3.2	44,600	4,460	446	44.6	4.46
94.520%	3.1	54,800	5,480	548	54.8	5.48
93.320%	3.0	66,800	6,680	668	66.8	6.68
91.920%	2.9	80,800	8,080	808	80.8	8.08
90.320%	2.8	96,800	9.680	968	96.8	9.68
88.50%	2.7	115,000	11,500	1,150	115	11.5
86.50%	2.6	135,000	13,500	1,350	135	13.5
84.20%	2.5	158,000	15,800	1,580	158	15.8
81.60%	2.4	184,000	18,400	1,840	184	18.4
78.80%	2.3	212,000	21,200	2,120	212	21.2
75.80%	2.2	242,000	24,200	2,420	242	24.2
72.60%	2.1	274,000	27,400	2,740	274	27.4
69.20%	2.0	308,000	30,800	3,080	308	30.8
65.60%	1.9	344,000	34,400	3,440	344	34.4
61.80%	1.8	382,000	38,200	3,820	382	38.2
58.00%	1.7	420,000	42,000	4,200	420	42
54.00%	1.6	460,000	46,000	4,600	460	46
50%	1.5	500,000	50,000	5,000	500	50
46%	1.4	540,000	54,000	5,400	540	54
43%	1.3	570,000	57,000	5,700	570	57
39%	1.2	610,000	61,000	6,100	610	61
35%	1.1	650,000	65,000	6,500	650	65
31%	1.0	690,000	69,000	6,900	690	69
28%	0.9	720,000	72,000	7,200	720	72
25%	0.8	750,000	75,000	7,500	750	75
22%	0.7	780,000	78,000	7,800	780	78
19%	0.6	810,000	81,000	8,100	810	81
16%	0.5	840,000	84,000	8,400	840	84
14%	0.4	860,000	86,000	8,600	860	86
12%	0.3	880,000	000,88	8,800	880	88 90
10%	0.2 0.1	900,000	90,000	9,000 9,200	900 920	92
8%	0.1	920,000	92,000	9,200	920	92

Fuente: Ingenieriaindustrial, Online. 2020. Tabla de conversión sigma

6.2.5 TABLA PRIORIZADORA

Mediante una entrevista personal aplicada a los trabajadores y jefe de producción se consiguió establecer las fallas y defectos críticos que afectan la calidad de los procesos de manufactura que representan directamente una no conformidad en la calidad final de los productos fabricados por la empresa, estableciendo a continuación una escala de importancia a cada de las fallas y defectos encontrados.

NIVEL	IMPORTANCIA
1	BAJA
2	MEDIA
3	ALTA

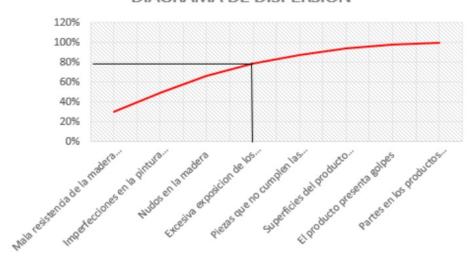
Tabla 7. Tabla de priorización de defectos y fallas

#	DESCRIPCION DE LA FALLA	1	2	3
1	Imperfecciones en la pintura del mueble (varian las tonalidades).		х	
2	Superficies del producto rasposa/rugosa.		х	
3	Nudos en la madera.			x
4	Piezas que no cumplen las dimenciones establecidas.			х
5	El producto presenta golpes.	x		
6	Partes en los productos presentan astillas.			х
7	partes del producto presentan quemaduras (terminados).			х
8	Madera rajada.	х		
9	Poca disposicion de espacio de operación en la planta de produccion.		х	
10	Cruce de procesos .		х	

Fuente: Autor

6.2.6 DIAGRAMA DE PARETO

A continuación mediante el uso de esta herramienta de calidad se establece la frecuencia de afectación y una clasificación de prioridad (A, B, C, D) a cada una de las fallas y defectos encontrados anteriormente con el fin de establecer el orden e importancia de las fallas más críticas presentes en los procesos de manufactura que representan el 80% de las fallas y defectos críticos que afectan la calidad de los procesos y directamente el producto terminado para su eficiente eliminación o mejora.

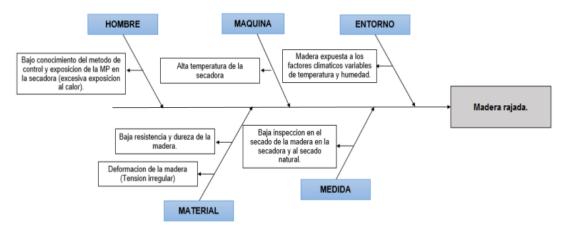

Tabla 8.Diagrama de Pareto (descripción de fallas)

#	DESCRIPCION DE LA FALLA	Frec.abs	Fi %	Fi acm	CLASIFICACION
1	Madera rajada.	14	0,30	30%	
2	Imperfecciones en la pintura del mueble (varian las tonalidades)	9	0,19	49%	А
3	Nudos en la madera	8	0,17	66%	*
4	partes del producto presentan quemaduras (terminados)	6	0,13	79%	
5	Piezas que no cumplen las dimenciones establecidas	4	0,09	87%	В
6	Superficies del producto rasposa/rugosa	3	0,06	94%	В
7	El producto presenta golpes	2	0,04	98%	С
8	Partes en los productos presentan astillas	1	0,02	100%	D
		47	1,00		

Fuente: Autor

Ilustración 17. Diagrama de Pareto

DIAGRAMA DE DISPERSION


7. ANALISIS DE CAUSAS Y EFECTOS

7.1 Analizar las causas raiz (A): Para determinar las causas y efectos de las NO conformidades presentes en el proceso de manufactura se emplea a continuación el uso de diagramas ishikawa para la identificación y evaluación de las cauzas raiz de los mismos.

7.1.1 DIAGRAMAS ISHIKAWA.

N1 Madera rajada.

Ilustración 18. Diagrama Ishikawa de "madera rajada

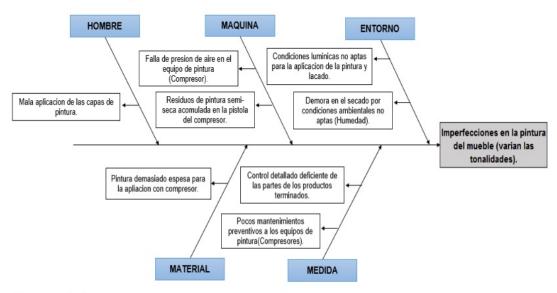

Fuente: Autor

Tabla 9. Priorización de resultados Ishikawa "madera rajada"

	TABLA DE PRIORIZACION DE CAUSA/E FECTO.										
	Realizando el analisis de las fallas principales de la MADERA RAJADA en los productos se estructura la siguiente escala de priorizacion de todas las caus obtenidas anteriormente para así establecer las correctas medidas correctivas y preventivas para eliminar o mitigar al maximo cada uno de los defectos encotrados en los productos.										
#	# DESCRIPCION PRIORIZACION OBSERVACIONES										
1	Excesiva exposicion al calor en la secadora.		Se priorizara la elaboracion del plan de mejora de								
2	Alta temperatura de la secadora.	ALTA	estas causas que presentan un alto porcentaje de								
3	Baja inspeccion en el secado de la madera en la secadora y al secado natural.		incidencia en la madera rajada de los muebles.								
4	Madera expuesta a los factores climaticos variables de temperatura y humedad.	MEDIA	Se establecera un control preventivo que mitigue al maximo los factores ambientales que afectan la MP.								
5	Baja resistencia y dureza de la madera.	BAJA	Se mitigaran estas causas presentando de manera								
6	Defromacion de la madera (tension irregular).	DAJA	preventiva un control riguroso en la MP y proveedores.								

N2 Imperfecciones en la pintura (varían las tonalidades)

Ilustración 19. Diagrama Ishikawa "varían las tonalidades

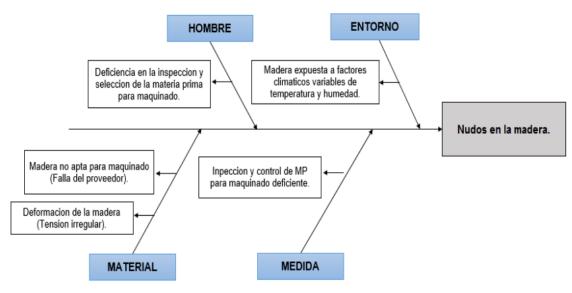

Fuente: Autor

Tabla 9. Priorización de resultados Ishikawa "varían las tonalidades"

TABLA DE PRIORIZACION DE CAUSA/E FECTO. Realizando el analisis de las fallas principales por las que VARIAN LAS TONALIDADES en los productos se estructura la siguiente escala de priorizacion de todas las causas obtenidas anteriormente para asi establecer las correctas medidas correctivas y preventivas para eliminar o mitigar al maximo cada uno de los defectos encotrados. DESCRIPCION PRIORIZACION **OBSERVACIONES** # 1 Mala aplicación de las capas de pintura Se priorizara la elaboracion del plan de Pocos mantenimientos preventivos a los equipos de piuntura. 2 mejoras de estas causas que presentan un ALTA Falla de presion de aire en los equipos de pintura. alto porcentaje de incidencia en la variabilidad de las tonalidades de la pintura. 4 Residuos de pintura semi-seca acomulada en la pistola del compresor. Pintura demasiado espesa para la aplicación en compresor. Se establecera un control correctivo y MEDIA preventivo que mitigue estas fallas que Control detallado deficiente de las partes de los productos terminados. afectan la apariencia del mueble. 7 Demora en el secado por condiciones ambientales no aptas (Humedad). Se correguiran estas causas presentando BAJA de manera correctiva un control riguroso en Condiciones luminicas no aptas para la aplicación de pintura y lacado. el entorno de aplicación de pinturas.

N3 Nudos en la madera

Ilustración 20. Diagrama Ishikawa "madera rajada"

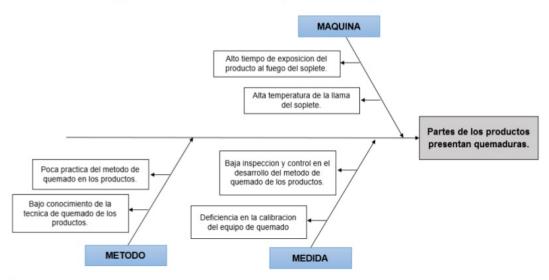

Fuente: Autor

Tabla 10. Priorización de resultados Ishikawa "madera rajada"

TABLA DE PRIORIZACION DE CAUSA/EFECTO. Realizando el analisis de las fallas principales de los NUDOS EN LA MADERA en los productos se estructura la siguiente escala de priorizacion de todas las causas obtenidas anteriormente para asi establecer las correctas medidas correctivas y preventivas para lograr eliminar o mitigar al maximo los defectos encotrados en los productos. # DESCRIPCION PRIORIZACION **OBSERVACIONES** 1 Madera no apta para maquinado (Falla en los proveedores). Se priorizara la elaboracion del plan de mejoras de estas causas que presentan un deformacion de la madera (Tension irregular). 2 ALTA alto porcentaje de incidencia de los nudos 3 Inspeccion y control de MP para maquinado deficiente. en la madera. Se estableceran medidas de control MEDIA Deficiencia en la inspeccion y selección de materia prima para maquinado. preventivo que mitigue al maximo la presencia de estos defectos en la MP. Se presentara un control preventivo sobre los factores climaticos en el entorno de BAJA 6 Madera expuesta a factores climaticos variables de temperatura y humedad. almacenaje de la MP que mitiguen sus efectos climaticos.

