

Diseño de un sistema de aire acondicionado para el bloque A de la Universidad Antonio Nariño – sede Buga, con base en la norma ANSI/ASHRAE 62.1

EDWIN ARLEY DELGADO MURILLO

Universidad Antonio Nariño
Facultad de Ingeniería Mecánica, Electrónica y Biomédica
Guadalajara de Buga, Colombia
2020

Diseño de un sistema de aire acondicionado para el bloque A de la Universidad Antonio Nariño – sede Buga, con base en la norma ANSI/ASHRAE 62.1

EDWIN ARLEY DELGADO MURILLO

Proyecto de grado presentado como requisito parcial para optar al título de:

Ingeniero Electromecánico

Director (a): Ing. Adriana López Vargas, MSc

Línea de Investigación:

Desarrollo tecnológico y eficiencia energética

Universidad Antonio Nariño

Facultad de Ingeniería Mecánica, Electrónica y Biomédica

Guadalajara de Buga, Colombia

2020

Agradecimientos

Agradezco a Dios por darme la fortaleza de poder llegar hasta el final de este ciclo de mi vida, ya que en muchos momentos intente rendirme y siempre me dio la fortaleza para continuar sin desfallecer.

A mis padres por estar siempre allí pese a los momentos difíciles, por forjarme en la clase de persona que soy hoy, por dedicar tanto tiempo en mi para que pudiera lograr cada uno de mis objetivos planteados y por siempre estar incondicionalmente.

A cada uno de mis hermanos porque siempre supieron apoyarme para que pudiera continuar con mis estudios, y aunque trate de desistir en algunas ocasiones superior ser ese apoyo fortalecedor para que siguiera adelante.

A mi esposa y mis dos hijos porque han sacrificado su tiempo para que yo pudiera cumplir con las metas académicas propuestas y estar dispuestos a regalarme de su tiempo para llevar a cabo mis actividades académicas.

A la MSc. Adriana López por ser ese apoyo incondicional en el desarrollo de todas las actividades a lo largo de cada uno de los semestres, por dedicarme de su tiempo y ser guía cuando requerí de su apoyo.

Resumen

Las actividades humanas se rigen por agentes externos, por ejemplo, una sensación térmica de confort es determinada en la mayoría de los casos por las actividades que se realizan y por lo cual es importante para la percepción de bienestar y rendimiento del desempeño de las personas. La finalidad de este trabajo de grado es llevar a cabo el diseño de un sistema de acondicionamiento de aire del bloque A en la universidad Antonio Nariño sede Buga, el cual se fundamentó bajo la norma ASHRAE, capitulo 62.1 "Ventilación para una Calidad Adecuada del Aire Interior". Se realizó la zonificación de cada área construida para el cálculo de la carga térmica, que abarca oficinas, aulas de clase, laboratorios, auditorio, sala de sistemas, etc., logrando tener un área 1830,8 m² total de cálculo para los cinco pisos considerados en este proyecto, con una carga de enfriamiento de 120.57 TR en la totalidad del sistema.

Tomando como principio las cargas térmicas calculadas, se hizo revisión de la carta psicométrica en cada uno de los equipos para precisar la idoneidad requerida y establecer las dimensiones adecuadas de los ductos según los CFM (pies cúbicos por minuto) requeridos para cada área, optando por un sistema de condensación del refrigerante por agua.

En la última etapa de este proyecto se realizan los planos arquitectónicos con el trazado de los ductos de suministro y retorno, esto con el fin de determinar el trazado de la trayectoria óptima que permita la operación adecuada en las velocidades y decibeles y de esta forma garantizar la calidad del aire interior, como también la selección de equipos.

Palabras clave: Aire acondicionado, carga térmica, confort térmico, ASHRAE, calidad de aire interior.

Abstract

The human activities are governed by external agents, for example, a thermal sensation of comfort is determined in most cases by the activities that are carried out and therefore it is important for the perception of well-being and performance of people's performance. The purpose of this degree work is to carry out the design of an air conditioning system for block A at the Antonio Nariño University, Buga headquarters, which was based on the ASHRAE standard, chapter 62.1 "Ventilation for Adequate Air Quality Inside. The zoning of each built area was carried out to calculate the thermal load, which includes offices, classrooms, laboratories, auditorium, systems room, etc., achieving a total area of 1830.8 m2 of calculation for the five floors considered in this project, with a cooling load of 120.57 TR in the entire system.

Taking the calculated thermal loads as a principle, a review of the psychometric chart was made in each of the equipment to specify the required suitability and establish the adequate dimensions of the ducts according to the CFM (cubic feet per minute) required for each area, opting for a water-cooled condensation system.

In the last stage of this project, the architectural plans are made with the layout of the supply and return ducts, this in order to determine the layout of the optimal trajectory that allows adequate operation at speeds and decibels and thus guarantee indoor air quality, as well as equipment selection

Keywords: Air conditioning, thermal load, thermal comfort, ASHRAE, indoor air quality.

Contenido

			Pág.
1	. Gene	ralidades	3
		Planteamiento del problema	
		ustificación	
		Objetivos	
		Óbjetivo general	
		Objetivos específicos	
		lcance del proyecto	
2	. Marco	o Teórico	6
_		lecesidad de confort en las personas	
		Principios físicos de climatización	
		Ciclo de refrigeración por compresión de vapor	
		Compresión	
		Condensación	
		Expansión	
		Evaporación	
		Mecanismo de transferencia de calor	
		Conducción	
		Convección	
		Radiación	
		Carga de enfriamiento	
		Consideraciones de carga de enfriamiento	
		Cálculo de cargas térmicas	
		La Carta Psicrométrica	
		Diseño de sistemas de aire acondicionado	
3		cterísticas ambientales y dimensionales del edificio	
		Descripción de la instalación	
	3.1.1		
		Superficies y volúmenes por plantas	
		Condiciones interiores de cálculo	
		Condiciones exteriores de diseño	
		Características de los espacios a acondicionar	
		Cálculo de caudales de suministro y cargas térmicas utilizando el método	
		LF	
		Factores de generación de calor y carga térmica total	
		Carga Solar	
		Carga a través de barreras (Techos, paredes y pisos)	
		Barreras exteriores	
		Barreras interiores	
	3.5.6	Carga térmica debido a luces	32
	3.5.7	Carga térmica debido a personas	34
	3.5.8	Carga térmica debido infiltraciones de aire	36
		Cargas por renovaciones y cambios de hora	
		Carga por electrodomésticos	
		1 Carga por equipos eléctricos (motores eléctricos)	

3.6.1 Cargas halladas para el primer piso		3.6 Cálculo	de cargas térmicas para el primer piso del bloque A	41
3.6.1.2 Carga térmica debido a luces		3.6.1 Carga	as halladas para el primer piso	41
3.6.1.3 Carga térmica debido a personas		3.6.1.1	•	
3.6.1.4 Cargas térmicas debido a infiltraciones de aire y renovaciones de aire exterior 44 3.6.1.5 Cargas térmicas debida a electrodomésticos y equipos de generación térmica 45 3.6.1.6 Cargas térmicas debido a motores eléctricos				
exterior 44 3.6.1.5 Cargas térmicas debida a electrodomésticos y equipos de generación térmica 45 3.6.1.6 Cargas térmicas debido a motores eléctricos				
3.6.1.5 Cargas térmicas debida a electrodomésticos y equipos de generación térmica 45 3.6.1.6 Cargas térmicas debido a motores eléctricos			· · · · · · · · · · · · · · · · · · ·	le aire
térmica 45 3.6.1.6 Cargas térmicas debido a motores eléctricos			• •	
3.6.1.7 Carga total calculada para la oficina 101 secretaria académica				ración
3.6.2 Caudal de impulsión para las áreas acondicionadas		3.6.1.6		
3.6.3 Caudales de retorno y flujos de masa		3.6.1.7	Carga total calculada para la oficina 101 secretaria académica	46
3.7 Cálculo de caudal de retorno y caudal de impulsión				
3.7.1 Caudal de impulsión para la unidad manejadora de aire				
3.7.2 Caudal de suministro				
3.7.3 Caudal de aire de retorno				
4. Diseño y disposición del sistema de ductos				
4.1.1 Niveles de ruido recomendados para ductos en las aplicaciones de acondicionamiento de aire		3.7.3 Cauda	al de aire de retorno	55
acondicionamiento de aire	4.	•		
4.2Selección y características de equipos		4.1.1 Nivele	es de ruido recomendados para ductos en las aplicacione	es de
4.3 Materiales para ductos y accesorios seleccionados 64 4.4 Materiales para tubería de agua helada 66 4.5 Presupuesto 67 5. Conclusiones y recomendaciones 7 5.1 Conclusiones 70 5.2 Recomendaciones 7				
4.4 Materiales para tubería de agua helada664.5 Presupuesto675. Conclusiones y recomendaciones75.1 Conclusiones705.2 Recomendaciones7				
4.5Presupuesto65.Conclusiones y recomendaciones75.1Conclusiones75.2Recomendaciones7				
5. Conclusiones y recomendaciones			·	
5.1 Conclusiones		4.5 Presupu	uesto	67
5.2 Recomendaciones	5.	Conclusion	es y recomendaciones	70
		5.1 Conclus	siones	70
6. Bibliografía12		5.2 Recome	endaciones	71
	6.	Bibliografía		125

Lista de figuras

	Pág.
Figura 1-1: Vista aérea Universidad Antonio Nariño sede Buga	4
Figura 2-1: Modelo grafico psicrométrico	7
Figura 2-2: Diagrama T-s	9
Figura 2-4: Carta Psicrométrica	14
Figura 3-1: Plano de ubicación de la zona	18
Figura 3-2: Vista lateral de la edificación bloque A	19
Figura 3-3: Vista frontal de la edificación bloque A	19
Figura 4-1: Composición esquemática de unidad manejadora de aire	60
Figura 4-2: Detalle de instalación para ductos tipos TDF	64
Figura 4-3: Detalle de soportes para la instalación de ductos	65
Figura 4-4: Forma de intalacion y apariencia de recubrimiento para ductos	66
Figura 4-5: Aislamiento para tubería de PVC	66

Lista de tablas

	Pág.
Tabla 3-1: Superficie y volumen piso uno	20
Tabla 3-2: Superficie y volumen piso dos	
Tabla 3-3: Superficie y volumen piso tres	
Tabla 3-4: Superficie y volumen piso cuatro	
Tabla 3-5: Superficie y volumen piso cinco	
Tabla 3-6: Cargas térmicas que producen ganancia de calor	
Tabla 3-7: Emisividad y absorbancia de materiales de construcción	
Tabla 3-8: Materiales de construcción y su coeficiente de transferencia	
Tabla 3-9: Coeficientes de Conductividad térmica	
Tabla 3-10: Factor de carga por enfriamiento por luces (CLF)	
Tabla 3-11: Ganancia de calor de personas ejecutando actividades cotidianas	
Tabla 3-12: Valores de ganancia de calor de personas realizando actividades cotid	ianas
específicas	35
Tabla 3-13: Factor de enfriamiento por ocupante para calor sensible CLF	36
Tabla 3-14: Coeficiente según el tipo de construcción para cálculo de infiltracione	es de
aire	38
Tabla 3-15: Factor de carga de enfriamiento de equipos en funcion	39
Tabla 3-16: Potencia disipada en forma de calor en equipos de computo	39
Tabla 3-17: Ganancia de calor para motores eléctricos comunes	40
Tabla 3-18: Factor de ubicación del motor y la maquina	40
Tabla 3-19 : Cargas térmicas distribuidas en la oficina académica	46
Tabla 3-20: Disposición de equipos para cada uno de los recintos a climatizar	48
Tabla 3-21: Cantidad de aire exterior requerido en cada recinto	51
Tabla 3-22: Resumen de cargas latentes y sensibles para la manejadora de aire uno	53
Tabla 3-23: Resumen de cargas latentes y sensibles para la manejadora de aire dos	54
Tabla 4-1: Valores recomendados para intensidad sonora en distintos sitios	57
Tabla 4-2: Dimensión de ductos para suministro de aire refrigerado para la un	nidad
manejadora de aire número 1.	
Tabla 4-3: Dimensión de ductos para suministro de aire refrigerado para la un	
manejadora de aire número 2.	
Tabla 4-4: Referencias de módulos para ensamble de unidades ventiladoras	-
manejadoras de aire marca TECAM	62

Tabla 4-5: Modelos y referencias de módulos para ensamble para unidades manejado	oras
marca TECAM	
Tabla 4-6: Espesores de lámina galvanizada recomendados para la fabricación de du	ctos
tipo rectangular	
Tabla 5-7: Presupuesto equipos marca TECAM	68
Tabla 3-24: Cargas térmicas aula de apoyo piso 1	73
Tabla 3-25: Cargas térmicas oficina coordinación psicología y bienestar académico	
Tabla 3-26: Cargas térmicas aula 201A	74
Tabla 3-27: Cargas térmicas aula 202A	75
Tabla 3-28: Cargas térmicas aula 203A	75
Tabla 3-29: Cargas térmicas aula 204A	76
Tabla 3-30: Cargas térmicas aula 205A	76
Tabla 3-31: Cargas térmicas aula 206A	77
Tabla 3-32: Cargas térmicas aula 207A	
Tabla 3-33: Cargas térmicas aula 208A	78
Tabla 3-34: Cargas térmicas aula 209A	78
Tabla 3-35: Cargas térmicas aula 301A	79
Tabla 3-36: Cargas térmicas aula 302A	79
Tabla 3-37: Cargas térmicas aula 303A	80
Tabla 3-38: Cargas térmicas aula 304A	80
Tabla 3-39: Cargas térmicas aula 305A	81
Tabla 3-40: Cargas térmicas laboratorio de química	81
Tabla 3-41: Cargas térmicas laboratorio de electromecánica	82
Tabla 3-42: Cargas térmicas oficina coordinador y docentes	82
Tabla 3-43: Cargas térmicas aula 401A	83
Tabla 3-44: Cargas térmicas aula 402A	83
Tabla 3-45: Cargas térmicas aula 403A	84
Tabla 3-46: Cargas térmicas aula 404A	84
Tabla 3-47: Cargas térmicas aula 405A laboratorio de física	85
Tabla 3-48: Cargas térmicas aula 406A	85
Tabla 3-49: Cargas térmicas aula 407A	86
Tabla 3-50: Cargas térmicas aula 408A	86
Tabla 3-51: Cargas térmicas aula 409A	87
Tabla 3-52: Cargas térmicas aula 501A	87
Tabla 3-53: Cargas térmicas aula 502A	88
Tabla 3-54: Cargas térmicas cámara gessel	88
Tabla 3-55: Cargas térmicas aula 504A auditorio	89
Tabla 3-56: Cargas térmicas oficina monitor	89
Tabla 3-57: Cargas térmicas sala de sistemas	90

Lista de Símbolos y abreviaturas

A: área

Ag: área de ventana.Aw: área de pared.