N4 Excesiva exposición de los productos al fuego (terminados)

Ilustración 21. Diagrama Ishikawa "excesiva exposición al fuego"


Fuente: Autor

Tabla 11. Priorización de resultados Ishikawa "excesiva exposición al fuego"

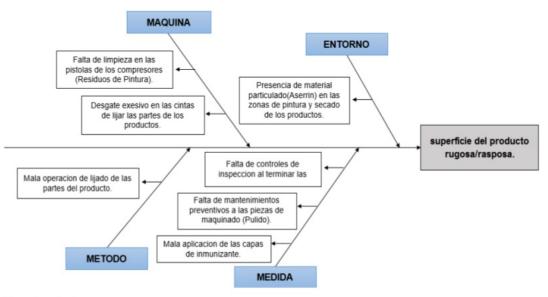
TABLA DE PRIORIZACION DE CAUSA/EFECTO. Realizando el analisis de las fallas principales de los PRODUCTOS QUE PRESENTAN QUEMADURAS en los productos se estructura la siguiente escala de priorizacion de todas las causas obtenidas anteriormente para asi establecer las correctas medidas correctivas y preventivas para lograr eliminar o mitigar al maximo los defectos encotrados en los productos. # PRIORIZACION MEDIDAS CORRECTIVAS DESCRIPCION 1 Bajo conocimiento de la tecnica de guemado de los productos. Se priorizara la elaboracion del plan de mejoras de estas causas que presentan un 2 ALTA Alta temperatura de llama del soplete. alto porcentaje de incidencia en la quema de 3 Alta exposicion de los productos al fuego. las partes de los muebles. Se estableceran medidas de control 4 Deficiencia en la calibracion del equipo de quemado. correctivo que eliminen las fallas de MEDIA calibracion presentes en los equipos de Poca practica del metodo de quemado en los productos. quemado. Se presentara un control e inpeccion sobre 6 Baja inspeccion y control en el desarrollo del metodo de quemado del producto. BAJA las tecnicas y metodos utilizados en la aplicación del fuego al mueble.

N5 Piezas que no cumplen las dimensiones establecidas

Ilustración 22. Diagrama Ishikawa "piezas que no cumplen las dimensiones establecidas

Fuente: Autor

Tabla 12. Priorización de resultados Ishikawa "piezas que no cumplen las dimensiones establecidas"


TABLA DE PRIORIZACION DE CAUSA/EFECTO.

Realizando el analisis de las fallas principales de la PIEZAS QUE NO CUMPLEN LAS DIMENSIONES ESTABLECIDAS en los productos se estructura la siguiente escala de priorizacion de todas las causas obtenidas anteriormente para asi establecer las correctas medidas correctivas y preventivas para lograr eliminar o mitigar al maximo los defectos encotrados en los productos.

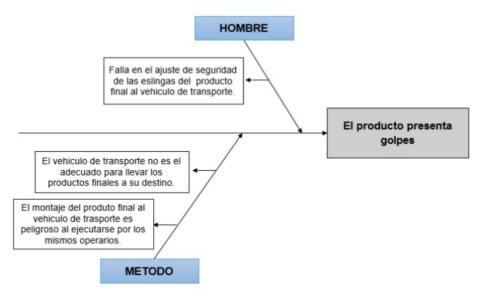
#	DESCRIPCION	PRIORIZACION	OBSERVACIONES		
1	Mala utilizacion de los equipos y herramientas de corte pulido y torneado.		Se priorizara la elaboracion del plan de		
2	Deficiencia en el mantenimiento de las piezas de mecanizado	ALTA	mejoras de estas causas que presentan un alto porcentaje de incidencia en la falla de las		
3	Falla en mantenimientos preventivos de para remplazar las piezas de maquinado		dimenciones de las partes de los muebles.		
4	Estado obsoleto de los calibradores pie de rey.	MEDIA	Se estableceran medidas de control predictivas que eliminen las fallas de calibracion presentes en los equipos de medicion.		
5	Excesiva interaccion entre los trabajadores dificulta la concentracion y correcta ejecucion de los procesos.	BAJA	Se presentara un control e inpeccion sobre los trabajadores para evitar la distraccion en momentos de operación en planta.		

N6 Superficies rugosas/rasposas

Ilustración 23. Diagrama Ishikawa "superficies rugosas

Fuente: Autor

Tabla 14. Priorización de resultados Ishikawa "superficie rugosa"


TABLA DE PRIORIZACION DE CAUSA/EFECTO.

Realizando el analisis de las fallas principales de la RUGOSIDAD EN LA MADERA en los productos se estructura la siguiente escala de priorizacion de todas las causas obtenidas anteriormente para asi establecer las correctas medidas correctivas y preventivas para lograr eliminar o mitigar al maximo los defectos encotrados en los productos.

#	DESCRIPCION	PRIORIZACION	OBSERVACIONES		
1	Presencia de material particulado (Aserrin) en las zonas de pintura y secado.		Se priorizara la elaboracion del plan de		
2	Desgaste excesivo de las cintas de lijar las partes de los productos.	ALTA	mejoras de estas causas que presentan un		
3	Mala operación de lijado de las partes de los productos.	ALTA	alto porcentaje de incidencia en la rugosidad en la madera.		
4	Mala aplicación de las capas de inmunizante.				
5	Falta de mantenimientos preventivos a las piezas de maquinado.	MEDIA	Se estableceran medidas de control preventivos y correctivos que eliminen las		
7	Falta de limpieza en las pistolas de los compresores (Residuos de Pintura).	MEDIA	fallas presentes en los equipos de maquinado.		
8	Falta de controles de inspeccion al terminar la operación de pulido lijado.	BAJA	Se presentara un control e inpeccion sobre los procesos de maquinado criticos.		

N7 El producto presenta golpes

Ilustración 24. Diagrama Ishikawa "golpes en el producto

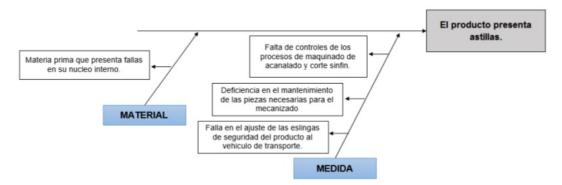

Fuente: Autor

Tabla 13. Priorización de resultados Ishikawa "golpes en el producto"

TABLA DE PRIORIZACION DE CAUSA/EFECTO. Realizando el analisis de las fallas principales de la presencia de GOLPES EN EL PRODUCTO en los productos se estructura la siguiente escala de priorizacion de todas las causas obtenidas anteriormente para así establecer las correctas medidas correctivas y preventivas para lograr eliminar o mitigar al maximo los defectos encotrados en los productos. # DESCRIPCION PRIORIZACION **OBSERVACIONES** Se priorizara la elaboracion del plan de El vehiculo de transporte no es el adecuado para llevar los productos a su destino. mejoras de estas causas que presentan un ALTA El montaje del producto de transporte no es el adecuado para llevar los productos alto porcentaje de incidencia en los golpes de 3 finales a su destino. los productos. Se presentara un control e inpeccion sobre 4 Falla en el ajuste de seguridad del producto final al vehiculo de transporte. BAJA los procesos de seguridad y transporte del Deficiencia en el modo de transporte del producto final a su localizacion final. producto a su destino final.

N8 El producto presenta astillas

Ilustración 25. Diagrama Ishikawa "astillas en el producto".

Fuente: Autor

Tabla 14. Priorización de resultados Ishikawa "astillas en el producto"

Realizando el analisis de las fallas principales de presentar ASTILLAS EN LOS PRODUCTOS en los productos se estructura la siguiente escala de priorizacion de todas las causas obtenidas anteriormente para asi establecer las correctas medidas correctivas y preventivas para lograr eliminar o mitigar al maximo los defectos encotrados en los productos. # DESCRIPCION PRIORIZACION ACCIONES CORRECTIVAS Se priorizara la elaboración del plan de

#	DESCRIPCION	PRIORIZACION	ACCIONES CORRECTIVAS
1	Deficiencia en el mantenimiento de las piezas necesarias para el mecanizado	ALTA	Se priorizara la elaboracion del plan de mejoras de esta causas que presenta un alto porcentaje de incidencia en la presencia de astilias en Iso productos.
2	Materia prima presenta fallas en su nucleo interno.	MEDIA	Se estableceran medidas de control preventivos que eliminen las fallas presentes
3	Falla en los controles de los procesos de maquinado de acanalado y corte sinfir		en la MP y procesos críticos.
4	Falla en el ajuste de las eslingas se seguridad del producto al vehiculo de transporte.	BAJA	Se presentara un control e inpeccion sobre los procesos de seguridad en el trasnporte de los productos al destino final.

8. ACCIONES CORRECTIVAS

8. Mejorar (I).

8.1.1 Matriz de acciones correctivas

En esta etapa se establecerán grupos de fallas y defectos que presentan similitud en la causa de fallo y sus estrategias de mejora, para establecer de manera más eficiente y práctica la matriz de acciones de mejora para corregir, eliminar y/o mitigar cada una de esas fallas y defectos presentes en los procesos y productos finales. A continuación se presentan las matrices de acciones de mejora de los problemas hallados:

• Calibración de equipos de manufactura:

Tabla 15. Matriz de acciones de mejora para calibración de equipos de manufactura

Rústins			ANALISTA: Sebastián Eslava F.					
MANA BLA	ACCIONES DE MEJOR	A "CALIE	PROCESO: P	PROCESO: Producción				
Jul Vilgo Ostali						DEPARTAME	NTO: Produccio	ón.
DESCRIPCION DE LA FALLA	CAUSA	PRIORI		DIDA	ESTRATEGIAS DE MEIOR	A	FRECUENCIA	RESPONSABLE
			PREV	CORR				
Imperfecciones en la pintura del mueble	Falta de presion (aire) en los equipos de pintura		x		Establecer un <u>cronograma de mant</u> <u>preventivos</u> de los equipos de pinto de evitar fallas en su funcionamiento la calidad de la pintura en el prod	ura con el fin que afecten	Mensual	Jefe de produccion
Partes de los productos presenta quemaduras	Alta temperatura de la llama del soplete Deficiencia en la calibracion del equipo de	Alta		x	Brindar los <u>cursos y capacitacione</u> en el correcto manejo y calibracion o quemado para evitar las altas o temperaturas al momento de calibra	del equipo de o bajas	Mensual	Gerente general
Piezas que no cumplen las dimensiones establecidas	quemado Deficiencia en el mantenimiento de las piezas de mecanizado		Х		equipo. Establecer un <u>cronograma de mani</u> preventivos de los equipos de corte			
El producto presenta astilas	Deficiencia en el mantenimiento de las piezas necesarias para el mecanizado		х		donde cambien y reajusten las p mecanizado que presentan desgaste su uso continuo en el corte de las p productos.	natural por	Mensual	Jefe de produccion

• Materia prima y proveedores:

Tabla 16. Matriz de acciones de mejora para control de materia prima y proveedores