BH: temperatura de bulbo húmedo

BTU: unidad térmica británica. **BS:** temperatura de bulbo seco

CFM: factor de carga de enfriamiento.

DTCE: diferencia de temperatura para carga de enfriamiento.

DTCEc: diferencia de temperatura para carga de enfriamiento corregido.

°F: grados Fahrenheit.

f: Factor de corrección.

Fc: factor para corregir cada ganancia de calor sensible en el recinto.

Fce: factor de carga de enfriamiento

FGSC: factor de ganancia de calor solar.

∆T: Diferencia de temperatura

CLTD/CLF: Cooling load temperature difference calculation method

SC: Coeficiente de sombra para tipo de vidrio

SHGF: Factor de ganancia de calor por orientación de superficie

CLF: Factor de carga de enfriamiento con/sin sombra

CLF: Factor Lumínico de Carga de Enfriamiento

U: Coeficiente de diseño de transferencia de Calor

Qt: Calor Total

Qs: Calor Sensible

QI: Calor Latente

Wlamp: Potencia de Lámparas

Fu: Factor de Uso lumínicoFs: Factor de Permisibilidad

FI: Factor de Carga

T: Temperatura de Bulbo Seco

Th: Temperatura de Bulbo Húmedo

Tr: Temperatura de Rocío

Introducción

La refrigeración es un proceso por medio del cual se quita calor y se mantiene una temperatura inferior al medio circundante. Actualmente, la refrigeración cuenta con muchas aplicaciones, donde se destaca una de las más importantes como la conservación de alimentos. La gran mayoría de productos alimenticios que se exponen a temperatura ambiente suelen descomponerse, debido al crecimiento rápido de bacterias. La temperatura normal de operación para que no ocurra la descomposición de los alimentos oscila entre 4.4°C aproximadamente (Air-Conditioning and Refrigeration Institute, 1979); si los alimentos no se encuentran a esta temperatura de referencia, las bacterias tienden a crecer muy lentamente, mientras que si se mantiene una temperatura deseada de referencia se conservan más tiempo en buen estado. La refrigeración también es muy utilizada en la industria para la fabricación de productos. A lo largo del tiempo, la evolución de la refrigeración ha vivido grandes cambios, tanto en el sector alimenticio donde se pueden almacenar grandes cantidades de alimentos en espacios refrigerados conservando así durante mucho más tiempo los productos alimenticios, como también para conseguir condiciones de confort agradable en grandes auditorios; otro ejemplo se ve en el campo de la medicina, donde se puede tener muestras biológicas en conservación gracias a la refrigeración.

En las últimas décadas muchas instituciones educativas han mostrado interés en proporcionar unas condiciones ambientales adecuadas que garanticen la calidad necesaria en los procesos de enseñanza-aprendizaje. La falta de un confort térmico adecuado puede producir falta de motivación y baja velocidad de aprendizaje. Por lo tanto, muchos de estos establecimientos han incrementado su inversión en equipos de climatización, en aras de garantizar las condiciones de confort térmico y mejorar el desempeño y la atención de sus estudiantes. La adquisición de equipos de refrigeración en un 20% en instituciones educativas y en alza en ciudades con climas tropicales, donde se combina la temperatura ambiente, la humedad relativa y periodos de sequía debido a la ausencia de lluvias, estos factores han incrementado el uso de aires acondicionados en el sector educativo.

En los centros escolares, las condiciones térmicas difieren según las actividades realizadas en diferentes espacios, por tal motivo las aulas deberían mantener el ambiente entre 20 y 26 °C. En estos parámetros de temperatura los seres humanos experimentan neutralidad térmica, con ropa adecuada y sin corrientes de aire.

2 Introducción

Con los conocimientos previos obtenidos en las diferentes asignaturas tales como Transferencia de calor, termodinámica y máquinas térmicas, como los conocimientos adquiridos en la empresa TECAM S.A. se desarrolla este proyecto de aire acondicionado, buscando realizar el diseño de un sistema de climatización para el bloque A de la Universidad Antonio Nariño sede Buga.

1. Generalidades

1.1 Planteamiento del problema

La ciudad de Buga es de clima cálido, donde las temperaturas diurnas oscilan entre los 23 y 32°C. (meteoblue 2020). La temperatura del ambiente es el indicio más importante de la comodidad. La mayoría de las personas siente comodidad al tener una temperatura del ambiente a su alrededor en un rango de 22 y 26 °C (72 y 79 °F) Cengel (2009). La Universidad Antonio Nariño sede Buga, el sol da directamente en las fachadas de ambos bloques durante el día, calentando las paredes y techos. Esto aumenta la sensación térmica de calor entre las personas que ocupan oficinas, salones de clase y laboratorios, lo que ocasiona un ambiente de no confort.

Adicionalmente, en el quinto piso del bloque A está el servidor y la sala de sistemas de la universidad lo cual representa una carga diferente a la de salones, oficinas y laboratorios. De hecho, en ese mismo piso se encuentra un auditorio para aproximadamente 50 personas. Al ser una institución de educación superior, sería positivo que se pudiera tener mejores condiciones de confort en todos los espacios. No solamente se requeriría aire acondicionado en las aulas de clase y oficinas por temas de confort, también para realizar prácticas en laboratorios y mejorar el desempeño de equipos de cómputo y el servidor.

Por lo tanto, en este proyecto se propone el diseño de un sistema de aire acondicionado que supla la necesidad del Bloque A de la Universidad Antonio Nariño sede Buga. Para ello se tendrá en cuenta parámetros como el número de personas, el tipo de carga y variables ambientales.

1.2 Justificación

El presente proyecto busca garantizar según la norma ASHRAE¹, unas condiciones de confort para las personas que se encuentren en las instalaciones de la universidad Antonio Nariño sede Buga. En los salones, oficinas, laboratorios, sala de sistemas y auditorios se concentra personal lo que produce cambios de temperaturas, esto es

¹ ASHRAE: Sociedad Estadounidense de Ingenieros de Calefacción, Refrigeración y Aire Acondicionado por sus siglas en ingles.

normal debido a la transferencia de calor entre cuerpos, carga emitida por cada persona, equipos y condiciones ambientales.

El bloque A, cuenta con entrada de ventilación natural, lo cual corresponde a la puerta principal y las ventanas ubicadas en cada uno de los cinco pisos que conforman el Bloque A. Sin embargo, esta recirculación de aire no es suficiente para tener unas condiciones de confort, sobre todo cuando la radiación solar incide sobre la fachada durante el día, lo que se puede observar en la figura 1.1.

Con los cálculos realizados, se obtiene el análisis de cargas térmicas y caudales para el proceso de diseño, especificación y selección, con el fin de entregar un proyecto de climatización.

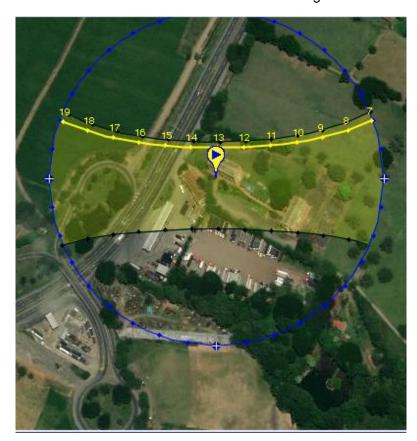


Figura 1-1: Vista aérea Universidad Antonio Nariño sede Buga

Nombre de la fuente: Sunearthtools, 2020

Capítulo 1 5

1.3 Objetivos

1.3.1 Objetivo general

Diseñar un sistema de aire acondicionado para el Bloque A de la Universidad Antonio Nariño sede Buga, con base en la norma ANSI/ASHRAE 62.1.

1.3.2 Objetivos específicos

- Disponer el estado ambiental, locativo y psicrométrico que se requiere en el diseño.
- Precisar la carga calorífica de aulas, oficinas, laboratorios, auditorio y sala de sistemas.
- Calcular el sistema extracción, retorno de aire y filtración de aire.
- Diseñar y distribuir el sistema de ductos de suministro.
- Seleccionar los equipos, materiales y accesorios del sistema de acuerdo a los cálculos realizados.
- Elaboración de planos generales del sistema de climatización.

1.4 Alcance del proyecto

Al llevar a cabo este proyecto de grado, se diseña un sistema de aire acondicionado para el bloque A de la universidad Antonio Nariño con sede en Buga Valle del Cauca como lo instauran los estándares y normas ASHRAE, el cual puede servir como propuesta guía o criterio en futuros bloques de la universidad o instituciones con características similares.

En este proyecto se realizó el diseño y selección de equipos para el sistema de climatización. No se contemplaron costos, análisis económico de la inversión ni implementación ya que no hacían parte de los objetivos estipulados, como tampoco construcción ni implementación.

2. Marco Teórico

El acondicionamiento de aire es un proceso que contempla el tratamiento del aire ambiente de un lugar específico; el cual consiste en regular las condiciones de temperatura, humedad, renovación de aire y filtrado dentro de cada recinto. Tener conceptos claros como que el calor se propaga desde la zona con la temperatura más alta a la de menor temperatura y la relación directa que existe entre la temperatura y la presión, nos serán muy útiles a la hora de llevar a cabo los cálculos.

Willis Carrier puso un fundamento en el campo de la climatización moderna, revelo su fórmula Psicométrica básica desarrollando así el concepto de climatización de verano.

2.1 Necesidad de confort en las personas

A lo largo de la historia, el aire acondicionado ha contribuido a ayudar para que las personas pasen tiempo en ambientes que les proporcionan mayor confort. En el presente esta tecnología se ha hecho necesaria en varias regiones, así como en actividades e incluso en el ámbito industrial ya es una necesidad básica. En grandes espacios como hospitales, estadios, cines, supermercados, centros comerciales, son necesarios ya que contar con estos espacios refrigerados hace que las personas que los ocupan puedan disfrutar de la estadía.

Para grandes superficies, se hace necesario la utilización de sistemas que funcionan por métodos de expansión directa con unidades tipo paquete, y los sistemas de agua helada. No obstante, es vital establecer las bases del concepto "confort humano", porque es el objetivo principal del diseño de un sistema de aire acondicionado. Para garantizar el "confort humano", se deben satisfacer algunas variables que interactúan entre sí y van cambiando de diferente manera al transcurrir el tiempo, esto posibilita que todas las personas perciban una aceptación similar de sensación térmica ambiental del espacio climatizado. Hay principios que se deben tener en consideración a la hora de establecer condiciones confortables a saber:

- > Tasa metabólica [met]
- ➤ Aislamiento de la ropa [clo]
- Temperatura del aire [°C]
- Temperatura radiante [°C]

Capítulo 2 7

- Velocidad del aire [m/s]
- Humedad relativa [RH]

El estándar 55 de la norma ASHRAE brinda parámetros de cálculo para un desarrollo óptimo de las áreas analizadas para proyectos de climatización. El estándar 55 y el capítulo "Principios fisiológicos para el confort y salud", dan pautas para lograr condiciones ideales para al menos 80% de los ocupantes adultos en un espacio.

En la figura 2-1 se muestra el método gráfico, de la carta psicrométrica según diversas actividades de los ocupantes de un recinto y el tipo de ropa con la cual se encuentran.

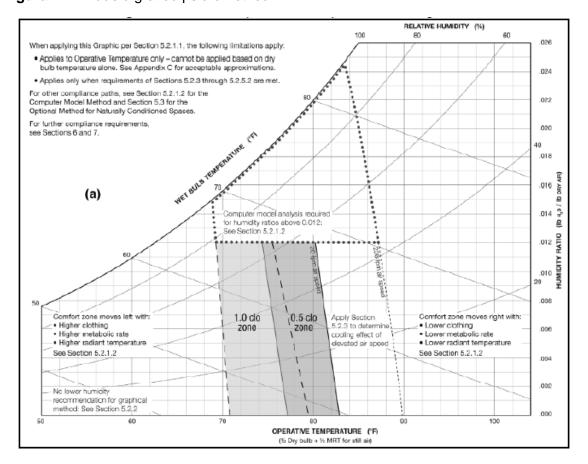


Figura 2-1: Modelo grafico psicrométrico.

Nombre de la fuente: ANSI/ASHRAE Standard 55a-1995

Un elemento a tener en cuenta cuando se diseña un sistema de climatización es el cálculo de las cargas térmicas. Los cálculos que se realizan de cargas térmicas afectan directamente en el dimensionamiento y capacidad de los componentes que se mencionan a continuación:

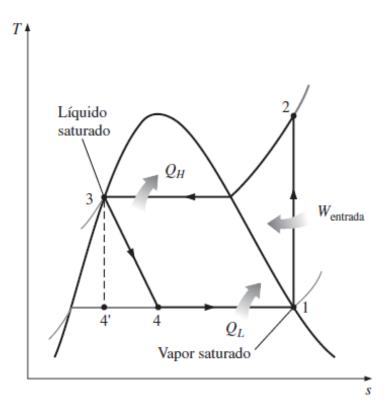
Ductos de aire, tuberías, difusores, manejadoras de aire, calderas, chiller, serpentines, Compresores, ventiladores y extractores.

La transferencia de calor es la razón fundamental por la que se llevan a cabo los cálculos de carga de refrigeración, como la conducción, la convección y la radiación hacen que se generen diferentes ganancias de calor o cargas térmicas en las estructuras analizadas. Dentro de las cargas térmicas que afectan la refrigeración se encuentran:

- Infiltración: fugas de aire y humedades.
- Internas: iluminación, electrodomésticos, personas, equipos de laboratorio.
- Externas: paredes, techos, ventanas, cielorrasos, losas y puertas.

2.2 Principios físicos de climatización

La climatización consiste en crear y mantener ciertas condiciones de temperatura, humedad relativa y pureza del aire en espacios interiores. Este proceso generalmente se aplica para mantener un nivel de comodidad personal.


También se utiliza en aplicaciones industriales para garantizar el funcionamiento correcto de los equipos o maquinaria que necesitan funcionar en condiciones ambientales específicas o, alternativamente, para poder llevar a cabo ciertos procesos industriales, como la soldadura, que producen cantidades considerables de calor que deben eliminarse. Un sistema de climatización debe ser efectivo independientemente de las condiciones climáticas externas e implica el control de cuatro variables fundamentales: temperatura del aire, humedad, movimiento y calidad, (Carel, 2018).

2.2.1 Ciclo de refrigeración por compresión de vapor

La compresión de vapor es el ciclo más utilizado en la refrigeración, en la climatización y bombas de calor como se ve en la Figura 2-2, básicamente se fundamenta en los siguientes procesos:

- **1-2** Compresión isentrópica en un compresor.
- 2-3 Rechazo de calor a presión constante en un condensador.
- **3-4** Estrangulamiento en un dispositivo de expansión.
- **4-1** Absorción de calor a presión constante en un evaporador.

Figura 2-2: Diagrama T-s.

Nombre de la fuente: Cengel (2009)

2.2.2 Compresión

La compresión es el ciclo por el cual se produce el efecto frigorífico mediante el aprovechamiento del cambio de estado del fluido refrigerante. En este ciclo el compresor es el encargo de comprimir el aire desde temperatura y presión baja, comprimiendo el aire a una presión más alta, esto hace que aumente de temperatura y se descarga por medio de la tubería con dirección al condensador donde, al enfriarse se hay una condensación que cede calor.

2.2.3 Condensación

En esta etapa del ciclo se lleva a cabo en un elemento llamado *Condensador* que generalmente se encuentra ubicado fuera del espacio refrigerado. En esta etapa el gas refrigerante se encuentra a alta presión y alta temperatura, se hace rechazo de calor al medio ambiente mediante el enfriado por corriente de aire o agua, cambiando su estado de gas a líquido frio y con una al ta presión.

2.2.4 Expansión

En esta parte del ciclo hay control de flujo mediante una válvula que restringe la circulación de refrigerante y expande el refrigerante para facilitar su evaporación posterior. Finalmente, cuando el refrigerante pasa por la válvula de expansión llega al evaporador y hace se hace el inicio a otro ciclo de refrigeración.

2.2.5 Evaporación

Esta fase de evaporación del ciclo, el refrigerante absorbe el calor del espacio que lo circunda y por ende lo enfría. Esta fase del ciclo se hace necesario un componente muy importante llamado e*vaporador*, el cual debe su nombre gracias a que el refrigerante cambia de líquido a vapor.

2.3 Mecanismo de transferencia de calor

El calor que se transporta, o se mueve mediante un gradiente de temperatura, el cual fluye o se transfiere de una región de alta temperatura a una de baja temperatura. El calor es transportado o transferido mediante convección, radiación o conducción. Estos procesos se pueden llevar a cabo de forma simultánea, dándose lugar que uno de los mecanismos tenga más incidencia sobre los otros dos. A modo de ejemplo, el calor en un muro de una habitación se transfiere mediante conducción fundamentalmente, la tierra recibe calor del sol fundamentalmente por radiación.

2.3.1 Conducción

La conducción se considera como la transferencia de energía de las partículas más energéticas de una sustancia debido a las interacciones entre las mismas (Incropera & Dewitt, 1996).

La trasferencia por conducción varía dependiendo del tipo de material al cual se le adiciona calor. La conducción en estructuras residenciales, edificios o edificaciones sucede en paredes, pisos, puertas, techos y vidrios, la conducción en estas superficies depende de factores como:

- ✓ Espesor o calibre del material.
- ✓ Área de seccional dl material.
- ✓ Diferencia de temperatura a cada lado del material.
- ✓ Conductividad térmica del material.
- ✓ Tiempo de recorrido del flujo térmico.

2.3.2 Convección

A nivel molecular, las moléculas se expanden al introducir energía térmica. A medida que aumenta la temperatura de la masa del fluido dada, el volumen del fluido debe aumentar en el mismo factor. Este efecto sobre el fluido provoca un desplazamiento (Cengel & Michael A, 2011).

2.3.3 Radiación

La radiación térmica es el resultado directo de movimiento aleatorio de átomos y moléculas en la materia.

Todos los materiales irradian energía térmica en función de su temperatura. Es decir, cuanto más caliente esta un objeto, más irradia. La temperatura del objeto afecta la longitud de onda y la frecuencia de las ondas radiadas.

2.4 Carga de enfriamiento

El calor que debe ser eliminado al exterior, para reducir su temperatura y contenido de humedad, para que se ajuste a las condiciones de diseño del espacio, constituye una parte de la carga de enfriamiento total (Dossat, 1991). En pocas palabras, la carga de enfriamiento es la cantidad de refrigeración que necesita el lugar que se quiere climatizar.

A lo largo del tiempo en trabajos de refrigeración, muchas compañías han estudiado diversos factores necesarios para la identificación de la carga de enfriamiento y múltiples aplicaciones. Al momento de hacer el cálculo de cargas en las zonas requeridas de diversos espacios, lo vital es tener un método definido o procedimiento para dichas cargas.

Los factores de aumento de calor en las instalaciones y que están ligados al cálculo de la carga de enfriamiento, se encuentran en dos grupos:

Factores externos de generación de calor

➤ La luz solar o el aire caliente del exterior que atraviesan las edificaciones o recintos (cimientos, paredes, techos, aislamientos, etc.).

Factores internos de generación de calor

- Emisión de calor y humedad corporal por parte de personas y mascotas.
- Electrodomésticos o aparatos eléctricos encendidos.
- La entrada de sol por las ventanas.
- El aire caliente que se infiltra en las instalaciones de ventilación.
- > Aparatos de combustión

2.4.1 Consideraciones de carga de enfriamiento

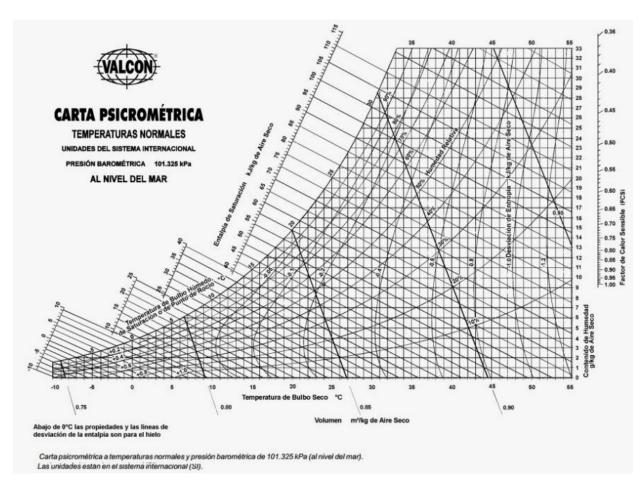
Generalmente los cálculos de carga de refrigeración tienen en cuenta los escenarios más extremos, como la noche más fría y el día con más calor del año. Las condiciones de diseño exterior para los cálculos de carga de refrigeración se relacionan estrechamente según la ubicación; no obstante, las condiciones de diseño interior son de 24 °C y 50% de humedad.

Otros elementos que influyen en el cálculo de la carga de refrigeración son los siguientes:

- Clima
- Orientación
- Latitud
- Voladizo del techo
- Vidrios de las ventanas
- Cortinas o persianas
- Tasa de ventilación
- Número de ocupantes
- Especificaciones de iluminación y aparatos eléctricos
- Transpiración y exhalación de los ocupantes

2.4.2 Cálculo de cargas térmicas

El cálculo de las cargas de refrigeración es complejo debido a la gran cantidad de factores que influyen. Un método de cálculo simple que emplean muchos diseñadores, pero poco preciso, es asumir que se necesita una tonelada de refrigeración de equipo de enfriamiento para 600 pies cuadrados. Este enfoque, sin embargo, es poco preciso y generalmente lleva a un sobredimensionamiento del equipo. El tamaño excesivo generalmente afecta negativamente la comodidad y causa ruidos a medida que el aire refrigerado fluye a través del sistema de ductos más rápidamente.


Determinar la carga de refrigeración ideal de una edificación es fundamental para la comodidad y la seguridad. El cálculo de las cargas de refrigeración implica evaluar todas las fuentes de calor internas y externas, considerar las condiciones interiores y exteriores de la edificación, con el fin de obtener una climatización energéticamente eficiente en estructuras o edificaciones.

2.4.3 La Carta Psicrométrica

La carta psicrométrica es una herramienta para comprender las relaciones entre los distintos parámetros del suministro de aire y la humedad relativa. Este gráfico permite que un diseñador u operador trabaje desde la humedad relativa de la habitación o recinto hasta la condición deseada del aire cuando ingresa al conducto de suministro.

La precisión ofrecida por las tablas psicrométricas, pueden llegar hasta de cuatro decimales. Al utilizar la carta psicrométrica, el diseñador se puede ahorrar mucho tiempo de cálculos, en la figura 4 se puede observar las líneas con las distintas características del aire que se pueden obtener.

Figura 2-4: Carta Psicrométrica.

Nombre de la fuente: adaptado de Carta psicrométrica [fotografia], por Valcon, 2013, Flicard (http://psicrometria-imi131.blogspot.com). (Flicard, 2020)

Mediante el análisis psicrométrico, se visualizan todas las características del aire, de estas propiedades las más relevantes para los proyectos de climatización son las siguientes:

- Temperatura de bulbo seco (bs).
- Temperatura de bulbo húmedo (bh).
- Temperatura de punto de rocío (pr).
- Humedad relativa (hr).
- Humedad absoluta (ha).
- Entalpía (h).
- Volumen específico.

Capítulo 3

Si se tiene conocimiento de dos de las propiedades del aire, se puede llegar a conocer el resto de las propiedades mediante el uso de graficas de cartas psicrométricas.

2.5 Diseño de sistemas de aire acondicionado

Existen diferentes entidades que han desarrollado metodologías para el cálculo de cargas térmicas, debido a la gran cantidad de variables que existen para su desarrollo, cada método tiene sus beneficios y limitaciones. Para el presente trabajo se ha considerado trabajar con las normas ASHRAE, la cual ha desarrollado los siguientes métodos:

- El método de balance de calor (ASHRAE 2001)
- La serie de tiempo radiante (ASHRAE 2001)
- El método CLTD/CLF (ASHRAE 1997)

El estándar ANSI/ASHRAE 62.1-2007, establece los principios para tener una ventilación aceptable de aire interior. Para llevar a cabo este trabajo se ha tomado en consideración trabajos que se basaron bajo alguna de las normas mencionadas, las cuales fueron:

"Diseño de un sistema de aire acondicionado y extracción mecánica para la sucursal del instituto nacional de seguros de Jacó", Puntarenas (Costa rica). El diseño de este sistema se hizo basándose en la norma ASHRAE, AHRI² y SMACNA³. Es un instituto que se utiliza con fines médicos, lo cual se convierte en fundamental contar con un sistema adecuado de aire acondicionado debido a que se cuenta con áreas de cirugías, oficinas y pequeños auditorios de reunión. Se seleccionaron los componentes de control y filtros adecuados para cada sección requerida. (Murillo, 2019)

Dentro de las principales características del diseño realizado se encuentran:

- > Temperatura de diseño de la zona 23°C y humedad relativa del 70%.
- Área total de diseño 753 m², distribuidos en 569,92 m² primer nivel y 183,08 m² segundo nivel.

² Instituto de aire acondicionado, calefacción y refrigeración (Air-Conditioning, Heating, and Refrigeration Institute, AHRI) es una norma estándar de certificación reconocida internacionalmente.

³ Los estándares y manuales de SMACNA direcciona todas las facetas de la hoja de metal de la industria, desde conducto de la construcción y de la instalación para la calidad del aire y control de la contaminación ambiental, y de recuperación de energía para los techados.

- > Temperatura relativa 18.9 a 20 °C.
- Cálculo de carga térmica 52 toneladas de refrigeración.
- Filtros MERV 14, según la norma 52.2
- ➤ 4 unidades condensadoras tipo VRF seleccionadas, 35 unidades evaporadoras instaladas.
- > 197,1 m de tubería de cobre y 194,09 m de ductos en lámina galvanizada.

Finalmente, los costos de inversión inicial, instalación y operación de proyecto fue de \$127766 colones (moneda de Costa rica).

El trabajo titulado "Diseño e Instalación del Sistema de Climatización y Ventilación Mecánica del Hospital del Niño Francisco Ycaza Bustamante", se realizó como trabajo de grado en la ciudad de Guayaquil (Ecuador). Como parte de la implementación de un sistema de renovación del hospital pediátrico, se tuvieron factores de temperatura y humedad controlada. para el diseño y ejecución de este proyecto se usó la norma ASHRAE, capítulos: 62.1 "Ventilation for Acceptable Indoor Air Quality"; y 170 "Ventilation of Health Care Facilities". (Valerezo, 2015)

Dentro de los criterios de diseño principales se destacan los siguientes:

- > Temperatura de Bulbo seco 33.3°C (92°F)
- ➤ Temperatura de Bulbo Húmedo 27°C (80°F)
- Humedad Relativa 50%
- Nivel de filtrado desde 30% ASHRAE a filtros HEPA 99.997%
- Renovación de aire según normas ASHRAE 62.1. ASHRAE 170
- Sistema de enfriador de agua (chiller)

Satisfechas las características anteriores, se logró climatizar un área de 4630 m² y una carga de enfriamiento de 415,5 TR mediante la selección e instalación de los componentes del sistema.

En cuanto al desarrollo de proyectos en Colombia de este tipo o similares, el autor Hermes Javier Ramírez León realizo el "Determinación de las Cargas Térmicas para garantizar el confort en los locales del piso 1 del edificio de aulas 2 en la UTB" para la ciudad de Cartagena de Indias, donde determina parámetros de diseño y calcula la carga térmica al recinto que deseaba proponer el diseño del sistema de aire acondicionado. Los cálculos fueron aplicados a 10 locales ubicados en el primer piso del edificio de aulas 2. (Rodriguez & Diaz, 2011). Los cálculos se desarrollaron a través del método de cálculo CLTD/CLF, la cual es una metodología desarrollada por ASHRAE. Dentro de las características principales de diseño según el autor se destacan:

- > 21 de Julio día y mes de diseño
- > Temperatura exterior: 44,4°C (94°F)

Capítulo 3

- ➤ Humedad relativa: 55% +/- 3%
- > Cálculo de cargas térmicas mediante el método CLTD/CLF.
- > Sistema d refrigeración mediante agua helada (Chiller).
- > Carga térmica Calculada de 27 TR.

3. Características ambientales y dimensionales del edificio

3.1 Descripción de la instalación

El edificio se encuentra en la ciudad de Guadalajara de Buga Callejón Lechugas, salida Norte, Buga - Tuluá, en la figura 5 se puede apreciar la ubicación y la forma constructiva de la edificación.

Figura 3-1: Plano de ubicación de la zona.

Nombre de la fuente: Google Maps

En figura 3-2 y 3-3 se observa la forma constructiva y características de la edificación, también se puede apreciar una vista lateral de la edificación.

Capítulo 3

Figura 3-2: Vista lateral de la edificación bloque A

Nombre de la fuente: Google Maps

Figura 3-3: Vista frontal de la edificación bloque A

Nombre de la fuente: Google Maps

3.1.1 Número de plantas usos de las distintas dependencias

Este edificio presenta una forma rectangular alargada, consta de seis pisos, donde en el primer piso se cuenta con oficinas, recepción y cafetería. Los demás pisos se tienen aulas de clases y laboratorios, donde el quinto piso se caracteriza por que cuenta con un auditorio y una sala de sistemas.