Rulliani						ANALISTA: S	ebastián Eslav	a F.			
Mr Olein Rail	ACCIONES DI	ACCIONES DE MEJORA "MATERIA PRIMA Y PROVEEDORES"						PROCESO: Almacenamiento de MP			
The State State					1	DEPARTAME	NTO: Producció	ón.			
DESCRIPCION DE LA FALLA	CAUSA	PRIORI		DIDA	ESTRATEGIAS DE MEJORA		FRECUENCIA	RESPONSABLE			
			PREV	CORR							
	Madera no apta para maquinado (falla en proveedores)			x	Establecer una planilla de control de la MP con los proveedores para evitar madera que no cumpla las especifi necesarias para el procesamiento en	r el envió de caciones	Con la recepción de cada lote de MP.	Gerente general			
Nudos en la madera	Inspección y control de MP para maquinado deficiente	Alta		x	Desarrollar planillas de inspección y control detalladas para efectuar una selección mas eficiente de la MP que asegure el cumplimiento de las especificaciones necesarias para la manufactura.		Con cada elaboración de un nuevo producto	Jefe de produccion			
Madaga rainda	Madera expuesta a factores climáticos de temperatura y humedad	Media		x	Mejorar las condiciones de almacenan MP evitando la exposición a los e climáticos rotando y/o cambian estructuras de soporte y cobertura d donde se almacena la MP.	factores do las lel área de	Mensual	Jefe de producción			
Madera rajada	Baja resistencia y dureza de la madera		x		Establecer un <u>control de calidad en la MP</u> cor los proveedores para intentar minimizar el envió		Con cada	Gerente			
Deformación de la madera (tensión irregular)		Ваја	x		de madera que presenta una falla en si natural (dureza, tensión, humedad) aptas para procesar		pedido de MP solicitado	general			

• Talento humano:

Tabla 17. Matriz de acciones de mejora para talento humano

OR William						ANALISTA: S	Gebastián Eslav	a F.		
CHETTER OR A	ACCIO	ONES DE	PROCESO: Produccion							
Mu Viego Braul			DEPARTAME	NTO: Producció	ón.					
DESCRIPCION DE LA FALLA	CAUSA	PRIORI		DIDA	ESTRATEGIAS DE MEJORA	A	FRECUENCIA	RESPONSABLE		
			PREV	CORR						
Madera rajada	Excesiva exposición de la MP al calor en la secadora			x	Establecer una inspección y contre trabajadores para corroborar el e eficiente desarrollo de el método de	correcto y	Con cada lote de MP preparado	Jefe de producción		
	Alta temperatura de la secadora				MP preestablecido por la organ		para secadora	,		
Imperfecciones en la pintura del muebles (varían tonalidades)	Mala aplicación de las capas de pintura	Alta				x	Enfatizar en el trabajador el uso de <u>métodos e instructivos</u> de aplic pinturas en productos termin	cación de	1 vez cada año	Jefe de producción
Partes de los productos presentan quemaduras	Alto tiempo de exposición del producto al fuego del soplete			x	Brindar al trabajador las Capac		1 vez cada	Gerente		
Piezas que no cumplen las dimensiones establecidas	Mala utilización de los equipos y herramientas de corte pulido y torneado				х	necesarias para el correcto y eficien de las técnicas de quemado para ter muebles		año	general	
Superficie del producto rugosa/rasposa	Mala aplicación de las capas de inmunizante			x	Enfatizar en el trabajador el uso de <u>métodos e instructivos</u> de aplic inmunizantes en productos tern	cación de	1 vez cada año	Jefe de producción		
Nudos en la madera	Deficiencia en la inspección y selección de MP para maquinado.	Media		x	Implementar una planilla de contro facilite al trabajador la adecuada sel MP que cumple con las especific necesarias para su transforma	ección de la caciones	Cada Selección de MP para procesar	Jefe de producción		
El producto presenta golpes/astillas	Falla en el ajuste de eslingas de seguridad del producto al vehículo	Baja		x	Capacitar a los trabajadores en seguro manejo y ajuste de las esi seguridad empleadas en el traspo productos terminados	lingas de	1 vez cada año	Jefe de producción		

• Entorno:

Tabla 18. Matriz de acciones de mejora para control del entorno

O O Chillian					ANALISTA: S	ebastián Eslav	a F.	
Signal and	A	CCIONE	PROCESO: Produccion					
The Migo Boath						DEPARTAME	NTO: Produccio	ón.
DESCRIPCION DE LA FALLA	CAUSA	PRIORI		DIDA	ESTRATEGIAS DE MEJORA	1	FRECUENCIA	RESPONSABLE
			PREV	CORR				
Superficie del producto rugosa/rasposa	Presencia de material particulado (aserrín) en las zonas de pintura y secado de los productos	Alto		x	Establecer programas de orden entorno designado a la pintura de lo terminados aislándolo de las zonas questos desperdicios en su maqu	Antes de iniciar cada proceso de pintado	Trabajador encargado de la pintura	
Imperfecciones en la pintura	Demora en el secado por condiciones ambientales no aptas (humedad)			x	Demarcar las áreas adecuadas pa de los productos donde no entren e con humedad o material partic	n contacto	Después de cada proceso de pintura	Trabajador encargado de la pintura
del mueble	Condiciones lumínicas no aptas para la aplicación de pintado y lacado	Baja		x	Demarcar las áreas adecuadas par y lacado de los productos donde se cu buen factor lumínico para la correcta aplicación de las capas de pintura, inmunizado	uente con un a y eficiente	Antes de cada proceso de pintura	Trabajador encargado de la pintura
Piezas que no cumplen las dimensiones establecidas	Excesiva interacción de los trabajadores dificulta la concentración y ejecución de los procesos		X		Implementar campañas de conci en hábitos de seguridad dentro de l producción para así evitar accidentes proceso	a planta de	trimestral	Gerente general

• Medida:

Tabla 19. Matriz de acciones de mejora para medida

Rústians						ANALISTA: S	ebastián Eslav	a F.		
Wi Wie Bail		ACCION	ES DE M	IEJORA	"MEDIDA"	PROCESO: P	roduccion			
Jul Vilgo Soulli								DEPARTAMENTO: Producción.		
DESCRIPCION DE LA FALLA	CAUSA	PRIORI		CORR	ESTRATEGIAS DE MEJORA	4	FRECUENCIA	RESPONSABLE		
Piezas que no cumplen las dimensiones establecidas	Falta de mantenimientos preventivos para remplazar las piezas para maquinado	Alto		x	Establecer un <u>cronograma de mant</u> <u>preventivos</u> que contemplen el desg de las piezas que realizan la trasform MP y pronostique su ciclo de vida pa tiempo los cambios pertinen	Semestral	Jefe de produccion			
Imperfecciones en la pintura	Pocos mantenimientos preventivos a los equipos de pintura (compresores)		х		Establecer un <u>cronograma de mantenimientos</u> <u>preventivos</u> de mantenimientos a los equipos de pintura que permita evitar problemas y defectos en su funcionamiento en la planta		Semestral	Jefe de producción		
del mueble	Control deficiente de las partes del producto terminadas listas para ensamble	Mediox	х				A cada proceso critico realizado	Jefe de producción		
El producto presenta astillas	Falta de controles de los procesos de maquinado de acanalado y corte sinfín		x		Establecer un <u>punto de control e inspección</u> después de desarrollar cada uno de los procesos críticos de trasformación de la MP que puedan	A cada proceso critico realizado	Jefe de producción			
Superficie del producto rugosa/rasposa	Falta de controles de inspección al terminar las operaciones de pulido lijado		x		llegar a presentar variaciones o def partes de los productos y en la calid producto frente al consumio	ectos en las ad final de l	A cada proceso critico realizado	Jefe de producción		
Partes de los productos presentan quemaduras	Baja inspección y control sobre en el desarrollo del método de quemado de los productos		x			A cada proceso critico realizado	Jefe de producción			
Piezas que no cumplen las dimensiones establecidas	Estado obsoleto de los calibradores pie de rey	Baja	х		Emplear un <u>mantenimiento predic</u> realizar el cambio de las herramic medición para garantizar lecturas co las medidas y dimensiones al mon procesar la MP	entas de onfiables de	Anual	Jefe de producción		
El producto presenta golpes	Deficiencia en el método de transporte del producto final a su localización			x	Establecer un vehículo aprop subcontratar el servicio logístico y garantizar al cliente el transporte d terminado en excelentes condiciones final	para realizar el producto	Con cada producto a entregar	Jefe de producción		

8.2 Controlar para mantenner la mejora (C).

En esta etapa de la investigación se establecieron las herramientas de inspección y control necesarias para mantener un seguimiento eficiente de las acciones correctivas y preventivas determinadas anteriormente y así poder garantizar la eliminación o mitigación de las fallas y una mejora significativa en la calidad en los procesos de manufactura y productos finales fabricados en la empresa.

A continuación se encuentran los formatos de las herramientas de inspección y control a utilizar:

• 8.2.1 Cronograma de mantenimientos preventivos: Actualmente la empresa realiza los mantenimientos correctivos en horarios no laborales cuando se identifica que la maquina presenta fallos en sus procesos de manufactura o el trabajador se percata de la necesidad de mantenimiento. Para el control de esta actividad el jefe de producción tiene dentro de la organización establecida una cuadrilla de mantenimiento conformada por (2) trabajadores que basados en la siguiente planeación estratégica realizaran los mantenimientos preventivos específicamente a las piezas de mecanizado en el momento adecuado de acuerdo al siguiente orden establecido a los (21) equipos de manufactura de la empresa continuando con algunos de los parámetros ya establecidos por la organización.

Tabla 20.Cronograma de mantenimientos preventivos

R PR	ústicos	CR	ON	OG	RA	MA	DE	M	AN	TEI	VIIV	1IEI	NTO	os	PRE	VE	NT	IVO	S				_	CH/		_	_			
Mi Viejo Baúl				(PIEZAS DE MECANIZADO)									RESPONSABLE: Jefe de produccion DEPARTAMENTO: Produccion																	
Jul Vigo Stall (FIEZAS DE MECANIZADO)																														
CANTIDAD	MAQUINA	SEMANA 1				SEMANA 2				SEMANA 3				SEMANA 4					FIRMA											
		L	М	М	J	٧	s	D	L	М	М	J	٧	s	D	L	М	М	J	٧	S	D	L	М	М	J	٧	S	D	RESPONSABLE
3	Sierras																													
1	Sierra sinfín							П																						
1	Sierra radial																													
1	Sierra sinfín pequeña							П									Г													
1	Trompo lijador																Г													
1	Trompo acanalador	Т																												
1	Taladro de arbol																													
1	Torno																Г													
3	Planeadoras																Г					П								
3	Bancos de trazado																													
1	Equipo de gas																													
3	Compresores																													
1	Cepillo																													

8.2.2 Planilla de verificación de calidad de MP- (proveedores): se establecerá una
lista de verificación para la evaluación y selección a los (6) proveedores con los que
actualmente se abastece la empresa que especifique las características adecuadas de la
MP para los procesos de manufactura de la empresa logrando evitar o mitigar al máximo
la selección y envió de material no apto para la fabricación de los muebles.