Los pisos que se tendrán en consideración para la climatización y que son objeto de análisis, son los pisos del uno al piso cinco donde cuentan con una altura de 2,30 m y tienen las siguientes características:

- El piso uno se emplaza el área administrativa del edificio, secretaria y administración, cafetería y zona de recepción.
- En el piso dos se ubican los salones de clases 201 al 209 y un baño.
- Piso tres los salones 301 al 305, igualmente laboratorio de química, oficina del coordinador y laboratorio de electromecánica.
- El piso cuatro cuenta con salones numerados desde el 401 al 408.
- El quinto piso que será el piso final de objeto de análisis cuenta con las aulas 501,
 502, auditorio 504, oficina del monitor y sala de sistemas.

3.1.2 Superficies y volúmenes por plantas

En tablas siguientes se reflejan las dimensiones por pisos de las zonas que se tendrán en consideración para la climatización:

Tabla 3-1: Superficie y volumen piso uno

PISO UNO			
LOCAL	SUPERFICIE (m²)	VOLUMEN (m²)	
SECRETARIA ACADEMICA	37,48	101,20	
BIENESTAR UNIVERSITARIO	37,48	101,20	
DIRECCION SEDE	37,48	101,20	
AULA DE APOYO	37,93	102,41	
OFICINA DE PROFESORES	37,48	101,20	

Capítulo 3

Tabla 3-2: Superficie y volumen piso dos

	PISO DOS			
LOCAL	SUPERFICIE (m²)	VOLUMEN (m³)		
AULA 201	34,77	79,97		
AULA 202	37,70	86,71		
AULA 203	38,00	87,40		
AULA 204	36,50	83,95		
AULA 205	54,00	124,20		
AULA 206	54,00	124,20		
AULA 207	37,69	86,68		
AULA 208	37,69	86,68		
AULA 209	38,19	87,83		

Tabla 3-3: Superficie y volumen piso tres

PISO TRES			
LOCAL	SUPERFICIE (m²)	VOLUMEN (m³)	
AULA 301	36,60	84,18	
AULA 302	38,37	88,25	
AULA 303	37,51	86,27	
AULA 304	35,86	82,47	
AULA 305 LABORATORIO DE ELECTRICIDAD Y MAGNETISMO	72,75	167,32	
OFICINA COORDINACION Y DOCENTES	11,18	25,71	
LABORATORIO DE QUIMICA	34,47	79,28	
LABORATORIO ELECTROMECANICA	179,92	413,81	

Capítulo 3

Tabla 3-4: Superficie y volumen piso cuatro

PISO CUATRO			
LOCAL	SUPERFICIE (m²)	VOLUMEN (m³)	
AULA 401	34,77	79,97	
AULA 402	37,21	85,58	
AULA 403	37,21	85,58	
AULA 404	35,86	82,47	
AULA 405 LABORATORIO DE FISICA	54,25	124,77	
AULA 406	54,41	125,14	
AULA 407	37,21	85,58	
AULA 408	37,08	85,28	
AULA 409	37,39	85,99	

Fuente: Autor

Tabla 3-5: Superficie y volumen piso cinco

PISO CINCO		
LOCAL	SUPERFICIE (m²)	VOLUMEN (m ³)
AULA 501	34,81	80,06
AULA 502	37,39	85,99
AULA 504 AUDITORIO	75,52	173,69
CAMARA GESSEL	9,20	21,16
OFICINA MONITOR	33,28	76,54
SALA DE SISTEMAS	272,16	625,97

Las zonas que no se contemplaran para la climatización son las que normalmente son de paso, de las cuales podemos mencionar, escaleras, pasillos, cuartos de aseo, baños y cuartos de almacenamiento.

3.2 Condiciones interiores de cálculo

Para las condiciones iniciales de diseño del sistema de climatización analizado para el bloque A, según la norma FAIAR⁴ se toman valores de referencia de partida teniendo en cuenta las condiciones ambientales de la ciudad de Guadalajara de Buga, teniéndose los siguientes valores:

Temperatura (°C): 21°C - 24 °C

Humedad relativa (HR): 50%

3.3 Condiciones exteriores de diseño

Las condiciones ambientales exteriores de diseño que se establecieron, se debieron tener en cuenta las características climatológicas, la ubicación geográfica de la ciudad de Guadalajara de Buga y la altura sobre el nivel del mar del bloque A de la universidad Antonio Nariño ubicado en la misma ciudad. Los valores de las condiciones exteriores para el sistema de climatización se muestran a continuación (Diebel & Norda, 2020):

> Temperatura de bulbo seco: 29 °C

Temperatura de bulbo húmedo: 22.74 °C

> Humedad relativa: 71% +/- 3%

Altitud: 969 m.s.n.m
Latitud: 3° 54′ 0″
Longitud: 78° 18′ 0″
Humedad absoluta:

Punto de rocio: 23.8 °C

Velocidad del viento: 3.6 m/s

⁴ FAIR es la federación de asociaciones iberoamericanas de aire acondicionado y refrigeración, la cual tiene una estrecha relación con las normas ASHRAE.

3.4 Características de los espacios a acondicionar

Con el levantamiento de planos arquitectónicos de cada uno de los pisos del bloque A que se quiere acondicionar, se pudo verificar la orientación cardinal, las dimensiones y ubicación de cada uno de los recintos, al igual que los materiales de las paredes, techos y pisos. También se pude establecer la posible orientaciones o trayectos de los ductos de suministro y extracción del sistema de refrigeración.

- Las dimensiones y las áreas de cada uno de los recintos se pueden apreciar en las tablas 3.1, 3.2, 3.3, 3.4 y 3.5.
- La altura de todos los techos en cada uno de los pisos es de 3,3 m.

Incidencia del sol en las paredes y ubicación Cardinal del bloque A.

- La ubicación cardinal se podrá apreciar en los planos arquitectónicos ubicados en los anexos.
- Las paredes exteriores del bloque A disponen de ventanas en un 50% de su fachada, las cuales se encuentran expuestas al durante la mayor parte del tiempo durante el día.
- No se dispone de ningún área con climatización alrededor de los lugares que se calcularan para la climatización.

Rasgo de constitución y especificaciones de techos, paredes y pisos del bloque A.

- El techo se encuentra construido en dos partes, su base es de concreto y cuenta con un cielo raso de machimbre en la mayoría de los pisos, el piso cinco se dispone de un cielo raso en PVC.
- Las paredes exteriores del bloque A, están construidas con ladrillo estructural limpio de 15 cm de ancho, sin recubrimiento de cemento, ni puntura.
- Las paredes interiores también se encuentran construidas con ladrillo estructural limpio de 15 cm de espesor sin ningún tipo de recubrimiento.
- Las ventanas que ocupan un 50% de las fachadas, cuentan con vidrios de 8mm de espesor y están puestos de forma sencilla es decir no hay doble vidrio.
- La ubicación de lámparas en cada uno de los recintos se encuentra en los techos.

3.5 Cálculo de caudales de suministro y cargas térmicas utilizando el método de CLTD/CLF

En el interior del bloque A, el calor adquirido se produce de una forma natural y contínua debido a diferentes fuentes térmicas debido al exterior, interior, infiltraciones y diversos sistemas al interior. Conocer el valor de la ganancia de calor y la carga de enfriamiento es vital para establecer las condiciones de confort ideal, para ello se requiere de cálculos matemáticos y fundamentos de transferencia de calor, ya que tener estos conceptos de transferencia y cálculos matemáticos que ayudaran en la selección más precisa de los equipos adecuados para las condiciones de climatización desea.

ASHRAE CLTD/CLF (cooling load temperature diferential with cooling load factors) es un método que se usa normalmente cuando se requiere calcular térmicas de forma manual, este método cálculo hace que se simplifique cuando se utiliza el factor global de carga, pisos, puertas, paredes, techos y ventanas.

Se utiliza la expresión (ver Ecuación (3. 1)):

$$q = U * A (CLTD) (3.1)$$

q: Ganancia neta de calor $\left(W \circ \frac{BTU}{h}\right)$

U: Coeficiente general de transferencia de calor $\left(\frac{w}{ft^2*^\circ C} \circ \frac{BTU}{h*ft^2*^\circ F}\right)$

A: Área $(m^2 \circ ft^2)$

CLTD: método de calculo por delta de temperatura (°C ó °F)

Los valores obtenidos por este método de cargas térmicas CLTD/CLF, son los requeridos para la carga de enfriamiento, también es necesario sumar las ganancias de calor debido a las personas, trasferencia de calor a través de ventanas, pisos, paredes, puertas, etc. El calor por radiación que se produce en las ventanas, pisos, puertas se utilizan los factores SHGF (Solar Heat Gain Coeficient), donde este coeficiente depende de la latitud donde se encuentra el lugar a analizar.

3.5.1 Factores de generación de calor y carga térmica total

Existen diversas cargas térmicas por medio de las cuales se genera calor en un recinto. La tabla 3.6 muestra las diversas fuentes por las cuales se gana calor. La tabla 3.6 muestra cuales son algunas de esas fuentes.

Tabla 3-6:	Cargas térmicas	que producen	ganancia de calor

İ	TIPO DE CARGA	SENSIBLE	LATENTE
Ι	Q ₁ : Cargas debido al Sol	✓	
II	Q2: Cargas a través de barreras (paredes, techos y pisos)	V	
III	Q3: Carga debido a luces	✓	
IV	Q4: Carga debido a personas	✓	√
٧	Q ₅ : Carga debido a infiltraciones de aire	✓	✓
VI	Qe: Cargas por electrodomésticos y equipos térmicos	*	✓
VII	Q ₇ : Cargas por equipos eléctricos	✓	

Fuente: Método para calcular cargar térmicas (Orozco H)

3.5.2 Carga Solar

Este tipo de carga se da debido al ingreso de la radiación solar a través de vidrios, cristales o superficies traslucidas que están expuestas a la radiación solar.

Para llevar a cabo los cálculos de cargas térmicas debido a la radiación solar a través de ventanas y superficies transparentes (vidrios) utilizaremos la Ecuación 3. 2, Ecuación 3. 3 y Ecuación 3. 4:

$$\dot{Q}_1 = \sum_{J=1}^{N} (QJ^{Directa} + QJ^{Difusa})$$
(3.2)

$$\dot{Q}_{1J}^{Directa} = (A_{sol} * SHGF * SC * CLF)$$
(3.3)

$$\dot{Q}_{1I}^{Difusa} = (A_{som} * SHGF_N * SC * CLF_N)$$
(3.4)

Donde:

 $\dot{Q_1}$: Ganancia de calor por radiación solar en superficies transparentes (W $\acute{o} rac{BTU}{h}$)

 A_{sol} : Area superficial soleada (m² ó ft²)

 A_{som} : Area superficial sombreada (m² ó ft²)

SC: Coeficiente de sobreado obtenido de tablas

SHGF: Factor de ganancia sensible obtenido de tablas $(\frac{W}{m^2} \circ \frac{BTU}{h*ft^2})$

CLF: Factor de carga de enfriamiento para vidrios obtenido de tablas

3.5.3 Carga a través de barreras (Techos, paredes y pisos)

Estas cargas son transferidas cuando ingresan al interior del recinto a través de las paredes, pisos, techos y puertas que se encuentran en la periferia del lugar. La ganancia de calor que se genera a través de este tipo de barreras se calcula con la ecuación 3.5.

$$\dot{Q}_2 = \sum \dot{Q}_{2Ext} + \sum \dot{Q}_{2int} \tag{3.5}$$

Donde:

 $\dot{Q}_{2\;Ext}$: Ganancia de calor neta en barreras exteriores $\left(W_0'\frac{BTU}{h}\right)$

 $\dot{Q}_{2\;int}$: Ganancia de calor neta en barreras interiores $\left(W_0'\frac{BTU}{h}\right)$

3.5.4 Barreras exteriores

Este tipo de barreras exteriores generan una ganancia de calor mayor alrededor del 60% y 70% en comparación con las paredes interiores del recinto analizado. El sol incide de forma directa en el techo y en las paredes exteriores, esta últimas tienen un tiempo de exposición menor en comparación al techo, pero se genera transferencia de calor por conducción y se debe tener en cuenta la velocidad de transmisión del calor.

Para calcular el valor de la ganancia de calor en barreras interiores s procede de forma similar al cálculo de barreras exteriores, para calcular el calor que ingresa por medio de barreras exteriores se utiliza la ecuación (3. 5).

$$\dot{Q}_{2Ext} = U * A * (T_E - T_I) + A * I_t * N * \alpha$$
(3.6)

Teniendo que $N = \frac{U}{h_0}$ entonces:

$$\dot{Q}_{2Ext} = U * A(T_E - T_L + \frac{\alpha * E_t}{h_0})$$
 (3.7)

Donde $\frac{\alpha*E_t}{h_0}$ se conoce como ΔT_{sol} y el termino $(T_E - T_L + \frac{\alpha*E_t}{h_0})$ se conoce como $CLTD_{corr}$

Finalmente podemos deducir que la ganancia de calor por barreras exteriores se puede calcular mediante la expresión (ver Ecuación (3. 6)).

$$\dot{Q}_{2 Ext} = U * A * CLTD_{corr} \tag{3.8}$$

Entonces:

 $\dot{Q}_{2 Ext}$: Ganancia de calor en barreras exteriores $\left(W \circ \frac{BTU}{h}\right)$

 $\textit{U: Coeficiente global de transferencia de calor en} \left(\frac{w}{ft^2 * {}^{\circ}\text{C}} \circ \frac{BTU}{h * ft^2 * {}^{\circ}\text{F}} \right)$

A: Area superficial de la barrera externa $(m^2 \circ ft^2)$

Capítulo 3

 $\mathit{CLTD}_\mathit{corr}$: Diferencia de temperatura corregida para carga de enfriamiento (°C ó °F)

 h_o : Coeficiente de transferencia de calor por conveccion externa en $\left(\frac{w}{m^2 * {}^\circ \mathtt{C}}\right)$

 I_t : Radiación solar incidente en la superficie $\left(\frac{w}{m^2} \circ \frac{BTU}{h*ft^2}\right)$

 T_E : Temperatura al exterior del lugar (°C ó °F)

 T_L : Temperatura al interior del lugar (°C ó °F)

La tabla 3.7 muestra algunos valores de emisividad y de absorción de materiales comúnmente utilizados.