Tabla 21. Planilla de verificación de materia prima

Rústicos		DIANULAD	E VEDICICACION DE N	MES: SOLICITUD #:							
Mi Viejo Raúl		PLANILLA DI	E VERIFICACION DE IV	IFICACION DE MATERIA PRIMA							
021 7190 0011111							PAG:DE				
SOLIC	FEC	HA ENTRE	#DIAS								
Abastecimiento d											
ESDECIFICACIONE		TIPO	DERA								
ESPECIFICACIONES DE CANTIDAD			TOTAL	PINO	ROBLE	CAOBA	AMARILLOS				
Cantidad de materia											
CARA	С	N.C	OBSERVACIONES								
Grados en la madera (min	imo 83%)										
Patron de veteado de la n	nadera										
Estabilidad de la madera											
Dureza o densidad de la n	nadera (peso	, estructura,	riguidez)								
Durabilidad (calidad natu	ral del mater										
Color (estetica del materi	al)										
Corte y secado (minimo d	e 2 meses)										
Materia prima sin defecto	s naturales (
torceduras, grietas)											

Fuente: Autor

 8.2.3 Planilla de verificación de calidad de MP- (trabajadores): se establecerá una lista de verificación para la evaluación y selección adecuada de la MP almacenada dispuesta a producción mejorando y facilitándole al trabajador el proceso de selección adecuada del material.

Tabla 22. Planilla de inspección de MP-trabajadores

Rústicos Mi Viejo Baúl PLANILLA DE	ADORES	FECHA: PRODUCTO: RESPONSABLE:			
TIPO DE MATERIA PRIMA	co	LOR	TIEMPO DE CORTE-SECADO		
CARACTERISTICAS DE CAL	С	N.C	OBSERVACIONES		
Dureza o densidad de la madera (peso, e					
Patron de veteado de la madera					
Estabilidad de la madera					
Humedad (peso del material)					
Dimensiones (largo, ancho, alto)					
Materia prima sin defectos naturales (nu muescas, torceduras, grietas)					

- 8.2.5 Estrategia de control de los factores climáticos: se debe diseñar una pequeña
 estructura adaptada a la ya existente que cubra y aislé mejorando el control y mitigación
 de los factores climáticos sobre la MP en el área de almacenamiento para evitar al
 máximo alteraciones y deformaciones en la estructura y proceso de secado natural de la
 madera.
- 8.2.4 Planilla de inspección y control de calidad de los procesos: se asignara a cada
 proceso una lista de verificación con las características adecuadas de calidad de las
 piezas procesadas para poder constatar su excelente desarrollo y continuar con la
 siguiente etapa de maquinado garantizando una excelente calidad en los procesos y
 directamente los productos fabricados en la empresa.

Tabla 23. Planilla de inspección y control de calidad.

Mi	ísticos Viejo Baúl	PLANILLA DE INSPECCION Y CONTROL DE CALIDAD									
PROCESO O ACTIVIDAD PRODUCTO			INICIA	TERMINA	RESPONSABLE						
CARACTERISTICAS TECNICAS											
	DIMENSIONES		С	N.C	OBSERVACIONES						
Largo:											
Ancho:											
Alto:											
	ESPECIFICACIONES DE CA	LIDAD	С	N.C	OBSERVACIONES						
Dimensione	s finales del producto										
Estetica de l	as partes o producto en p	roceso									
Riguidez de	la materia prima										
Diseño del p	producto establecido										
Calidad en s	uperfiecies y terminados										
Estabilidad i	interna en la materia prin	na									
Veteado cor	ntinuo interno en la mate	ria prima									

- 8.2.6 Adecuación del entorno (limpieza, humedad): establecer actividades de limpieza
 a cada trabajador en su área de trabajo después de cada jornada de trabajo con el fin de
 evitar acaparamientos de espacios con residuos sobrantes o desperdicios en las áreas
 críticas de manufactura y pintura que afecten el entorno productivo y calidad final de los
 procesos y productos.
- 8.2.7 Capacitaciones: la organización debe brindar las adecuadas capacitaciones necesarias en el manejo de la maquinas, técnicas y/o métodos de transformación y desarrollo de procesos críticos de manufactura a cada uno de los trabajadores en sus áreas para así lograr una eficiente ejecución con excelente calidad de los todos los procesos y actividades de transformación realizados en la fábrica logrando evitar o mitigar al máximo las fallas por factor humano en sus ejecuciones.

9. NUEVO PLAN ESTRATEGICO DE PRODUCCION BASADO EN LA METODOLOGIA LEAN SIX SIGMA

Con el objetivo de incrementar la rentabilidad a nivel local y nacional de la empresa de fabricación de muebles "RUSTICOS MI VIEJO BAUL" se diseña a continuación un plan estratégico basado en los resultados obtenidos anteriormente gracias a la metodología LEAN SIX SIGMA como una herramienta de control de gestión enfocada en la productividad, rentabilidad, mejora continua de los procesos y competitividad de la empresa en el mercado empleando los datos e información obtenida anteriormente por las diversas herramientas de calidad utilizadas en el proyecto de investigación, se establecerá una mejora en el sistema productivo actual de la fábrica que mejore la calidad y desarrollo de cada uno de los procesos de manufactura realizados evitando esas causas de no calidad identificadas anteriormente aumentando directamente la calidad de los productos terminados eliminando o disminuyendo al máximo las pérdidas o desperdicios de material, defectos, fallas por el factor humano, reproceso y devoluciones entre otras, maximizando la rentabilidad y productividad de la empresa y mejorando su posicionamiento en el mercado local y nacional.

SISTEMA DE MONITOREO Y EVALUACION

Para el diseño de nuevo plan estratégico se estableció un sistema de mejora continua basado en el plan actual de producción de la empresa y los resultados obtenidos anteriormente en la investigación realizada basada en la metodología **LEAN SIX SIGMA** como una herramienta de gestión y control, consiguiendo sus beneficios productivos y la posibilidad de mejora a corto y mediano plazo al implementarlo en la fábrica de "RUSTICOS MI VIEJO BAUL".

A continuación se describirán 3 elementos principales para el desarrollo del nuevo plan estratégico:

- 1. Establecer el direccionamiento estratégico de la organización.
- 2. Diseñar objetivos e indicadores de gestión

3. Elaborar una guía de implementación del nuevo plan estratégico

9.1 DIRECCIONAMIENTO ESTRATÉGICO DE LA ORGANIZACIÓN

MISION:

RUSTICOS MI VIEJO BAUL Pone a disposición de los clientes accesorios modernos mobiliarios, conservadores, contemporáneos, que garanticen calidad, innovación tecnológica, tendencias, sustentadas con la constante búsqueda de corrientes estéticas, así como propuestas con nuevos materiales, formas, colores y estilos, con el compromiso de mejorar día con día y estar a la vanguardia, con el propósito de satisfacer al máximo las necesidades y expectativas de todos nuestros clientes.

VISION:

Ser una empresa con proyección nacional, lo cual será posible mediante el esfuerzo, dedicación y profesionalismo de nuestro equipo de trabajo, tomando en cuenta las tendencias del mercado, las necesidades actuales, futuras de nuestros clientes y nuevos métodos de producción mejorando renovando y actualizando estas áreas operativas para llegar a ser la mejor opción para el público de venta de muebles y accesorios en decoración para residencias, oficinas, hoteles, restaurantes, hospitales y mucho más.

9.2 OBJETIVOS E INDICADORES ESTRATEGICOS

El diseño del nuevo plan estratégico cuenta con cuatro (4) perspectivas importantes, dentro de ellas se engloban todos los procesos que la fábrica de muebles "RUSTICOS MI VIEJO BAUL" requiere para la transformación y fabricación de muebles rústicos entre otros, los cuales fueron tomados en cuenta para definir los objetivos, estrategias e indicadores clave que permitan el mejoramiento de la productividad y rentabilidad de la compañía.

PERSPECTIVAS EXTERNAS:

PERSPECTIVA FINANCIERA

Esta perspectiva dentro de los objetivos estratégicos tiene como principal propósito crear valor para el gerente de la empresa mediante indicadores de rendimiento que reflejen el comportamiento operativo, crecimiento y sustentabilidad de la empresa

Tabla 24. Objetivos e indicadores – perspectiva financiera

	PERSE	PECTIVA FINA	NCIERA	
OBJETIVOS	INDICADORES	ACTUAL	META	ESTRATEGIAS
Mejorar el margen de rentabilidad de la empresa	Rendimiento de las utilidades	44,25%	58,26%	Incrementar las ventas y reducir los costos operativos
Mejorar el posicionamiento en le mercado regional y nacional	Posicionamiento empresarial	66,66%	90,00%	Incrementar la presencia en nuevos escenarios de mercado regional y nacional
Crecimiento y desarrollo empresarial	Mejora continua	68,30%	91%	diseño de nuevos productos, metodos y procesos productivos.

Fuente: Autor

PERSPECTIVA DE CLIENTE

El enfoque de esta perspectiva se centró en lo que la empresa de muebles rústicos requiere llevar a cabo para garantizar la retención del cliente y la adquisición de clientes futuros para obtener rentabilidad. En esta etapa se brinda información de la percepción de los clientes finales y con base en sus sugerencias y opiniones se definieron indicadores que ayudarán a responder a las expectativas de los ellos mismos ya que esto depende en gran parte la generación de ingresos que se verán reflejados en la perspectiva financiera.

Tabla 25. Objetivos e indicadores - perspectiva del cliente

	PERSPECTIVA DEL CLIENTE												
OBJETIVOS	INDICADORES	ACTUAL	META	ESTRATEGIAS									
Mejora continua en el diseño y calidad final de los productos fabricados	Innovacion de nuevos productos	90%	95%	diseñar e innovar en nuevos productos fabricados en la empresa									
Maximizar la rentabilidad y satisfaccion en relacion calidad-precio	Satisfaccion del cliente	68,3%	91,66%	Mejorar la calidad de ejecucion de los procesos de transformacion maximizando la calidad del producto final									

Fuente: Autor

PERSPECTIVAS INTERNAS:

PERSPECTIVA INTERNA DE PROCESOS (OPERATIVOS)

En esta categoría se identificaron los objetivos estratégicos que están relacionados directamente con los procesos claves de la organización, de los cuales depende cubrir las expectativas tanto de accionistas como de los clientes. Por lo general el diseño de los indicadores de esta perspectiva se realizó cuando ya se habían definido los mismos para la perspectiva financiera y la de enfoque en el cliente, ya que ésta busca la alineación de las actividades de los colaboradores con los procesos clave de la empresa para con esto establecer los objetivos estratégicos.

Tabla 26. Objetivos e indicadores – perspectiva interna de procesos

	PERSPECTIVA DE	PROCESOS (O	PERATIVOS)	
OBJETIVOS	INDICADORES	ACTUAL	META	ESTRATEGIAS
Fortalecer los procesos de innovación y desarrollo tecnológico	Desarrollo tecnológico	33,40%	67%	Diseñar nuevos metodos innovadores de transformacion de la MP que disminuyan las NO conformidades en el producto final
Mejorar la eficiencia y efectividad del desarrollo de los procesos productivos de la empresa	Efectividad de los procesos de produccion	co 200/	01.55%	Maximizar la eficiencia de todos los procesos críticos de transformacion de la empresa
Garantizar al cliente la exelente calidad y durabilidad de los productos	Satisfaccion del cliente	68,30%	91,66%	Eliminar o disminuir al maximo la presencia de inconformidades internas y externas

Fuente: Autor

PERSPECTIVA DE APRENDIZAJE Y CRECIMIENTO

A esta categoría se le considera como clave en el éxito de la implementación del nuevo plan estratégico ya que en la actualidad la mayoría de los modelos de gestión consideran al talento humano como un activo imprescindible en el éxito de la empresa por medio de su desempeño. Es por esto que parte importante de los indicadores para alcanzar los objetivos estratégicos son los que están relacionado con el desarrollo y crecimiento de las personas en la empresa.