Tabla 3-7: Emisividad y absorbancia de materiales de construcción

SUPERFICIES	ABSORBANCIA α	EMISIVIDAD ε
Plástico blanco	0,05	0,92
Cal, yeso	0,08	0,92
Aluminio pulido	0,1	0,05
Papel	0,25	0,95
Pintura blanca reciente	0,10 a 0,15	0,90
Pintura colores claros	0,30 a 0,40	0,90
Acero inoxidable	0,45	0,25
Mármol	0,40 a 0,50	0,95
Pintura colores medios y grises	0,50 a 0,70	0,90
Ladrillo rojo	0,65	0,93
Hormigón claro	0,60 a 0,70	0,88
Pinturas oscuras	0,80 a 0,90	0,90
Arena húmeda	0,9	0,95
Asfalto	0,95	0,95
Vidrio común	0,037	0,80

Fuente: (ASHRAE, 1985)

Tabla 3-8: Materiales de construcción y su coeficiente de transferencia

CONSTITUCION DE LA PARED	$U[\frac{w}{m^2 \circ C}]$
Bloque 150 mm de espesor	3,45
Dry Wall con 100 mm de aislante	0,34
Dry Wall con espacio de aire	2,18
Ladrillo comun-espacio de aire- pared falsa	1,8
Ladrillo comun de 100 mm	3,4
Ladrillo comun de 100 mm con 10 mm de revoque	3,2
Placa de concreto de 40 cm y camaras de aire	0,083
Placa de concreto de 20 cm y camaras de aire	1,3

Fuente: Método para calcular cargas térmicas (Orozco H)

Capítulo 3

Tabla 3-9: Coeficientes de Conductividad térmica

MATERIALE S	CONDUCTIDAD $\left[\frac{w}{m^{29}C}\right]$
Baldosa Calcarea	1,15
Baldosa de corcho	0,08
Baldosa de hormigon	1,15
Baldosa granitica	1,77
Baldosa ceramicas	0,7
Hormigon de cascotes de ladrillo 1600	0,075
Hormigon de cascotes de ladrillo 1800	0,092
Vidrio plano	0,58 - ,080
Ladrillo ceramico hueco 1000	0,041
Ladrillo ceramico hueco 1200	0,49
Ladrillo ceramico hueco 1400	0,61
Ladrillo cerámico hueco 800	0,34
Ladrillo hueco port. e= 12	0,41
Ladrillo hueco port. e= 18	0,41
Ladrillo común 1600	0,81
Ladrillo común 1800	0,91
Ladrillo común 2000	1,16
Ladrillo en concreto	0,81
Aire en reposo	0,024
Cielorrasos yeso enduido 800	0,46
Cielorrasos yeso enduido 1000	0,57
Cielorrasos yeso enduido 1200	0,74
Concreto	1,7

Fuente: Diseño de un sistema de aire acondicionado. (Pardo, 2008)

3.5.5 Barreras interiores

Estas cargas son todas las que se dan debido a pisos, paredes, cielos y divisiones arquitectónicas que se encuentran en la parte interna de la edificación. Estas barreras no están expuestas a los rayos solares la transferencia de calor, se dan por conducción. El material que las constituyen, puede hacer que se genere más calor o menos calor este tipo de material influye altamente en el cálculo de las cargas finales.

Para calcular el calor transferido desde espacios interiores sin acordonar hacia los que cuentan con sistema acondicionado por medio de pisos, divisiones, cielos falsos, se calcula mediante la Ecuación 3. 7.

$$\dot{Q}_{2\ int} = U * A * \Delta T = U * A * (T_E - T_L - 5\ ^{0}C) = U * A * (T_E - T_L - 3\ ^{0}C)$$
 (3.8)

En lugares donde el calor es considerable se utiliza la expresión (ver Ecuación (3. 8))

$$\dot{Q}_{2 int} = U * A * (T_E - T_L - \Delta T)$$
(3.9)

 $\varDelta T$ toma valores que oscilan entre 8 ^{0}C y 14 ^{0}C por lo que es recomendable un valor promedio de estos dos valores.

3.5.6 Carga térmica debido a luces

Este tipo de carga es el que tiene implementado cada edificación según sus necesidades, son una fuente importante en la ganancia de calor en las instituciones educativas gran parte del día se encuentran funcionando. La transferencia de calor por luces se da mediante radiación. Existen varios factores que inciden en las cargas generadas por luces como los son:

- Tipo de bombillas.
- Cantidad y cuantas se encuentran encendidas.
- Modo de ubicación (colgante o empotrada).
- Posición de las luces (entiladas o aisladas).
- Componentes integrados (reactores o balastros).

Las ecuaciones con las cuales calcularemos las cargas por luces son las siguientes:

$$\dot{Q}_3 = \dot{Q}_{3L} + \dot{Q}_{3F} + \dot{Q}_{3N} \tag{3.9}$$

$$\dot{Q}_{3L} = \sum (W_L * F_u * CLF_{Luces}) \tag{3.10}$$

$$\dot{Q}_{3F} = \sum (W_F * 1.2 * F_u * CLF_{Luces}) \tag{3.11}$$

Capítulo 3

$$\dot{Q}_{3N} = \sum (W_N * 1.2 * F_u * CLF_{Luces})$$
(3.12)

Donde:

 $W_L = Potencia de l\'amparas incandecentes en watt$

 W_F = Potencia de lámparas fluorescenes en watt

 $W_N = Potencia de lámparas de neón en watt$

 F_u : Factor de utilización $\frac{\# lamparas encendidas}{\# lamparas totales}$

 $\mathit{CLF}_{Luces} = \mathit{Factor}\ de\ carga\ de\ enfriamiento, se\ obtiene\ de\ la\ Tabla\ 3.10$

Tabla 3-10: Factor de carga por enfriamiento por luces (CLF)

Nº DE HR		X**		Y***
DESPUES DE	HORAS DE C	PERACIÓN	HORAS DE	OPERACIÓN
ENCENDIDAS LAS				
LUCES	10	16	10	16
0	0,08	0,19	0,01	0,05
1	0,62	0,72	0,76	0,79
2	0,66	0,75	0,81	0,83
3	0,69	0,77	0,84	0,87
4	0,73	0,80	0,88	0,89
5	0,75	0,82	0,9	0,91
6	0,78	0,84	0,92	0,93
7	0,80	0,85	0,93	0,94
8	0,82	0,87	0,95	0,95
9	0,84	0,88	0,96	0,96
10	0,85	0,89	0,97	0,97
11	0,32	0,90	0,22	0,98
12	0,29	0,91	0,18	0,98
13	0,26	0,92	0,14	0,98
14	0,23	0,93	0,12	0,99
15	0,21	0,94	0,09	0,99
16	0,19	0,94	0,08	0,99
17	0,17	0,40	0,06	0,24
18	0,15	0,36	0,05	0,20

^{**} Lámparas no ventiladas, rejillas debajo del cielo raso

Fuente: Aire acondicionado y refrigeración (Pereira, 2013)

^{***} Lámparas ventiladas o que cuelgan libremente

3.5.7 Carga térmica debido a personas

Las personas que interactúan con el espacio que va a ser refrigerado, aportan calor sensible en una cantidad importante a su vez el calor latente que hace evidente el aumento de carga total de enfriamiento en el espacio considerado.

El calor que genera una persona depende de diversos factores como: el peso, la edad, y actividad que realiza.

Las ecuaciones que se utilizarán para el cálculo de cargas por personas serán:

$$\dot{Q}_4 = \dot{Q}_{4S} + \dot{Q}_{4L} \tag{3.13}$$

$$\dot{Q}_{4S} = \sum_{i=1}^{n} \left(NP * \dot{Q}_P * PS * CLF_{Personas} \right)_i$$
(3.14)

$$\dot{Q}_{4L} = \sum_{i=1}^{n} \left[NP * \dot{Q}_{P} (1 - PS) \right]_{i}$$
 (3.15)

Dónde:

NP: Número de personas

 \dot{Q}_{v} : Ganancia de calor por persona, valores de referencia en las tablas 3.11 y 3.12

PS: Porcentaje de carga sensible

 $\mathit{CLF}_{personas}$: Factor de carga de enfriamiento de ocupates, se obtiene de la tabla 3.13

Tabla 3-11: Calor ganado ejecutando rutinas comunes

Actividad	Qp (w)	PS
Durmiendo	70	0,70
Sentado	100	0,60
Parado	150	0,50
Trabajo de oficina	150	0,55
Enseñando	175	0,50
Caminando (83 Kh/h)	305	0,35
Industrial	300-600	0,35

Fuente: Método para calcular cargar térmicas (Orozco H)

Tabla 3-12: Valores de ganancia de calor de personas realizando actividades cotidianas específicas.

	APLICACION	Cald	or total,	Calo	r total	С	alor	С	alor	
GRADO DE ACTIVIDAD	TIPICA	hombres adultos		ajustado		sensible		latente		
	ITFICA	W	Btu/hr	W	Btu/hr	W	Btu/hr	W	Btu/hr	
Sentados en un teatro	Teatro (matinée)	114	390	97	330	66	225	31	105	
Contados en un teatra	teatro (función	114	390	103	350	72	245	31	105	
Sentados en un teatro	nocturna)									
Sentados, haciendo un	oficinas, hoteles,	132	450	117	400	72	245	45	155	
trabajo ligero	departamentos									
Realizando trabajo	oficinas, hoteles,	139	475	132	450	73	250	59	200	
moderado de la oficina	departamentos									
Parados, haciendo un	Tiendas de									
trabajo ligero o	departamentos,	162	550	132	450	73	250	59	200	
caminando	tienda al menudeo									
Caminando o de pie	Farmacia, banco	162	550	146	500	73	250	73	250	
Realizando un trabajo	Restaurante	144	490	162	550	81	275	81	275	
sedentario	Restaurante	144	490	102	550	01	213	01	210	
Haciendo un trabajo de	Cabrica	252	800	20	750	81	275	420	475	
banco ligero	Fabrica	253	000	20	750	01	275	139	4/5	
Bailando a ritmo	Salòn de baile	264	900		850	89	305	160	545	
moderado	Salon de balle	204	900	249	000	09	303	100	343	
Caminando a 3 MPH;										
haciendo un trabajo a	Fabrica	Fabrica	293	293 1000	293	1000	110	375	183	625
maquina ligero										
Jugando a los bolos	Boliche	440	1500	425	1450	170	580	255	870	
Realizando un trabajo	Fabrica	440	1500	425	1450	170	580	255	870	
pesado	Fabrica	440	1500	425	1450	170	580	200	870	
Manejando maquinaria										
pesada, levantando	Fabrica	469	1600	469	1600	186	635	283	965	
objetos										
Haciendo rutinas	Gimnasio	586	2000	2000	1800	208	710	320	1090	
atleticas	Similatio	000	2000	2000	1000	200	7.10	520	1000	

Fuente: (ASHRAE, 1985)

Horas despues de	ues de Total del Horas en el Espacio								
entrada al Espacio	2	4	6	8	10	12	14	16	
1	0,49	0,49	0,50	0,51	0,53	0,55	0,58	0,62	
2	0,58	0,59	0,60	0,61	0,62	0,64	0,66	0,70	
3	0,17	0,66	0,67	0,67	0,69	0,70	0,82	0,75	
4	0,13	0,71	0,72	0,72	0,74	0,75	0,77	0,79	
5	0,10	0,27	0,76	0,76	0,70	0,79	0,80	0,82	
6	0,08	0,21	0,79	0,80	0,80	0,81	0,83	0,85	
7	0,07	0,16	0,34	0,82	0,83	0,84	0,85	0,87	
8	0,06	0,14	0,26	0,84	0,85	0,86	0,87	0,88	
9	0,05	0,11	0,21	0,38	0,87	0,88	0,89	0,90	
10	0,04	0,10	0,18	0,30	0,89	0,89	0,90	0,91	
11	0,04	0,08	0,15	0,25	0,42	0,91	0,91	0,92	
12	0,03	0,07	0,13	0,21	0,34	0,92	0,92	0,93	
13	0,03	0,06	0,11	0,18	0,28	0,45	0,93	0,94	
14	0,02	0,06	0,10	0,15	0,23	0,96	0,94	0,95	
15	0,02	0,05	0,08	0,13	0,20	0,30	0,47	0,95	
16	0,02	0,04	0,07	0,12	0,17	0,25	0,38	0,96	
17	0,02	0,04	0,06	0,10	0,15	0,21	0,31	0,49	
18	0,01	0,03	0,06	0,09	0,13	0,19	0,26	0,39	

Tabla 3-13: Factor de enfriamiento por ocupante para calor sensible CLF

Fuente: (ASHRAE, 1985)

3.5.8 Carga térmica debido infiltraciones de aire

Las cargar por infiltraciones de aire son aquellas que ingresan al recinto por aberturas, ventanas, grietas y puertas que están en la periferia del lugar calculado. Estas cargas generan aumento en la ganancia de calor sensible y latente. Básicamente hay diversos factores que influyen en este tipo de infiltraciones, algunos son la magnitud y la dirección del viento, tipo de la construcción, diferencial de temperatura, el uso de las puertas y ventanas (frecuencia de abertura), como dato general es imposible calcular con exactitud la velocidad de infiltración de aire en el recinto.

Normalmente las cargas por infiltraciones de aire son pequeñas y oscilan entre 1% y 2%. En muchas construcciones se opta por sellar las ventanas con el fin de tener un mejor control sobre las infiltraciones.

3.5.9 Cargas por renovaciones y cambios de hora

Este tipo de cargas cumplen un papel importante para los sistemas de aire acondicionado basados en el Estándar 62.1/2001 de ASRHAE, en fundamental en instituciones hospitalarias y médicas. Al igual que en las infiltraciones por aire hay ganancia de calor latente y sensible.

Capítulo 3

Las ecuaciones mediante las cuales se calcularán las cargas por infiltraciones de aire y cargas por renovaciones de aire son de la 3.17 a la 3.23:

Ganancia total por infiltraciones y renovaciones

$$\dot{Q}_S = (\dot{Q}_{5S} + \dot{Q}_{5L}) + (Q_{5'S} + Q_{5'L}) \tag{3.16}$$

Ganancia por infiltraciones

$$\dot{Q}_{5S} = \rho E * + \forall in * C_P * (T_L - T_L)$$
(3.17)

$$\dot{Q}_{5L} = \rho_E \quad * \forall in \, *(\omega_E - \omega_L) * h_{fg} \tag{3.18}$$

$$\forall in = NCH_{IN^*}V_{Cuarto} \tag{3.19}$$

$$NCH_{IN} = a + b * vaire + c * (TE - TL)$$
(3.20)

Ganancia por renovaciones

$$\dot{Q}_{5'S} = 1.08 * \forall E * 1.8 * (TE - TL)$$
 (3.21)

$$\dot{Q}_{5'L} = 0.68 * \forall E * (\omega_E - \omega_L)$$
(3.22)

Dónde:

 $\dot{Q}_{\rm S}$: Carga debido a infiltraciones (W ó BTU/h)

 $\dot{Q}_{5S}\dot{Q}_{5L}$: Carga debido a infiltraciones (W ó BTU/h)

 $\dot{Q}_{5'S}\dot{Q}_{5'L}$: Carga para cambios por hora y renovaciones de aire para calor sensible (W ó BTU/h)

ρΕ: Densidad del aire (kg/m³)

 \forall in: Caudal (m³/h)

Cp: Calor específico del aire $(\frac{KJ}{kg*^{\circ}K})$

TE: Temperatura al exterior (°C ó °F)

TL: Temperatura interior (°C ó °F)

 ωE : Humedad $\frac{Kg \ agua}{Kg \ aire \ seco}$

 ω L: Humedad al interior del lugar en $\frac{Kg \ agua}{Ka \ aire \ seco}$

hfg: Entalpía del agua a la presion de vapor del aire $\frac{KJ}{Kg}$; a, b, c: Coeficiente dependiente del tipo de construcción los cuales podemos ver en la tabla 3.14.