Tabla 27. Objetivos e indicadores – perspectiva de crecimiento

PEF	RSPECTIVA DE AP	RENDIZAJE Y	CRECIMIEN	го
OBJETIVOS	INDICADORES	ACTUAL	META	ESTRATEGIAS
Maximizar el apoyo en sistemas tegnologicos e infraestructura de la organización	Desarrollo organizacional	33,40%	67%	Desarrollar una cultura organizacional a travez de la comunicación, innovacion y tegnologias
Incrementar los programas de desarrollo y aprendizaje	Desarrollo organizacional	50%	83,3%	Establecer programas de capacitacion al personal de la empresa con el fin de mejorar su eficiencia y efectividad

Fuente: Autor

9.3 GUIA DE IMPELMENTACION DEL NUEVO PLAN ESTRATEGICO DE PRODUCCION

Para la guía de implementación se precisó utilizar el **Ciclo de mejora continua PHVA**, teniendo en cuenta que es de simple aplicación y puede ayudar en la realización de las actividades de una manera organizada, eficaz y brinda una guía básica para la gestión de las actividades inherentes a la implantación.

La guía de implementación del plan estratégico propuesto para la fábrica de muebles "RUSTICOS MI VIEJO BUAL" contemplo las siguientes cuatro (4) fases del ciclo PHVA:

- PLANEAR (P): Esta etapa corresponde a la investigación y diseño donde se contempla
 y establece el diagnostico actual de la empresa, el análisis y evaluación del sistema
 productivo y direccionamiento estratégico de la organización y se establecen las debidas
 medidas correctivas y/o preventivas para eliminar las no conformidades presentes en los
 puntos críticos de manufactura del sistema productivo
- HACER (H): En esta etapa se realiza el desarrollo o implementación de las herramientas, métodos y estrategias de calidad propuestas anteriormente en el diseño del nuevo plan estratégico para la organización.
- VERIFICAR (V): Esta etapa se centra en desarrollar medidas de seguimiento, control
 y evaluación a cada una de los nuevos métodos y actividades establecidas verificando y
 garantizando la eficiencia y efectividad de las herramientas de calidad empleadas para
 la mejora continua de los procesos de manufactura y calidad final de los productos
 fabricados en la empresa
- ACTUAR (A): Esta etapa implica llevar a cabo el seguimiento y retroalimentación del nuevo plan estratégico por medio de auditorías internas enfocadas a la calidad y mejora continua del sistema de producción de la empresa RUSTICOS MI VIEJO BAUL..

Tabla 28. Matriz de implementación del plan estratégico de producción

MATRIZ GUIA DE ACTIVIDADES DE IMPLEMENTACION (PHVA)

ANALISTA: Sebastián Eslava F.

VERSION: 01

DEPARTAMENTO: Producción.

	• <i>(</i>								
No	FASE		INICIO	FINAL	ACTIVIDADES	RESPONSABLE			
1	Diseño del nuevo plan estratégico de producción para la organización	P	01/07/2020	15/08/2020	 Contextualización general de la empresa Mapeo general de flujos de proceso Evaluación y priorización de causas-efecto que presentan No conformidades Diseño de estrategias y matrices de mejoras preventivas/correctivas Diseño de planillas de control de calidad 	Analista encargado de la			
2	Implementación y desarrollo del nuevo plan estratégico	Н	15/08/2020	1/10/2020	Implementación y desarrollo de las estrategias y actividades de mejora y control establecidas anteriormente para el sistema de producción de la empresa	Analista de la investigación y jefe de producción			
3	Seguimiento y evaluación de las actividades desarrolladas	V	1/10/2020	1/11/2020	Desarrollo de medidas de control, evaluación y seguimiento pertinentes para cada uno de los procesos críticos y nuevas medidas de control adoptadas en el sistema de producción	Analista de la investigación y jefe de producción			
4	Retroalimentación del nuevo plan estratégico de produccion	A	1/11/2020	12/12/2020	Establecer un control para reevaluar y corroborar la efectividad de las medidas de mejora continua realizadas en el sistema productivo de la organización	Jefe de producción			

Fuente: Autor

10. CONCLUSIONES

El objetivo general del presente trabajo de grado consistió en diseñar una propuesta de mejora al sistema productivo de la empresa RUSTICOS MI VIEJO BAUL que le permita mejorar el nivel de calidad competitividad y brinde herramientas que contribuirán a su eficiencia operativa. Luego de implementar la metodología de calidad lean six sigma (DMAIC) en el presente proyecto de investigación se logra evidenciar la presencia de fallas y defectos en los procesos de manufactura que no solo terminan afectando la calidad sigma actual de los procesos sino la calidad en los productos terminados, las utilidades percibidas y rentabilidad de la empresa. El desarrollo de este proyecto de investigación deja en evidencia la viabilidad de la implementación de la metodología de calidad lean six sigma en la empresa "RUSTICOS MI VIEJO BAUL" gracias a la combinación de los resultados obtenidos de la investigación por las diversas herramientas de calidad y control empleadas para mejorar la calidad sigma actual de los procesos de manufactura, la evaluación y control de la materia prima y la cultura organizacional de la empresa logrando aumentar la efectividad y eficiencia en la ejecución de los procesos de manufactura y trabajadores relacionados consiguiendo una mejora continua del sistema de producción de la empresa maximizando las utilidades percibidas y mejorando el posicionamiento de la empresa en el mercado regional y nacional a mediano y largo plazo.

11. BIBLIOGRAFIA

Gutiérrez, H. y de la vara, R. (2009)."Control estadístico de calidad y seis sigma 3ª edición". México D.F, México. Editorial interamericana editores, s.a. de c.v. Recuperado de: http://iindustrialitp.com.mx/msamuel.lopezr/Control Eestadistico de la Calidad y Seis Sigma_Humberto_Gutierrez_Pulido.pdf

Deming, E. "calidad, productividad y competitividad". Madrid, España. Editorial Cambridge University Press. Recuperado de: https://drive.google.com/file/d/1ggIOAuw2z31kuyMSajpoOep86yhKq7Ne/view

Tarí, J. "calidad total-fuente de ventaja competitiva". Editorial Espagrafic. Recuperado de: https://www.biblioteca.org.ar/libros/133000.pdf

Lopez, P. "herramientas para la mejora de la calidad". Madrid, España. Editorial fundación confemetal. Recuperado de: https://drive.google.com/file/d/1akY0y4w-5Y1MNkT7eEAL7zySHaMiUep5/view

Shikawa, k.(1989)."introducción al control de calidad". Recuperado de: https://drive.google.com/file/d/11XxFpVq0BYevSCCihcFQefMQyRhFeSWZ/view

Gutiérrez, H. y de la vara, R.(2004)."Control estadístico de calidad y seis sigma 2ª edición". México D.F, México. Editorial interamericana editores, s.a. de c.v. Recuperado de https://www.uv.mx/personal/ermeneses/files/2018/05/6-control-estadistico-de-la-calidad-y-seis-sigma-gutierrez-2da.pdf

Evans, J. Y Lindsay, w.(2008)." Administración y control de la calidad 7ª edición". México. Editorial cengage learning. Recuperado de: https://drive.google.com/file/d/1jdlW_iN-QEL34bgJT1rdAqTTxXKcBl7f/view

Zuluaga, w.(2018).Proyectos de desarrollo de proveedores que usan Six Sigma: un análisis de caso en Schneider Electric Colombia S.A, <u>Revista EAN</u>. Recuperado de: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-

81602018000300173&lang=en#fn3

Acosta, R y Herrera, T.(2011). "Seis Sigma: Métodos Estadísticos y Sus aplicaciones". Recuperado de: https://biblioteca.utec.edu.sv/siab/virtual/elibros_internet/55821.pdf
https://www.ingenieriaindustrialonline.com/herramientas-para-el-ingeniero-industrial/gesti%C3%B3n-y-control-de-calidad/six-sigma/

Pérez, J.(2004)"gestión por procesos". Madrid, España. Editorial ESIC. Recuperado de: https://drive.google.com/open?id=1ruz500zdIXFz3T7O1d5r3sS1tXL0yBgn

Bertrand, L. Prabhakar, M.(1990)."control de calidad teorías y aplicaciones". Madrid, España. Editorial GETAFE. Recuperado de: https://drive.google.com/file/d/1636ryjqlxGcLgy5dX3ANzaMub-MW4jKX/view

Jiménez, H. y Amaya, C.(2014)."Lean Six Sigma en pequeñas y medianas empresas: un enfoque metodológico". Revista chilena de Ingeniería. 22 (2).1-1. Recuperado de: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-33052014000200012&lang=en

Revista, M&M. y DANE, EAM." Así van cifras del Mueble y la Madera". Editorial árbol de tinta. P. 1-1. Recuperado de: https://revista-mm.com/economia-sectorial/asi-van-cifras-del-mueble-y-la-madera/

Herrera, T. y De la hoz, E.(2019)."análisis DEA seis sigma para evaluar la eficiencia financiera de ventas de las empresas del sector químico de barranquilla" Barranquilla, Colombia. Revista de investigación, innovación en ingenierías. Recuperado de: http://revistas.unisimon.edu.co/index.php/innovacioning/article/view/3478

Vargas, A.(2018)."Revisión documental sobre el impacto de la aplicación del modelo six sigma en pymes colombianas". Bogotá D.C, Colombia. Recuperado de: http://repository.uamerica.edu.co/handle/20.500.11839/6979

Fonseca, G. Correa, M. y Aragón, A. "Adaptación de herramientas lean six sigma en pymes del sector del cuero en Colombia". Cali, Colombia. Recuperado de: http://redue-alcue.org/website/content/publicaciones/vueimpactosocial/Cap-17.pdf

Arango, S. Martin, D. Gómez, M. Rodrigo, A. Álvarez, U. y Karla, C.(2011)."Identificación de oportunidades de mejora en la gestión del transporte de carbón en Colombia con six sigma". Medellín, Colombia. Recuperado de: https://www.redalyc.org/pdf/1695/169522483003.pdf

Guevara, N.(2016)."Aplicación de la metodología six sigma para la mejora de la calidad de la empresa REPROMAIV". Santo domingo, Ecuador. Recuperado de: http://192.188.51.77/bitstream/123456789/20265/1/9238_1.pdf

Blasco, M. Gisbert, V. y Pérez, E.(2015). "Situación actual de las metodologías six sigma, la gestión de riesgos y la gestión de la calidad". Valencia, España. Revista 3C Tecnología.

16(4).198-212. Recuperado de: https://riunet.upv.es/bitstream/handle/10251/65882/Marta%20Blasco%20Torregrosa%3 bGisbert%3bP%c3%a9rez%20%20SITUACI%c3%93N%20%20%20%20%20%20AC TUAL%20%20%20%20%20DE%20LAS%20METODOLOG%c3%8dAS%20%2 0%20%20SIX%20%20%20%20....pdf?sequence=1&isAllowed=y Daza, D. y Salazar, J.(2019)." Reducción del costo del inventario en la línea de sillas Rimax en la empresa Alexander Muebles por medio de la metodología Lean Six Sigma". Cali, Colombia. Recuperado http://45.5.172.45/bitstream/10819/7451/1/Reduccion costo inventario Daza 2019.pd Gaviria, A. y Jaramillo, K.(2011)." Propuesta de implementación de la metodología de seis sigma en el centro zonal sur oriental del instituto colombiano de bienestar familiar". Medellín, Colombia. Recuperado de: https://repository.udem.edu.co/bitstream/handle/11407/339/Propuesta%20de%20imple mentaci%c3%b3n%20de%20la%20metodolog%c3%ada%20de%20Seis%20Sigma%20 en%20el%20centro%20zonal%20sur%20oriental%20del%20Instituto%20Colombiano %20de%20Bienestar%20Familiar.pdf?sequence=1&isAllowed=y Gallardo, J.(2015)."Implementación de la metodología six sigma en una empresa maquiladora". México D.F. México. Recuperado de: http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/9371/Tesi na%20%20Implementaci%c3%b3n%20de%20la%20metodolog%c3%ada%20Six%20S igma%20en%20una%20empresa%20maquiladora.pdf?sequence=1 Buestan, M.(2013)."Aplicación de la metodología Seis Sigma para reducir la pérdida de café al granel en una planta de envasado". Guayaquil, Ecuador. Recuperado de: http://www.laccei.org/LACCEI2013-Cancun/RefereedPapers/RP135.pdf Serrano, G. y Ruiz, F.(2018)." Aplicación de la metodología Lean Six Sigma en una empresa de lácteos: Caso de estudio en la fabricación de quesos frescos, queso mozzarella mantequilla". Quito, Ecuador. Recuperado de: http://repositorio.usfq.edu.ec/handle/23000/7820

12. ANEXOS

DIAGRAMAS DE TIEMPOS MEDIO, ESTÁNDAR Y NORMAL

 $\boldsymbol{Anexos}\;\;\boldsymbol{A.}$ Toma de tiempos No, Me y Es para elaboración de cajonera

Departai	mento: Producción								R	RESUMEN			
								Ноја і	า :	01	De:	02	
Operació	ón: Elaboración de Cajonera							Comie	enzo:	Selección de MP		MP	
				,				Termino:		Almacenamien		ento	
Estudio d	de métodos N : 1			Insta /	/ maq			Tiemp	00				
Método	utilizado: Actual			Piezas	/ unid		5	Operador:					
	o: Cajonera				Diseño:		4-7	Analis		Sebas	tián E		
Ficha n :	1	1	1	Mater	ial:		arillos	Fecha:					
#	Descripción	1	2	3	4	5	Sm	Те	Fv	Tn	TI	Tt	
1	Inspección y selección de MP	754	632	849	505	712	3452	690	0,99	683	772	715	
2	Transporte a sierra	531	542	456	409	422	2360	472	0,96	453	503	476	
3	Corte de repisas, parales	1249	1341	1298	1335	1252	6475	1295	1,00	1295	1463	1351	
4	Transporte a planeadora	331	416	283	332	256	1618	324	0,96	311	345	326	
5	Enderezar la madera	1434	1276	1174	1599	1237	6720	1344	0,99	1331	1504	1393	
6	Cepillar la madera	1782	1673	1737	1802	1777	8771	1754	0,93	1631	1843	1743	
7	Transporte banco de trazado	297	413	328	349	316	1703	341	0,96	327	363	344	
8	Trazado de espigas	1397	1263	1245	1372	1438	6715	1343	0,99	1330	1502	1392	
9	Transporte a barrenadora	406	421	337	416	303	1883	377	0,96	362	401	380	
10	Elaborar huecos de ensamble	1772	1669	1723	1858	1651	8673	1735	0,99	1717	1940	1797	
11	Transporte a acanaladora	331	263	362	267	318	1541	308	0,96	296	328	311	
12	Hacer canales a la madera	1172	1428	1242	1239	1423	6504	1301	0,99	1288	1455	1348	
13	Transporte a torno	332	199	392	296	342	1561	312	0,96	300	333	315	
14	Fresada en trompo lijador	2262	2495	2402	2661	2432	12252	2450	0,99	2426	2741	2539	
15	Rodeado de filos	1729	1788	1652	1744	1738	8651	1730	0,99	1713	1936	1793	
16	Estijerar las partes	1783	1579	1815	1733	1777	8687	1737	0,99	1720	1944	1800	

#	Descripción	1	2	3	4	5	Sm	Те	Fv	Tn	TI	Tt
17	Transporte a torno	331	242	298	362	325	1558	312	0,96	299	332	314
18	Torneado de las partes	1591	1503	1494	1701	1446	7735	1547	0,99	1532	1731	1603
19	Transporte a rutiadora	321	299	323	468	411	1822	364	0,96	350	395	370
20	Rutiado de tableros	2494	2394	2487	2359	2672	12406	2481	0,99	2456	2727	2555
21	Transporte a ensamble	392	342	311	423	322	1790	358	0,96	344	381	361
22	Ensamblar el producto	2425	2517	2604	2694	2479	12719	2544	0,99	2518	2896	2653
23	Tarugar las partes	2323	2258	2399	2454	2246	11680	2336	0,99	2313	2660	2436
24	Transporte a área de pintura	332	451	391	298	403	1875	375	0,96	360	400	378
25	Aplicar inmunizante	1842	1878	1666	1972	1811	9169	1834	1,00	1834	2109	1925
26	Secado del producto	1739	1843	1795	1962	1843	9182	1836	0,96	1763	1992	1864
27	Aplicar 1ra mano de pintura	1774	1581	1723	1914	1772	8764	1753	1,00	1753	2016	1840
28	Secado del producto	2001	1924	2128	2029	2061	10143	2029	0,96	1947	2201	2059
29	Aplicar sellador	1603	1499	1723	1532	1613	7970	1594	1,00	1594	1833	1674
30	Secado del producto	1913	1961	2099	2128	1984	10085	2017	0,96	1936	2188	2047
31	Pulir sellador	1654	1478	1433	1483	1316	7364	1473	0,99	1458	1648	1526
32	Lacado del producto	1598	1516	1474	1401	1532	7521	1504	1,00	1504	1730	1579
33	Colocar herrajes y detalles	1783	1618	1548	1639	1669	8257	1651	0,99	1635	3106	2131
34	Inspección final	572	523	642	599	663	2999	600	0,99	594	1128	774
35	Transporte almacenamiento	879	757	703	643	774	3756	751	0,96	721	822	765
36	Almacenamiento final	-	-	-	-	-	-	-	-	-	-	-
	TIEMPO TOTAL	743	726	734	718	711						45686

 $\textbf{Anexos} \ \ \textbf{B}. \ \text{Toma de tiempos No, Me y Es para elaboración de mueble de tv.}$

Departar	nento: Producción								RESUMEN			
								Ноја і	n :	01	De:	02
Operació	n: Elaboración de mueble de T.\	/						Comie	enzo:	Seleco	ción de	MP
								Termi		Almacenamiento		
	le métodos N : 1			Insta /				Tiemp				
	utilizado: Actual				/ unid		5	Opera				
	: mueble de T.V			Diseño			4-7	Analis		Sebas	tián E	
Ficha n :	1	1		Mater			arillos	Fecha				1
#	Descripción	1	2	3	4	5	Sm	Te	Fv	Tn	TI	Tt
1	Inspección y selección de MP	572	518	561	645	541	2837	567	0,99	562	635	588
2	Transporte a sierra	492	445	384	478	431	2230	446	0,96	428	475	450
3	Corte de repisas, parales	1422	1243	1268	1314	1337	6584	1317	1,00	1317	1488	1374
4	Transporte a planeadora	399	323	277	299	303	1601	320	0,96	307	341	323
5	Enderezar la madera	1512	1799	1531	1587	1548	7977	1595	0,99	1579	1785	1653
6	Cepillar la madera	1591	1426	1577	1532	1434	7560	1512	0,93	1406	1589	1502
7	Trazado de espigas	1663	1603	1541	1603	1512	7922	1584	0,99	1569	1772	1642
8	Transporte a barrenadora	323	403	204	252	238	1420	284	0,96	273	303	286
9	Barrenar las piezas	1292	1183	1259	1092	1231	6057	1211	0,99	1199	1355	1255
10	Transporte a acanaladora	272	236	198	303	293	1302	260	0,96	250	277	263
11	Acanalar las piezas	1554	1603	1418	1314	1599	7488	1498	0,99	1483	1675	1552
12	Pulir los excesos de madera	1232	1434	1224	1423	1183	6496	1299	0,99	1286	1453	1346
13	Transporte a cierra sinfin	339	389	268	331	299	1626	325	0,96	312	347	328
14	Corte para formar las curvas	2132	2249	2152	2311	2143	10987	2197	0,99	2175	2458	2277
15	Transporte a trompo	331	418	227	362	343	1681	336	0,96	323	358	339
16	Fresada en trompo	2306	2368	2488	2368	2539	12069	2414	0,99	2390	2700	2501
17	Eliminar los filos	1782	1622	1601	1879	1829	8713	1743	0,99	1725	1949	1806
18	Estijerar las partes	1789	1913	1749	1858	2102	9411	1882	0,99	1863	2106	1950

#	Descripción	1	2	3	4	5	Sm	Te	Fv	Tn	TI	Tt
19	Transporte a ensamble	268	222	358	391	297	1536	307	0,96	295	327	310
20	Ensamblar el producto	2919	2959	2786	2925	2799	14388	2878	0,99	2849	3276	3001
21	Tarugar las partes	1888	2007	1971	2061	2012	9939	1988	0,99	1968	2263	2073
22	Transporte a área de pintura	322	252	268	368	299	1509	302	0,96	290	322	304
23	Aplicar inmunizante	1309	1602	1548	1549	1421	7429	1486	1,00	1486	1709	1560
24	Secado del producto	1488	1518	1459	1543	1742	7750	1550	0,96	1488	1681	1573
25	Aplicar 1ra mano de pintura	1601	1549	1563	1669	1739	8121	1624	1,00	1624	1868	1705
26	Secado del producto	1892	1954	1707	1854	1791	9198	1840	0,96	1766	1996	1867
27	Aplicar sellador	1669	1771	1518	1729	1551	8238	1648	1,00	1648	1895	1730
28	Secado del producto	2421	2552	2389	1771	2301	11434	2287	0,96	2195	2481	2321
29	Pulir sellador	1778	1562	1656	1539	1782	8317	1663	0,99	1647	1861	1724
30	Lacado del producto	1432	1231	1298	1422	1309	6692	1338	1,00	1338	1539	1405
31	Colocar herrajes y detalles	2018	1909	1842	2001	1903	9673	1935	0,99	1915	3639	2496
32	Inspección final	512	572	474	482	492	2532	506	0,99	501	953	653
33	Transporte almacenamiento	636	698	582	519	632	3067	613	0,96	589	671	625
34	Almacenamiento final	-	-	-	-	-	-	-	-	-	-	-
	TIEMPO TOTAL	706	713	681	695	707						44784

 $\boldsymbol{Anexos}\;\;\boldsymbol{C}.$ Toma de tiempos No, Me y Es para elaboración de cama doble.