Tabla 3-14: Coeficiente según el tipo de construcción para cálculo de infiltraciones de aire

TIPO DE CONSTRUCCION	a	b	С
Apretado o Aislado	0,15	0,01	0,007
Promedio (Ladrillo)	0,2	0,018	0,014
Ligera (Madera)	0,25	0,02	0,022

Fuente: (Orozco H)

3.5.10 Carga por electrodomésticos

La consideración de este tipo de cargas es de gran importancia, ya que los electrodomésticos liberan gran cantidad de calor cuando están en funcionamiento, los artículos como televisores, ventiladores, planchas, lavadoras, neveras, es vital tener en cuenta todos estos elementos al momento de realizar el cálculo de cargas térmicas. Para el cálculo de este tipo de cargas se tendrán en consideración las siguientes ecuaciones 3.24 a la 3.2:

$$\dot{Q}_6 = (\dot{Q}_{6S} + \dot{Q}_{6L}) \tag{3.23}$$

$$\dot{Q}_{6S} = \sum_{k=1}^{m} (\dot{Q}_{SE} * NE * Fu * CLF)_{k}$$
(3.24)

$$\dot{Q}_{6L} = \sum_{k=1}^{m} (\dot{Q}_{LE} * NE * Fu)_{k}$$
 (3.25)

$$Fu = \frac{\text{\# equipos en funcionamiento (hora de cálculo)}}{\text{Total de equipos}} * \frac{\text{min.en funcionamiento}}{\text{60 min.}}$$
(3.26)

Donde:

 \dot{Q}_6 : Carga por electrodomésticos y equipos térmicos $\left(W \circ \frac{BTU}{h}\right)$

 $\dot{Q}_{6S}\dot{Q}_{6L}$: Carga por electrodomésticos y equipos térmicos para calor

sensible y latente $\left(W \circ \frac{BTU}{h}\right)$

 \dot{Q}_{SE} : Potencia disipada en forma de calor sensible por el equipo

 \dot{Q}_{LE} : Potencia disipada en forma de calor latente por el equipo

NE: Número de equipos

Fu: Fracción de los equipos en funcionamiento

CLF: Factor de carga de enfriamiento ver tabla 3.15

Tabla 3-15: Factor de carga de equipos en función

Total de horas en		Horas despues de encendido el equipo												
operación	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	0,27	0,40	0,25	0,18	0,14	0,11	0,09	0,08	0,07	0,06	0,05	0,04	0,04	0,03
4	0,28	0,41	0,51	0,59	0,39	0,30	0,24	0,70	0,16	0,14	0,12	0,10	0,09	0,08
6	0,29	0,42	0,52	0,59	0,65	0,70	0,48	0,75	0,30	0,25	0,21	0,18	0,16	0,14
8	0,31	0,44	0,54	0,61	0,66	0,71	0,75	0,79	0,55	0,43	0,35	0,30	0,25	0,22
10	0,33	0,46	0,55	0,62	0,68	0,72	0,76	0,82	0,81	0,84	0,61	0,48	0,39	0,33
12	0,36	0,49	0,58	0,64	0,69	0,74	0,77	0,85	0,82	0,85	0,87	0,88	0,64	0,51
14	0,40	0,52	0,61	0,67	0,72	0,76	0,79	0,87	0,84	0,86	0,88	0,89	0,91	0,92
16	0,45	0,57	0,65	0,70	0,75	0,78	0,81	0,88	0,88	0,87	0,89	0,90	0,92	0,93
18	0,52	0,63	0,70	0,75	0,79	0,82	0,84	0,90	0,86	0,89	0,91	0,92	0,93	0,94

Fuente: (ASHRAE, 1985)

Tabla 3-16: Calor disipado equipos de computo

Equipo	Descripción	Potencia de placa [W]	Potencia media [W]
Computador do cacritorio	2,8 GHz, 1GB de RAM	480	73
Computador de escritorio	3,0 GHz, 2GB de RAM	690	77
	Dimensión 30"	383	90
Monitor pantalla plana	Dimensión 22"	360	36
	Dimensión 19"	288	28

Fuente: (Handbook, 2013)

3.5.11 Carga por equipos eléctricos (motores eléctricos)

Para este tipo de cargas son todos aquellos equipos eléctricos que cuenten con motores eléctricos que disipen potencia en forma de calor. Estas cargas se calculan mediante las ecuaciones 3.28 y 3.29

$$\dot{Q}_7 = \sum_{k=1}^{m} (\dot{W}_m * NE * Fc * Fdm * Fu * CLF)_k$$
 (3.27)

$$Fu = \frac{\text{\# equipos en funcionamiento (hora de cálculo)}}{\text{Total de equipos}} * \frac{\text{min.en funcionamiento}}{60 \text{ min.}}$$
(3.28)

Dónde:

 \dot{Q}_7 : Carga por equipos eléctricos $\left(W \circ \frac{BTU}{h}\right)$

 \dot{W}_m : Potencia disipada en forma de calor por el motor ($\approx 50\% V$)

NE: Número de motores

Fc: Factor de carga, normlmente igual a 1

FDM: Factor de ubicación del motor y la máquina ver la tabla 3.17

Fu: Fracción de los equipos en funcionamiento

CLF: Factor de carga de enfriamiento tomados de la tabla 3.1

 Tabla 3-17: Ganancia de calor para motores eléctricos comunes

C	Características del motor				Ubicación del motor y del quipo respecto al área acondicionada					
					Α			C	;	
Motor (HP)	Tipo de Motor	Nomina RPM	Carga Total eficiencia	Motor in Equipo in		Motor in ir		Moto Equip		
			Motor %	W	Btu/ hr	W	Btu/ hr	w	Btu/ hr	
0,05	polo oculto	1500	35	105,60	360	38,13	130	70,40	240	
0,08	polo oculto	1500	35	170,13	580	58,67	200	111,47	380	
0,125	polo oculto	1500	35	260,00	900	93,87	320	173,07	590	
0,16	polo oculto	1500	35	340,27	1160	117,33	400	222,93	760	
0,25	1-fase	1750	54	346,13	1180	187,73	640	158,40	540	
0,33	1-fase	1750	56	440,00	1500	246,40	840	193,60	660	
0,5	1-fase	1750	60	621,87	2120	372,53	1270	249,33	850	
0,75	3-fase	1750	72	777,33	2650	557,33	1900	217,07	740	
1	3-fase	1750	75	994,40	3390	748,00	2550	249,33	850	

Fuente: (Pardo, 2008)

Tabla 3-18: Factor de ubicación del motor y la maquina

F_{DM} Ubicación			
$1/\eta_m$	Motor y maquina dentro del local		
$(1/\eta_m)/\eta_m$	Motor y maquina afuera		
1	Motor afuera, maquina adentro		

Fuente: (Pardo, 2008)

3.6 Cálculo de cargas térmicas para el primer piso del bloque A

Para el desarrollo de las ecuaciones se tomarán los datos que tenemos en los numerales 3.2, 3.3 y 3.4, las cuales corresponden a las condiciones de diseño del interior del bloque A y las canciones exteriores.

Algunos parámetros que se tendrán en cuenta al momento del cálculo de las cargas térmicas serán:

- En las ventanas del bloque se sugiere que estas se encuentren bien selladas para evitar entrada de aire exterior.
- Al momento del cálculo de ganancia de calor por radiación solar se asumirá el caso más crítico, y la ocupación maxima de personas en cada punto.
- ➤ Para sitios de almacenamiento, baños, cocina y lokers no serán climatizados, pero se contará con un sistema de extracción con pérdida al exterior.
- Para los cálculos por cargas térmicas solo se mostrarán los de la oficina de secretaria académica paso a paso de los cálculos, el resto de oficinas y pisos se presentarán en una tabla dentro de los anexos A donde se podrá observar los resultados de cada carga obtenida.

3.6.1 Cargas halladas para el primer piso

3.6.1.1 Carga solar vidrios oficinas

En el bloque A se tiene la particularidad que todas las ventanas de la periferia tienen una altura de 1.40 m de altura y extiende por la pared que da al exterior.

Vidrios pared Noroeste (oficina Académica)

Asol =
$$(3,60 \text{m} * 1,40 \text{m}) * (0,9)$$
Marco de la ventana = $4,54 \text{ m}^2$

 $A_{som} = 0$

SGHFjunio, NE = 202 BTU/h * $ft^2 = 631,31 \text{ W/m}^2$

Factor de corrección para coeficiente de sombreado **SC** = 1

Factor de carga de enfriamiento para vidrio CLF15h, NE = 0.52

$$\dot{Q}_1 = \sum_{J=1}^{N} (QJ^{Directa} + QJ^{Difusa})$$
(3.2)

$$\dot{Q}_{1I}^{Directa} = (A_{sol} * SHGF * SC * CLF)$$
(3.3)

$$\dot{Q}_{1I}^{Difusa} = (A_{som} * SHGF_N * SC * CLF_N)$$
(3.4)

$$\dot{Q}_{1J}^{Directa} = 4,54 \ m^2 * 631,31 \ W/m^2 * 1 * 0,52 = 1490,39 \ W$$

$$\dot{Q}_{1J}^{Difusa} = 0$$

$$\dot{Q_1} = \dot{1490.39} W$$

Utilizando la ecuacion3.6 de la sección 3-5-4 se calcula la carga por conducción en los vidrios

$$Q_{1cond.} = U * A * (TE - \dot{T}L) = 6.3 * 4.54 * (29 - 23) = 171.612 W4$$

Vidrios pared Sureste (oficina Académica)

$$Asol = 0$$

$$Asom 1 = (2,50m*1,40m)*(0,9) \\ Marco de la ventana = 3,15 m^2 \\ Asom 2 = (2,50m*1,40m)*(0,9) \\ Marco de la ventana = 3,15 m^2 \\ Asom Total = 3.15 + 3.15 = 6,30 m^2 \\ SGHFjunio, SE = 110 \\ BTU/h^2*ft_2 = 346,94 \\ W/m^2 \\ SC = 1$$

$$CLF15h, NE = 0.82$$

Se realiza el cálculo con las ecuaciones 3.2, 3.3 y 3.4 $\dot{Q}_{1I}^{Directa}=0$

$$\dot{Q}_{1J}^{Difusa} = 6,30 \ m^2 * 346,94 \ W/m^2 * 1 * 0,82 = 1792,292 \ W$$

$$\dot{Q}_1 = 17\dot{9}2.292 W$$

Cálculo de carga por conducción en el vidrio

$$Q_{1cond.} = U * A * (TE - TL) = 6.3 * 6.3 * (29 - 22) = 277.830 W$$

Carga térmica total por vidrios

$$\dot{Q_1} = 2146,95 W + 288,41 \dot{W} + 1792,29 W + 277,830 W$$

 $\dot{Q_1} = 4505.48 W$

Cálculo de cargas térmicas por barreras interiores

Paredes

$$A = (2,70m * 2,673m) = 7,22m^2$$

ULadrillo común = 3,4 $W / m_2 * {}^{\circ}C$

$$TE = 29$$
 °C

$$TL = 23$$
 °C

$$\dot{Q}_{2\ int} = U * A * (T_E - T_L - \Delta T)$$
(3.9)

$$Q_2 \text{ Int} = 3.4 * 7.22 * (29 - 23 - 3 °C)$$

 Q_2 Int = 73,64 W * 3 = 220,92 W se multiplico por tres por que cuenta con tres oficinas idénticas al interior del aula 101 (oficina secretaria académica).

Carga térmica por el piso

$$A = (5,902 \ m * 6,346 \ m) = 37,45 \ m^2$$

$$U$$
Baldosa = 1,77 $W / m_2 * ^{\circ}C$

$$TE = 29$$
°C

$$TL = 23^{\circ}C$$

$$\dot{Q}_{2 int} = U * A * (T_E - T_L - \Delta T)$$
(3.9)

$$Q_2 \text{ Int} = 1.77 * 37,45 * (29 - 23 - 3^{\circ}\text{C})$$

$$Q_2 = 220,92 + 198,86 W$$

$$Q_2 = 419,78 W$$

3.6.1.2 Carga térmica debido a luces

Lámparas fluorescentes

$$N_{Lam. F} = 8$$

$$W_F = 39 W$$

$$F_u = 1$$

$$CLF = 1$$

$$\dot{Q}_{3F} = \sum (W_F * 1.2 * F_u * CLF_{Luces})
\dot{Q}_{3F} = 8(39 * 1.2 * 1 * 1) = 46.8 W
\dot{Q}_3 = 46.8 W$$
(3.29)

3.6.1.3 Carga térmica debido a personas

$$\dot{Q}_4 = \dot{Q}_{4S} + \dot{Q}_{4L} \tag{3.30}$$

$$\dot{Q}_{4S} = \sum_{i=1}^{n} \left(NP * \dot{Q}_P * PS * CLF_{Personas} \right)_i$$
 (3.31)

$$\dot{Q}_{4L} = \sum_{j=1}^{n} \left[NP * \dot{Q}_{P} (1 - PS) \right]_{i}$$
 (3.32)

tres ocupantes

NP = 2

$$\dot{Q}_P = 150 W$$
 (Trabajo en oficina)
 $PS = 0.55$

$$CLF_{Personas} = 0.84$$

$$\dot{Q}_{4S} = 2 * 150 * 0.55 * 0.84 = 138.6 W$$

 $\dot{Q}_{4L} = 2 * 150 * (1 - 0.55) = 135 W$
Carga total por personas

$$\dot{Q}_4 = 138,6 + 135 = 273,6 W$$

3.6.1.4 Cargas térmicas debido a infiltraciones de aire y renovaciones de aire exterior

Ganancia térmica por infiltraciones

$$\dot{Q}_{5S} = \rho E * + \forall in * C_P * (T_L - T_L)$$
(3.33)

$$\dot{Q}_{5L} = \rho_E \quad * \forall in \, *(\omega_E - \omega_L) * h_{fg} \tag{3.34}$$

$$\forall in = NCH_{IN^*}V_{Cuarto} \tag{3.35}$$

$$NCHIN = a + b * vaire + c * (TE - TL)$$
(3.36)

Cómo se mencionó en la sección 3.5.8 las cargas por infiltraciones son las más pequeñas oscilan en el 1% y 2%, por tal motivo se tomará el valor más alto del 2% de la carga térmica total calculada para cada recinto.