Departa	mento: Producción							RESUMEN					
								Ноја і	1 :	01	De:	02	
Operació	ón: Elaboración de cama doble							Comie	enzo:	Seleco	Selección de MP		
								Termi		Almacenamiento			
	de métodos N : 1			Insta /				Tiemp					
Método	utilizado: Actual				/ unid		5	Opera					
	o: Cama doble			Diseño			4-7	Analis		Sebas	tián E		
Ficha n :		1		Mater			arillos	Fecha					
#	Descripción	1	2	3	4	5	Sm	Te	Fv	Tn	TI	Tt	
1	Inspección y selección de MP	572	331	473	518	478	2372	474	0,99	470	531	492	
2	Transporte a sierra	331	209	319	229	258	1346	269	0,96	258	287	271	
3	Corte de repisas, parales	1421	1241	1083	1172	1258	6175	1235	1,00	1235	1396	1289	
4	Transporte a planeadora	329	201	339	263	242	1374	275	0,96	264	293	277	
5	Enderezar la madera	1229	1144	1055	1068	1191	5687	1137	0,99	1126	1272	1179	
6	Cepillar la madera	1538	1652	1756	1543	1607	8096	1619	0,93	1506	1702	1609	
7	Transporte banco de trazado	272	353	237	201	243	1306	261	0,96	251	278	263	
8	Trazado de espigas	1303	1082	1245	1172	1423	6225	1245	0,99	1233	1393	1290	
9	Transporte a barrenadora	297	341	363	272	269	1542	308	0,96	296	329	311	
10	Elaborar huecos de ensamble	694	806	623	677	774	3574	715	0,99	708	800	741	
11	Transporte a acanaladora	245	271	298	179	221	1214	243	0,96	233	259	245	
12	Hacer canales a la madera	807	927	869	825	843	4271	854	0,99	846	956	885	
13	Transporte a sierra sinfín	261	231	267	201	334	1294	259	0,96	248	276	261	
14	Corte para formar las curvas	2393	2403	2368	2312	2292	11768	2354	0,99	2330	2633	2439	
15	Transporte a trompo	269	338	239	345	242	1433	287	0,96	275	305	289	
16	Fresada en trompo	1719	1663	1804	1916	1681	8783	1757	0,99	1739	1965	1820	
17	Pulir rodeado de madera	1411	1478	1363	1302	1212	6766	1353	0,99	1340	1514	1402	
18	Transporte a rutiadora	269	339	298	218	252	1376	275	0,96	264	293	278	

#	Descripción	1	2	3	4	5	Sm	Te	Fv	Tn	TI	Tt
19	Rutiado de las bases	2608	2559	2437	2539	2492	12635	2527	0,99	2502	2827	2619
20	Transporte a ensamble	303	269	358	701	336	1967	393	0,96	378	419	397
21	Ensamblar el producto	2069	2309	2149	2092	2187	10806	2161	0,99	2140	2461	2254
22	Tarugar las partes	1537	1728	1659	1728	1651	8303	1661	0,99	1644	1891	1732
23	Transporte a área de pintura	269	298	221	252	321	1361	272	0,96	261	290	275
24	Aplicar inmunizante	1583	1556	1659	1528	1599	7925	1585	1,00	1585	1823	1664
25	Secado del producto	1719	1821	1899	1779	1948	9166	1833	0,96	1760	1989	1861
26	Aplicar 1ra mano de pintura	1419	1479	1539	1616	1662	7715	1543	1,00	1543	1774	1620
27	Secado del producto	1683	1678	1742	1661	1863	8627	1725	0,96	1656	1872	1751
28	Aplicar sellador	1428	1479	1309	1388	1228	6832	1366	1,00	1366	1571	1435
29	Secado del producto	2138	2319	2148	2213	2232	11050	2210	0,96	2122	2397	2243
30	Pulir sellador	1249	1429	1183	1249	1243	6353	1271	0,99	1258	1421	1317
31	Lacado del producto	1309	1188	1208	1181	1248	6134	1227	1,00	1227	1411	1288
32	Colocar herrajes y detalles	1618	1848	1783	1692	1663	8604	1721	0,99	1704	3237	2220
33	Colocación de guías	452	583	478	507	482	2502	500	0,99	495	941	646
34	Alineación de tornillos	809	877	703	755	778	3922	784	0,99	777	885	815
35	Inspección final	452	343	363	398	436	1992	398	0,99	394		264
36	Transporte almacenamiento	1003	1032	902	948	1063	4948	990	0,96	950		647
37	Almacenamiento final	-	-	-	-	-	-	-	-	-	-	-
	TIEMPO TOTAL	642	660	639	630	648						38335

 $\boldsymbol{Anexos}\;\;\boldsymbol{D}.\;$ Toma de tiempos No, Me y Es para elaboración de biblioteca.

Departar	mento: Producción								R	ESUMI	EN		
								Hoja r	ı :	01	De:	02	
Operació	n: Elaboración de biblioteca							Comie	enzo:	Selecc	ión de	MP	
								Termi		Alma	cenami	ento	
	de métodos N : 1			Insta /				Tiemp					
	utilizado: Actual				/ unid		5	Opera					
	o: biblioteca			Diseño			4-7	Analis		Sebas	tián E		
Ficha n :	1			Mater			arillos	Fecha					
#	Descripción	1	2	3	4	5	Sm	Те	Fv	Tn	TI	Tt	
1	Inspección y selección de MP	578	456	522	572	478	2606	521	0,99	516	583	540	
2	Transporte a sierra	399	297	332	394	261	1683	337	0,96	323	359	339	
3	Corte de repisas, parales	1658	1598	1766	1538	1619	8179	1636	1,00	1636	1848	1707	
4	Transporte a planeadora	329	376	418	321	245	1689	338	0,96	324	360	341	
5	Enderezar la madera	1243	1361	1303	1143	1414	6464	1293	0,99	1280	1446	1340	
6	Cepillar la madera	1557	1588	1651	1443	1574	7813	1563	0,93	1453	1642	1553	
7	Transporte banco de trazado	279	347	208	267	191	1292	258	0,96	248	275	261	
8	Trazado de espigas	1178	1294	1178	1363	1221	6234	1247	0,99	1234	1395	1292	
9	Transporte a barrenadora	268	239	338	237	308	1390	278	0,96	267	296	280	
10	Elaborar huecos de ensamble	1368	1474	1407	1299	1488	7036	1407	0,99	1393	1574	1458	
11	Transporte a acanaladora	208	172	278	229	304	1191	238	0,96	229	254	240	
12	Hacer canales a la madera	1583	1498	1438	1532	1593	7644	1529	0,99	1514	1710	1584	
13	Transporte a torno	269	161	207	297	196	1130	226	0,96	217	241	228	
14	Torneado de las partes	2319	2208	2153	2162	2236	11078	2216	0,99	2193	2479	2296	
15	Transporte a sierra sinfín	278	178	208	187	252	1103	221	0,96	212	235	222	
16	Corte sinfín de las partes	1368	1291	1422	1256	1423	6760	1352	0,99	1338	1512	1401	
17	Transporte a trompo	279	313	338	242	348	1520	304	0,96	292	324	307	
18	Fresada en trompo	1908	1786	1723	1842	1752	9011	1802	0,99	1784	2016	1867	

#	Descripción	1	2	3	4	5	Sm	Te	Fv	Tn	TI	Tt
19	Rodeado de filos	519	508	552	469	563	2611	522	0,99	517	584	541
20	Transporte a ensamble	339	378	359	335	441	1852	370	0,96	356	395	374
21	Ensamblar el producto	2498	2552	2582	2583	2689	12904	2581	0,99	2555	2938	2691
22	Tarugar las partes	1488	1397	1378	1428	1534	7225	1445	0,99	1431	1645	1507
23	Transporte a área de pintura	228	176	267	182	299	1152	230	0,96	221	246	232
24	Aplicar inmunizante	1299	1708	1778	1863	1792	8440	1688	1,00	1688	1941	1772
25	Secado del producto	1789	1731	1901	1684	1903	9008	1802	0,96	1730	1954	1829
26	Aplicar 1ra mano de pintura	1438	1369	1319	1379	1559	7064	1413	1,00	1413	1625	1483
27	Secado del producto	1684	1597	1618	1651	1539	8089	1618	0,96	1553	1755	1642
28	Aplicar sellador	1308	1192	1238	1324	1399	6461	1292	1,00	1292	1486	1357
29	Secado del producto	1719	1676	1788	1711	1624	8518	1704	0,96	1635	1848	1729
30	Pulir sellador	1429	1289	1383	1319	1295	6715	1343	0,99	1330	1502	1392
31	Lacado del producto	1129	1067	1143	1058	1134	5531	1106	1,00	1106	1272	1162
32	Colocar herrajes y detalles	2439	2556	2596	2513	2534	12638	2528	0,99	2502	4754	3261
33	Inspección final	455	391	508	417	432	2203	441	0,99	436	829	569
34	Transporte almacenamiento	563	529	463	532	543	2630	526	0,96	505	576	536
35	Almacenamiento final	-	-	-	-	-	-	-	-	-	-	-
	TIEMPO TOTAL	614	603	621	608	631						38792

DIAGRAMAS DE TIEMPOS Y MOVIMIENTOS

Anexos E. Análisis de tiempos y movimientos elaboración cajonera.

119/5	Rustians	Proce		n de ca	jonera			RESUMEN				
	040000				•			Actividad	t	#		
	- Wieio 98aúl						Operación	34248	19			
	- rigit outility							Transporte	3979	11		
Analista	: Sebastián Eslava	Inicia	: Sele	cción c	le MP		Almacenamiento	-	1			
		Term	ina: A	lmace	namier	nto		Demora	5970	3		
Método	Método Propuesto:							Inspección	1489	2		
Método	Actual: X	Hoja	<u>1</u> de					TOTAL	45686	36		
	Actividad				bolo		_	Tiempo	Distan			
#	Descripción	0		⇒	∇	D		(seg)	(pies	5)		
1	Inspección y selección de MP						-	715				
2	Transporte a sierra			_				476	18			
3	Corte de repisas, parales	<						1351				
4	Transporte a planeadora			>				326	5			
5	Enderezar la madera							1393				
6	Cepillar la madera	•						1743				
7	Transporte banco de trazado			>				344	8			
8	Trazado de espigas							1392				
9	Transporte a barrenadora			>				380	4			
10	Elaborar huecos de ensamble	<						1797				
11	Transporte a acanaladora			>				311	17			
12	Hacer canales a la madera	<						1348				
13	Transporte a trompo			>_				315	5			
14	Fresada en trompo lijador							2539				
15	Rodeado de filos	•						1793				
16	Estijerar las partes	•						1800				
17	Transporte a torno			>_				314 28				
18	Torneado de las partes	<u></u>						1603				
19	Transporte a rutiadora			•				370	19			