Ganancia térmica por renovaciones

$$\dot{Q}_{5'S} = 1.08 * \forall E * 1.8 * (TE - TL)$$
 (3.37)

$$\dot{Q}_{5'L} = 0.68 * \forall E * (\omega_E - \omega_L)$$
 (3.38)

 $T_E = 29 \, ^{\circ}\text{C}$ $T_L = 23 \, ^{\circ}\text{C}$

 $\omega_E = 160,1 g \text{ramos}$

 ω_L = 68,23 *g* ramos

 $\forall_{interior} = 37,45 \ m^2 * 2,7m = 101,12 \ m^3$

 $\forall_E = \forall_{interior} * ACH$ (Renovación de aire por hora)

 $\forall_E = 101,12 \ m^3 * 4 = 404,48 \ m^3/h$ con una equivalencia de 238,068 cfm

 $\dot{Q}_{5'S} = 1.08 * \forall E * 1.8 * (TE - TL)$

 $\dot{Q}_{5'S} = 1,08 * 238,068 * 1,8 * (29 - 23) * 1/3,412$

 $\dot{Q}_{5'S} = 813,841 W$

 $\dot{Q}_{5L} = 0.68 * 238,068 * (160,1 - 68,23)$

 $\dot{Q}_{5'L} = 0.68 * 238,068 * (160,1 - 68,23) * 1/3,412$

 $\dot{Q}_{5'L} = 4358,87 W$

 $\dot{Q}_5 = 813,481 \, W + 4358,87 \, W$

 $\dot{Q}_5 = 5172,351 \, W$

3.6.1.5 Cargas térmicas debida a electrodomésticos y equipos de generación térmica

Ganancia de carga térmico de equipos en la oficina

Computador de mesa: 77 W Monitor pantalla plana: 36 W

F_{u:} 1

CLF: 0,79 (para 8 horas de operación)

$$\dot{Q}_{6S} = \sum_{k=1}^{m} (\dot{Q}_{SE} * NE * Fu * CLF)_{k}$$
(3.39)

$$\dot{Q}_{6L} = \sum_{k=1}^{m} (\dot{Q}_{LE} * NE * Fu)_{k}$$
 (3.40)

$$\dot{Q}_{6S} = 113 * 3 * 1 * 0,79 = 267,81 W$$
 $\dot{Q}_{6L} = 0$
 $\dot{Q}_{6} = 267,81 W$

3.6.1.6 Cargas térmicas debido a motores eléctricos

Dentro de este recinto de oficinas no se encuentran ningún motor eléctrico, por tal motivo esta carga se asumirá como cero.

$$\dot{Q}_7 = 0 W$$

3.6.1.7 Carga total calculada para la oficina 101 secretaria académica

El total de esta carga será la suma de todas las cargas térmicas calculadas en los numerales anteriores a saber:

$$\dot{Q}_{Total} = \dot{Q}_{1+} \dot{Q}_{2+} \dot{Q}_{3+} \dot{Q}_{4+} \dot{Q}_{5+} \dot{Q}_{6+} \dot{Q}_{7}$$

$$\dot{Q}_{Total} = 10685,83 W = 3.04 TR$$

En la tabla 3.19 se puede observar el resumen del total de cargas térmicas que corresponden a la oficina académica.

Tabla 3-19 : Cargas térmicas distribuidas en la oficina académica

0	OFICINA SECRETARIA ACADEMICA					
TIPO DE LA CARGA	CARGA					
TERMICA	[W]	[TR]	%			
Q1	4505,49	1,28	0,42			
Q2	419,78	0,12	0,04			
Q3	46,80	0,013	0,004			
Q4	273,60	0,08	0,03			
Q5	5172,35	1,47	0,48			
Q6	267,80	0,08	0,03			
Q7	0	0	0			
Q total	10685,82	3,038	100			

Fuente: Autor

El cálculo de la totalidad de las cargas podrá verse resumido en los anexos A, se presentan los cálculos en tablas iguales a tabla (3.19).

3.6.2 Caudal de impulsión para las áreas acondicionadas

Cuando se acondiciona un recinto se debe garantizar un caudal de aire a inyectar mínimo según ASHRAE 62/99, el caudal se constituye por el aire de renovación y el aire de recirculación. La expresión que se utiliza para dicho cálculo es la siguiente:

Aire de impulsión teórico

$$\dot{\forall}_i = \frac{Q_S}{\rho_{1*} C_{p*} (T_{L} - T_{ADP})}$$
 3.41

En condiciones normales es decir estándar sobre el nivel del mar, se considera la ecuación de la siguiente forma:

$$\dot{\forall}_i = \frac{Q_{S \text{ [BTU/h]}}}{1,08*(T_{L}-T_{SA})^{[\circ F]}} * \frac{1}{1-BF}$$
3.42

3.6.3 Caudales de retorno y flujos de masa

Se determina mediante la ecuación (3.43) como se muestra:

$$\dot{\forall}_L = \dot{\forall}_i - \dot{\forall}_E$$
 3. 43

 $\dot{\forall}_E$ es el caudal de aire por renovación o exterior.

3.7 Cálculo de caudal de retorno y caudal de impulsión

Para llevar a cabo el cálculo de los caudales de retorno para cada recinto y los caudales de impulsión, se tendrá en consideración que se dispondrá de dos máquinas de refrigeración las cuales se encargaran de distribuir el aire a los recintos del bloque A.

En la tabla (3.20) se hará la distribución de los equipos que se encargará del suministro de aire a cada recinto.

Tabla 3-20: Disposición de equipos para cada uno de los recintos a climatizar

UNIDAD MANEJADORA DE AIRE	LUGAR
	OFICINA SECRETARIA ACADEMICA
	OFICINA BIENESTAR UNIVERSITARIO
	OFICINA DIRECCION SEDE
	AULA A201
	AULA A202
	AULA A203
	AULA A204
	SALA DE AUDIOVISUALES A205
	AULA A301
EQUIPO 1	AULA A302
	AULA A303
	AULA A304
	AULA A4015
	AULA A402
	AULA A403
	AULA A404
	LABORATORIO DE FISICA A405
	AULA 501
	AULA 502
	AULA DE APOYO
	OFICINA DE PROFESORES PSICOLOGIA
	AULA A206
	AULA A207
	AULA A208
	AULA A209
	LABORATORIO DE QUIMICA
EQUIDO O	LABORATORIO ELECTROMECANICA
EQUIPO 2	OFICINA COORDINACION
	AULA A406
	AULA A407
	AULA A408
	AULA A409
	AULA A504
	OFICINA MONITOR DE SISTEMAS
	SALA DE SISTEMAS

Fuente: Autor

3.7.1 Caudal de impulsión para la unidad manejadora de aire

Para hacer el cálculo de este caudal es necesario conocer la carga sensible para cada recinto a acondicionar y hacer la suma total de la carga sensible y latente de cada recinto. Adicionalmente se debe hacer el cálculo del caudal por ventilación a personas.

Caudal por ventilación a personas

$$Q_{caudal}$$
 = Personas x Q 3.44

Donde:

Personas: números de personas en el recinto a acondicionar

Q: Caudal de aire recomendado (m³/h), para este proyecto se tomará un caudal de aire recomendado de 17 m³/h según la tabla 45 de Handbook Carrier que se encuentra en la lista de anexos B.

Caudal por renovaciones de aire en el área

$$Q caudal = \frac{\# renovaciones}{hr} * V$$
 3.45

Donde:

Q Caudal: Caudal exterior a suministrar (m³/h)

de renovaciones: Renovaciones de aire por hora

V: Volumen del espacio a acondicionar

En la tabla (3.21) se proporcionará los datos de cálculo de aire exterior que se debe introducir en cada recinto, este aire está relacionado a las renovaciones de aire según el área que se va a acondicionar.

 Tabla 3-21: Cantidad de aire exterior requerido en cada recinto

JNIDAD MANEJADORA DE AIRE	LUGAR	VOLUMEN DE DE CADA AREA M3	NUMERO DE PERSONAS	Q CAUDAL DE AIRE RECOMENDADO (m3/hr)	NUMERO DE RENOVACIONES POR HORA	CAUDAL POR VENTILACION A PERSONAS	CAUDAL POR RENOVACION DE AIRE EN EL AREA	Q: Caudal (m^3/h)	CAUDAL DE SUMINISTRO PARA CADA RECINTO Q: Caudal (CFM)
	SECRETARIA ACADEMICA	101,2	3	17	6	51	607,2	658,2	387,402
	BIENESTAR UNIVERSITARIO	101,2	3	17	6	51	607,2	658,2	387,402
	DIRECCION SEDE	101,2	2	17	6	34	607,2	641,2	377,396
	AULA A201	79,97	25	17	6	425	479,82	904,82	532,557
	AULA A202	86,71	25	17	6	425	520,26	945,26	556,359
	AULA A203	87.4	25	17	6	425	524.4	949.4	558,796
	AULA A204	83.95	25	17	6	425	503.7	928.7	546.612
	SALA DE AUDIOVISUALES A205	124.2	25	17	6	425	745.2	1170.2	688,754
	AULA A301	84.18	25	17	6	425	505.08	930.08	547.425
EQUIPO 1	AULA A302	88.25	25	17	6	425	529.5	954.5	561,798
	AULA A303	86.27	25	17	6	425	517.62	942.62	554.805
	AULA A304	82.47	25	17	6	425	494.82	919.82	541.386
	AULA A401	79.97	25	17	6	425	479.82	904.82	532.557
	AULA A402	85.58	25	17	6	425	513.48	938.48	552.369
	AULA A403	85.58	25	17	6	425	513.48	938.48	552.369
	AULA A404	82.47	25	17	6	425	494.82	919.82	541.386
	LABORATORIO DE FISICA A405	124.77	25	17	6	425	748.62	1173.62	690,767
	AULA 501	80.06	25	17	6	425	480.36	905.36	532.875
	AULA 502	85.99	25	17	6	425	515.94	940.94	553.817
	AULA DE APOYO	102.41	25	17	6	425	614.46	1039.46	611.803
	OFICNA DE PROFESORES PSICOLOGIA	101.2	3	17	6	51	607.2	658.2	387.402
	AULA A206	124.2	30	17	6	510	745,2	1255,2	738.783
	AULA A207	86.68	25	17	6	425	520.08	945.08	556,253
	AULA A208	86.68	25	17	6	425	520.08	945.08	556,253
	AULA A209	87.83	25	17	6	425	526,98	951.98	560,315
	LABORATORIO DE QUIMICA	79.28	20	17	6	340	475.68	815.68	480.091
	LABORATORIO ELECTROMECANICA	413.81	25	17	6	425	2482.86	2907.86	1711.503
EQUIPO 2	OFICINA COORDINACION	25.71	3	17	6	51	154.26	205.26	120,812
	AULA A406	125.14	30	17	6	510	750.84	1260.84	742,103
	AULA A407	85.58	25	17	6	425	513.48	938.48	552,369
	AULA A408	85.28	25	17	6	425	511,68	936.68	551,309
	AULA A409	85.99	25	17	6	425	515.94	940.94	553.817
A	AULA A504	173.69	30	17	6	510	1042,14	1552,14	913,556
	OFICINA MONITOR DE SISTEMAS	76.54	2	17	6	34	459.24	493.24	290,310
	SALA DE SISTEMAS	625.97	30	17	6	510	3755.82	4265.82	2510.768

Fuente: Autor

3.7.2 Caudal de suministro

El aire suministrado al recinto es el que proviene de las unidades manejadoras de aire, este aire es tratado para lograr las condiciones adecuadas de humedad y temperatura. Para lograr las condiciones adecuadas es necesario definir un factor de Bypass el cual es el porcentaje de aire que pasa a través del serpentín sin sufrir cambios de temperatura. Por tal motivo, para este proyecto de grado se ha definido un factor de bypass de 0,1, debido a que las condiciones de calor sensible son considerablemente altas. La ecuación (3.47) que es la que utilizaremos para determinar el caudal de suministro del equipo 1 y el equipo 2.

En las tablas (3.22 y 3.23) se podrá ver el resumen de las cargas latentes y sensibles calculadas en los numerales anteriores.

Tabla 3-22: Resumen de cargas latentes y sensibles para la manejadora de aire uno

UNIDAD MANEJADORA DE AIRE	LUGAR	CARGA SENSIBLE EN (Watt)	CARGA LATENTE EN (Watt)
	SECRETARIA ACADEMICA	1173,60	3102,62
	BIENESTAR UNIVERSITARIO	588,20	2716,15
	DIRECCION SEDE	1173,60	3102,62
	AULA A201	3700,50	3545,71
	AULA A202	3606,90	356015
	AULA A203	3606,90	3556,15
	AULA A204	3700,50	3545,71
	SALA DE AUDIOVISUALES A205	3606,90	3556,15
	AULA A301	3700,50	3545,71
EQUIPO 1	AULA A302	3606,90	3556,15
,	AULA A303	3606,90	3556,15
	AULA A304	3700,50	3545,71
	AULA A401	3700,50	3545,71
	AULA A402	3606,90	3556,15
	AULA A403	3606,90	3556,15
	AULA A404	3700,50	3545,71
	LABORATORIO DE FISICA A405	3606,90	3556,15
	AULA 501	3462,90	3545,71
	AULA 502	3462,90	3545,71
	TOTAL	60919,40	418195,12

Fuente: Autor

Tabla 3-23: Resumen de cargas latentes y sensibles para la manejadora de aire dos

UNIDAD MANEJADORA DE AIRE	LUGAR	CARGA SENSIBLE EN (Watt)	CARGA LATENTE EN (Watt)
	AULA DE APOYO	2200,50	3572,70
	OFICNA DE PROFESORES PSICOLOGIA	588,20	2716,15
	AULA A206	8255,60	4876,14
	AULA A207	2300,00	3571,90
	AULA A208	3606,90	3573,92
	AULA A209	3606,90	3573,92
	LABORATORIO DE QUIMICA	2305,40	4645,43
EQUIPO 2	LABORATORIO ELECTROMECANICA	5707,70	3545,71
EQUIPU Z	OFICINA COORDINACION	1296,60	2287,57
	AULA A406	8255,60	4876,14
	AULA A407	2300,50	3571,90
	AULA A408	3606,90	3573,92
	AULA A409	3606,90	3573,92
	AULA A504	4943,00	5799,48
	OFICINA MONITOR DE SISTEMAS	2495,00	1896,91
	SALA DE SISTEMAS	6117,00	15689,84
	TOTAL	61192,70	71345,55

Fuente: Autor

$$Q_{Suministro} = \frac{Qse}{0.337 x (1-Fb) x (Tccm - ADP)}$$
3.46

Donde:

Q _{Suministro}: caudal de suministro (m³/hr).