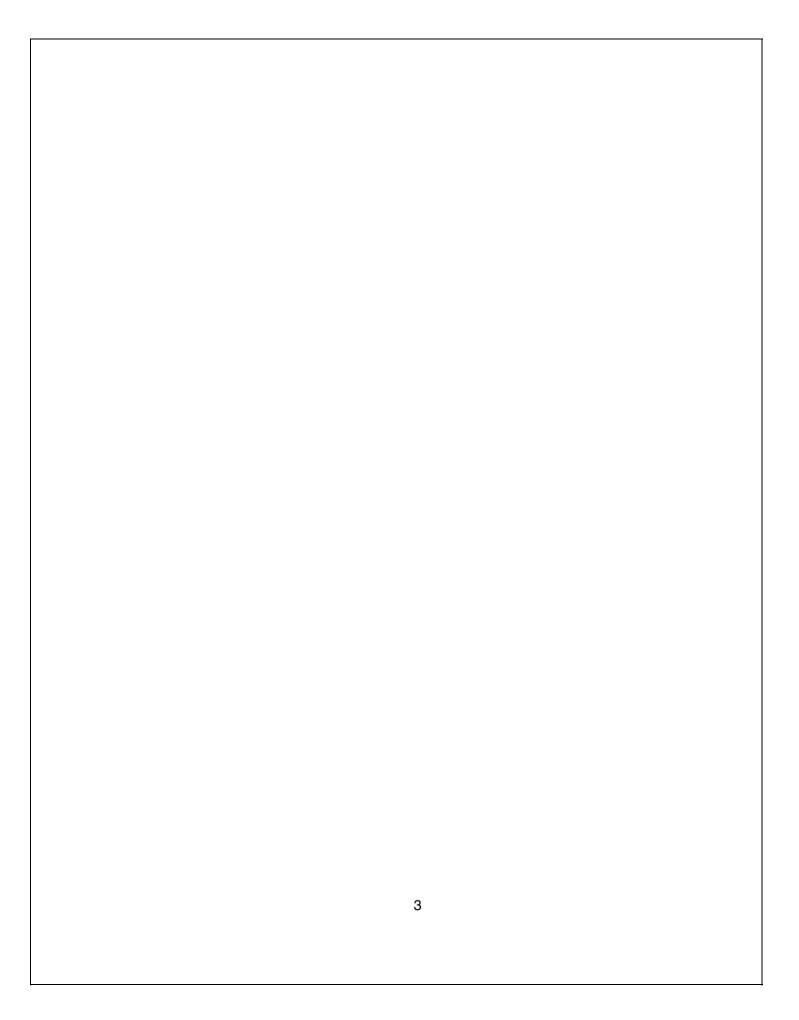
	Actividad			Sím	bolo			Tiempo	Distancia
#	Descripción	0		⇨	∇	D		(seg)	(pies)
20	Rutiado de tableros	•						2555	
21	Transporte a ensamble			>				361	23
22	Ensamblar el producto							2653	
23	Tarugar las partes	-						2436	
24	Transporte a área de pintura			>				378	7
25	Aplicar inmunizante	<						1925	
26	Secado del producto					>		1864	
27	Aplicar 1ra mano de pintura	•						1840	
28	Secado del producto					>		2059	
29	Aplicar sellador	•						1674	
30	Secado del producto					>		2047	
31	Pulir sellador	-						1526	
32	Lacado del producto	•						1579	
33	Colocar herrajes y detalles							2131	
34	Inspección final		•					774	42
35	Transporte almacenamiento			•				765	
36	Almacenamiento final								
					TIEN	иро т	OTAL =	45686	

 $\boldsymbol{Anexos} \hspace{0.2cm} \boldsymbol{F}. An {\'alisis de tiempos y movimientos elaboración mueble pata T.V}$

18985	Rusticas	Proce		n de m	ueble (de T.V			RESUMEN	
								Actividad	t	#
	- Mi Viejo Paúl							Operación	26378	19
	Jaze rige sount							Transporte	4584	9
Analista	: Sebastián Eslava	Inicia	: Sele	cción c	le MP		Almacenamiento	-	1	
		Term	ina: A	lmace	namier	nto		Demora	5761	3
Método	Propuesto:	Fech	a:					Inspección	1241	2
Método	Actual: X	Hoja	<u>1</u> de					TOTAL	37964	34
	Actividad	<u> </u>		1 .	bolo		_	Tiempo	Distan	
#	Descripción	0		⇒	∇	D		(seg)	(pies	5)
1	Inspección y selección de MP			<u> </u>			-	588		
2	Transporte a sierra			-				450	17	
3	Corte de repisas, parales	<u> </u>						1374		
4	Transporte a planeadora			>_				323	6	
5	Enderezar la madera							1653		
6	Cepillar la madera	•						1502		
7	Trazado de espigas	•						1642		
8	Transporte a barrenadora			>_				286	4	
9	Barrenar las piezas	<						1255		
10	Transporte a acanaladora			>_				263	13	
11	Acanalar las piezas							1552		
12	Pulir los excesos de madera	•						1346		
13	Transporte a cierra sinfin			>_				328	8	
14	Corte para formar las curvas	<u> </u>						2277		
15	Transporte a trompo			>				339	9	
16	Fresada en trompo							2501		
17	Eliminar los filos	•						1806		
18	Estijerar las partes	•						1950		
19	Transporte a ensamble			>				310	31	
20	Ensamblar el producto	-						3001		

	Actividad			Sín	nbolo			Tiempo	Distancia
#	Descripción	0	0 🛘 🖒 🗸 D 💆					(seg)	(pies)
21	Tarugar las partes	•						2073	
22	Transporte a área de pintura			>				304	7
23	Aplicar inmunizante							1560	
24	Secado del producto					>		1573	
25	Aplicar 1ra mano de pintura	•						1705	
26	Secado del producto					>		1867	
27	Aplicar sellador	•						1730	
28	Secado del producto					>		2321	
29	Pulir sellador	•						1724	
30	Lacado del producto	•						1405	
31	Colocar herrajes y detalles							2496	
32	Inspección final		1					653	41
33	Transporte almacenamiento			•				625	
34	Almacenamiento final				•			-	
					TIEN	льо т	OTAL =	37964	

Anexos G. Análisis de tiempos y movimientos elaboración cama doble.


1845	Ristract	Proce		n de ca	ıma do	ble			RESUMEN				
		Liabe	, 40.01	. 40 00		J.C	Actividad	t	#				
	Mi Viejo Baúl						Operación	28210	20				
	- 190 33 mm							Transporte	3514	11			
Analista	: Sebastián Eslava	Inicia	: Sele	cción c	de MP			Almacenamiento	-	1			
		Term	ina: A	lmace	namiei	nto		Demora	5855	3			
Método	Método Propuesto:							Inspección	756	2			
Método	Actual: X	Hoja	<u>1</u> de					TOTAL	38335	37			
	Actividad			_	bolo		_	Tiempo	Distan				
#	Descripción	0		⇒	∇	D		(seg)	(pies)			
1	Inspección y selección de MP						-	492					
2	Transporte a sierra			•				271	18				
3	Corte de repisas, parales	<						1289					
4	Transporte a planeadora			>				277	7 5				
5	Enderezar la madera	1						1179					
6	Cepillar la madera	•						1609					
7	Transporte banco de trazado			>				263	9				
8	Trazado de espigas	<						1290					
9	Transporte a barrenadora			>				311	4				
10	Elaborar huecos de ensamble							741					
11	Transporte a acanaladora			>				245	11				
12	Hacer canales a la madera	<						885					
13	Transporte a sierra sinfín			>				261	7				
14	Corte para formar las curvas	<						2439					
15	Transporte a trompo			>				289	5				
16	Fresada en trompo							1820					
17	Pulir rodeado de madera	_						1402					
18	Transporte a rutiadora			>				278	8				
19	Rutiado de las bases	- <						2619					
20	Transporte a ensamble			•				397	18				

	Actividad			Sím	nbolo			Tiempo	Distancia
#	Descripción	0		⇨	∇	D		(seg)	(pies)
21	Ensamblar el producto	•						2254	
22	Tarugar las partes	•						1732	
23	Transporte a área de pintura			>				275	7
24	Aplicar inmunizante							1664	
25	Secado del producto					-		1861	
26	Aplicar 1ra mano de pintura							1620	
27	Secado del producto					>		1751	
28	Aplicar sellador	<						1435	
29	Secado del producto					>		2243	
30	Pulir sellador	1						1317	
31	Lacado del producto	•						1288	
32	Colocar herrajes y detalles	•						2220	
33	Colocación de guías	•						646	
34	Alineación de tornillos							815	
35	Inspección final		A					264	43
36	Transporte almacenamiento			•				647	
37	Almacenamiento final				•			-	
					TIEN	иро т	OTAL =	38335	

Anexos H. Análisis de tiempos y movimientos elaboración biblioteca.

180 Medica	Rustical	Proce		n de bi	bliotec	a			RESUMEN	
								Actividad	t	#
	- Mi Viejo Paúl							Operación	27247	18
	Jack rigo obtains							Transporte	5206	11
Analista	: Sebastián Eslava	Inicia	: Sele	cción c	de MP		Almacenamiento	-	1	
		Term	ina: A	lmace	namier	nto		Demora	5200	3
Método	Propuesto:	Fech	a:					Inspección	1109	2
Método	Actual: X	Hoja	<u>1</u> de					TOTAL	38762	35
	Actividad	<u> </u>			bolo		_	Tiempo	Distan	
#	Descripción	0		⇒	∇	D		(seg)	(pies	5)
1	Inspección y selección de MP						•	540		
2	Transporte a sierra			•				339	18	
89	Corte de repisas, parales	<u> </u>						1707		
4	Transporte a planeadora			>				341	6	
5	Enderezar la madera	1						1340		
6	Cepillar la madera	•						1553		
7	Transporte banco de trazado			>				261	9	
8	Trazado de espigas							1292		
9	Transporte a barrenadora			>				280	4	
10	Elaborar huecos de ensamble	<						1458		
11	Transporte a acanaladora			>				240	16	
12	Hacer canales a la madera							1584		
13	Transporte a torno			>				228	23	
14	Torneado de las partes	<						2296		
15	Transporte a sierra sinfín			>				222	14	
16	Corte sinfín de las partes	<						1401		
17	Transporte a trompo			>				307	7	
18	Fresada en trompo							1867		
19	Rodeado de filos	<u>_</u>						541		
20	Transporte a ensamble			•				374	31	

	Actividad			Sín	nbolo			Tiempo	Distancia
#	Descripción	0		⇨	∇	D		(seg)	(pies)
21	Ensamblar el producto	•						2691	
22	Tarugar las partes	•						1507	
23	Transporte a área de pintura			>				232	8
24	Aplicar inmunizante	<						1772	
25	Secado del producto					>		1829	
26	Aplicar 1ra mano de pintura	<u> </u>						1483	
27	Secado del producto					>		1642	
28	Aplicar sellador	<u> </u>						1357	
29	Secado del producto					>		1729	
30	Pulir sellador	•						1392	
31	Lacado del producto	•						1162	
32	Colocar herrajes y detalles							3261	
33	Inspección final		A					569	42
34	Transporte almacenamiento			•				536	
35	Almacenamiento final							-	
					TIEN	иро т	OTAL =	38792	

PROPUESTA DE MEJORA PARA EL SISTEMA PRODUCTIVO DE LA EMPRESA RUSTICOS MÍ VIEJO BAUL A PARTIR DE LA METODOLOGIA LEAN SIX SIGMA.

INFORME DE ORIGINA	LIDAD			
0%				
ÍNDICE DE SIMILITUD				
FUENTES PRIMARIAS				
EXCLUIR CITAS	ACTIVADO	EXCLUIR	< 500 PALABRAS	

EXCLUIR BIBLIOGRAFÍA DESACTIVADO