Qse: Calor sensible efectivo (Watt).

Fb: Factor Bypass (ad).

Tccm: Temperatura en el CCM (°C).

ADP: Temperatura de punto de rocío (°C).

Caudal de suministro equipo 1

$$Q_{Suministro} = \frac{60919.4}{0.337 \, x \, (1-0.1) \, x \, (23-10)} = 15450.40 \, m^3/hr = 9093.76 \, ft^3/m$$

Caudal de suministro equipo 2

$$Q_{Suministro} = \frac{61192.7}{0.337 \, x \, (1-0.1) \, x \, (23-10)} = 15519.72 \, m^3/hr = 9134.56 \, ft^3/m$$

3.7.3 Caudal de aire de retorno

El aire de retorno es el que se tomó procedente del espacio acondicionado, este aire debe mezclarse con el aire exterior para ser tratado por la unidad manejadora de aire, esto con el fin de lograr las condiciones de temperatura y humedad determinadas. Para calcular el caudal de retorno lo haremos con la formula (3.48):

$$Qar = Qas - Qae (3.47)$$

Donde:

Qar: Caudal de aire de retorno (m³/hr). Qas: Caudal de aire de suministro (m³/hr). Qae: Caudal de aire exterior (m³/hr).

Caudal de aire de retorno equipo 1 Qar = 15450,40 – 2724

 $Qar = 12726,4 \text{ m}^3/hr = 7490,48 \text{ CFM}$

Caudal de aire de retorno equipo 2 Qar = 15519,72 – 2724 Qar = 12795,72 m³/hr = 7531,28 CFM

En este capítulo se calcularon las cargas térmicas debido a techos, pisos, luces, ventanas y paredes en cada uno de los recintos que componen el piso uno del bloque A. en la tabla 3-19 se muestra el porcentaje de carga refrigerada que debe ingresar en cada área según los datos obtenidos. Según los caudales de suministro y retorno obtenidos se seleccionan dos unidades manejadoras de aire que se encargaran del suministro.

Se hizo un resumen de carga sensible y latente para cada una de las unidades manejadoras, como se aprecia en las tablas 3-22 y 3-23 con el fin de determinar cuál es el tipo de carga predominante y poder tener un mejor control de los factores como la humedad y el Bypass.

4. Diseño y disposición del sistema de ductos

En el funcionamiento de sistemas de climatización es preciso contar con diferentes elementos como tuberías de refrigeración, ductos encargados de la distribución de aire y los elementos requeridos para el óptimo funcionamiento del sistema calculado. Todo esto con el fin de garantizar que el sistema de climatización lleve el aire de la forma adecuada a cada recinto contemplado en el diseño.

En los diseños y fabricación de los ductos utilizados en un sistema de climatización se deben considerar factores como: espacio disponible, niveles de ruido, difusión del aire, fugas de aire, pérdidas de presión, control de humo y balanceo de caudales.

4.1.1 Niveles de ruido recomendados para ductos en las aplicaciones de acondicionamiento de aire

Los sistemas de climatización además de garantizar las condiciones adecuadas de confort, deben proporcionar condiciones de confort ideales en cuanto a ruido y para casos específicos como lo son las aulas de clases donde se requiere niveles de concentración. En la selección del rango permisible de decibeles, se deben tener en cuenta factores como: sonidos del medio ambiente, el tipo de ocupación, el volumen de cada local y nivel de ruido que emite cada equipo de tratamiento de aire.

En la tabla 4-1 se muestra algunos valores sonoros recomendados para distintos sitios de ocupación. En el capítulo 3 se ha hecho un estudio previo, donde se ha determinado los caudales necesarios para cada área a refrigerar al tener en consideración los caudales de aire calculados para cada recinto, se procede a calcular los ductos necesarios para un caudal de suministro de 9093.76 cfm para la unidad manejadora de aire uno, 9134.56 cfm para la unidad manejadora dos. Se tiene en consideración las recomendaciones de velocidad del aire y las condiciones sonoras recomendadas para cada recinto.

Capítulo 4 57

Tabla 4-1: Valores recomendados para intensidad sonora en distintos sitios

Tipo de habitación	RC (N)	Tipo de habitación	RC (N)			
Residencias, apartamentos, condominios, hoteles / moteles	25 a 35	Artes escénicas Espacios				
Habitaciones individuales o suites	25 a 35	Teatros dramáticos, conciertos y salas de recitales	25			
Salas de reuniones / banquetes	25 a 35	Estudios de enseñanza musical	25			
Pasillos, loobbies	35 a 45	Salas de ensayo de músical	30 a 35			
Areas de servicio/soporte	35 a 45					
Edificaciones con oficinas		Laboratorios (con campanas de extracción)				
Oficinas ejecutivas y privadas	25 a 35	Exámenes / investigación, comunicación mínima expresión	45 a 55			
Salas de conferencias	25 a 35	De Investigación, de uso extensivo de teléfono	40 a 50			
Salas de teleconferencias	< 25	Enseñanza a grupos 3				
Oficinas abiertas	< 40	Iglesia, Mezquita, Sinagoga				
Pasillos y loobies	40 a 45	Asamblea general con programación músical 3				
Hospitales y Clínicas		Escuelas				
Cuartos privados	25 a 35	Aulas	25 a 30			
Salas destinadas a un grupo de pasientes	30 a 40	Grandes salas de lectura	25 a 30			
Quirofanos o salas de cirugía	25 a 35	Sin amplificación del habla	<25			
Pasillos y las zonas comunes 30 a 40		bibliotecas 30 a				
Salas de audiencias		Estadios, gimnasios interiores				
Sin amplificar el habla	25 a 35	Gimnasios y piscinas cubiertas	40 a 50			
Habla amplificada	30 a 40	Grandes espacios - espacios de gran capacidad con amplificación del habla				

Fuente: (ASHRAE, 1985)

Para el trazado de ducto y su posterior diseño se ha calculado la velocidad de 1700 (ft/min), para suministrar los caudales necesarios en las dos máquinas manejadoras de aire del sistema; las cuales tiene caudales de suministro de 9093,76 (ft³/min) y 9134,56 (ft³/min) respectivamente. Según la tabla 4-1 se trabaja en los rangos de 25 y 35 decibeles máximo.

Finalmente, en las tablas 4-2 y 4-3 se muestran la dimensión de los ductos que se utilizan en este proyecto.

Tabla 4-2: Dimensión de ductos para suministro de aire refrigerado para la unidad manejadora de aire número 1.

UNIDAD MANEJADORA	LUGAR	CAUDAL	DIAM	ETRO	ANCHO		AL	.TO
DE AIRE	LUGAN	CAUDAL	(in)	(m)	(in)	(m)	(in)	(m)
	DUCTO PRINCIPAL	1818,750	17	0,432	26	0,660	15	0,381
	SECRETARIA ACADEMICA	387,402	8	0,203	6	0,152	9	0,229
	BIENESTAR UNIVERSITARIO	387,402	8	0,203	6	0,152	9	0,229
	DIRECCION SEDE	377,396	8	0,203	6	0,152	9	0,229
	AULA A201	532,557	9	0,229	7	0,178	11	0,279
	AULA A202	556,359	9	0,229	7	0,178	11	0,279
	AULA A203	558,796	9	0,229	7	0,178	11	0,279
	AULA A204	546,612	9	0,229	7	0,178	11	0,279
	SALA DE AUDIOVISUALES A205	688,754	10	0,254	8	0,203	12	0,305
EQUIPO 1	AULA A301	547,425	9	0,229	7	0,178	11	0,279
	AULA A302	561,798	9	0,229	7	0,178	11	0,279
	AULA A303	554,805	9	0,229	7	0,178	11	0,279
	AULA A304	541,386	9	0,229	7	0,178	11	0,279
	AULA A4015	532,557	9	0,229	7	0,178	11	0,279
	AULA A402	552,369	9	0,229	7	0,178	11	0,279
	AULA A403	552,369	9	0,229	7	0,178	11	0,279
	AULA A404	541,386	9	0,229	7	0,178	11	0,279
	LABORATORIO DE FISICA A405	690,767	10	0,254	8	0,203	12	0,305
	AULA 501	532,875	9	0,229	7	0,178	11	0,279
	AULA 502	553,817	9	0,229	7	0,178	11	0,279

Fuente: Autor

Tabla 4-3: Dimensión de ductos para suministro de aire refrigerado para la unidad manejadora de aire número 2.

UNIDAD MANEJADORA	LUGAR	CAUDAL	DIAM	ETRO	ANCHO		ALTO	
DE AIRE	LUGAR	CAUDAL	(in)	(m)	(in)	(m)	(in)	(m)
	DUCTO PRINCIPAL	1826,940	17	0,432	26	0,660	15	0,381
	AULA DE APOYO	611,803	10	0,254	8	0,203	12	0,305
	OFICNA DE PROFESORES PSICOLOGIA	387,402	8	0,203	5	0,127	11	0,279
	AULA A206	738,783	11	0,279	9	0,229	12	0,305
	AULA A207	556,253	9	0,229	7	0,178	11	0,279
	AULA A208	556,253	9	0,229	7	0,178	11	0,279
	AULA A209	560,315	9	0,229	7	0,178	11	0,279
	LABORATORIO DE QUIMICA	480,091	8,5	0,216	6	0,152	12	0,305
EQUIPO 2	LABORATORIO ELECTROMECANICA	1711,503	14	0,356	11	0,279	15	0,381
	OFICINA COORDINACION	120,812	5	0,127	4	0,102	8	0,203
	AULA A406	742,103	11	0,279	9	0,229	12	0,305
	AULA A407	552,369	9	0,229	7	0,178	11	0,279
	AULA A408	551,309	9	0,229	7	0,178	11	0,279
	AULA A409	553,817	9	0,229	7	0,178	11	0,279
	AULA A504	913,556	12	0,305	10	0,254	13	0,330
	OFICINA MONITOR DE SISTEMAS	290,310	7	0,178	4	0,102	10	0,254
	SALA DE SISTEMAS	2510,768	16	0,406	14	0,356	15	0,381

Fuente: Autor

Capítulo 4 59

En los anexos C se puede observar los planos arquitectónicos con el trazado de los ductos de suministro y los ductos de retorno propuestos.

4.2 Selección y características de equipos

Existe una gran variedad de equipos de aire acondicionado, los cuales garantizan las condiciones de temperatura y condiciones de humedad según se desee. Es de vital importancia tener en cuenta que a diferencia de los sistemas de aire acondicionado donde se va a una tienda especializada en aire acondicionado y se selecciona el que supla las características deseadas ya que, para estos casos de equipos especiales, es preciso brindarle al fabricante datos específicos como características especiales del proyecto y la información necesaria como la calculado a lo largo de este proyecto.

Las características en la selección de las dos manejadoras de aire para este proyecto se obtuvieron gracias al estudio realizado en capítulos y numerales anteriores, a continuación, se mencionarán algunos accesorios que ayudan precisamente al funcionamiento de las manejadoras de aire y en la figura 4-1.

Unidad manejadora doble pared

Este tipo de manejadoras de aire cuenta con una doble pared de lámina galvanizada y aislada entre sí por una capa de poliuretano inyectado de cinco centímetros de espesor, son óptimas para aplicaciones hospitalarias, centros educativos y centros comerciales. Tienen la particularidad que pueden ser ubicadas en la una azotea ya que cuentan con una cubierta a dos aguas la cual hace que no haya estanqueidad en la parte superior de la manejadora de aire.

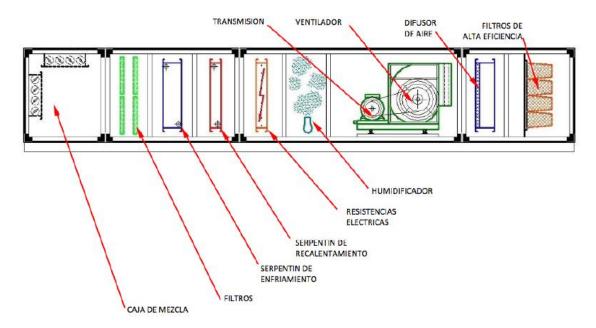
Sección de filtros

Para este proyecto se utilizarán filtros lavables con doble filtración al 35% y 85% por tratarse de una institución educativa, no se hace necesario utilizar una filtración especial como la utilizada en el sector hospitalario y farmacéutico.

Caja de mezclas

Esta sección de la manejadora se utiliza para mezclar aire exterior con aire de retorno proveniente del recinto climatizado, para tener un aire homogenizado y con las condiciones adecuadas. Después de realizar la mezcla se requiere de sensores, controladores de humedad y CO₂, la caja de mezcla cuenta con varios dámpers o rejillas que se encargan de dar apertura o cierre al paso del aire según las condiciones requeridas.

Ventilador


Para este proyecto en la sección ventiladora se utilizará ventiladores tipo plenumfan, esta clase de ventiladores son ideales ya que no es necesario el acople por correas, lo que no

genera partículas por el desgaste de las correas y no es necesario un mantenimiento continuo por engrase de las partes rotatorias. Este tipo de ventilador cuenta con un controlador en el motor que se puede programar según las condiciones de rotación requeridas por el proyecto y según las caídas de presión permitidas por el proyecto.

• Placa difusora

No se requiere en la selección de la máquina ya que no se va a utilizar un ventilador tipo blower y su salida es directa hacia los filtros, los ventiladores utilizados tienen la particularidad de que distribuyen homogéneamente el aire extraído del serpentín para llevarlo finalmente hacia los ductos de suministro.

Figura 4-1: Composición esquemática de unidad manejadora de aire

Nombre de la fuente: Tecam. (27 de 11 de 2020). Obtenido de http://tecam-sa.com/

El número de secciones de la unidad manejadora de aire y la selección depende básicamente de los cálculos realizados en capítulo 3, con la finalidad de cumplir con los parámetros de diseño de climatización para aplicación en una institución educativa. Consultando un proveedor de equipos aplicados para aire acondicionado. Se muestran las características necesarias para llevar a cabo la construcción de las dos unidades manejadoras de aire:

Capítulo 4 61

Unidad manejadora de aire 1 (UMA - 1)

Caudal de aire: 15291 m³/h (9000 ft³/min)

Caída de presión: 0,83 inc.c.a

Capacidad total: 27.727 Kw (94.600 Btu/h) Capacidad sensible: 19.930 kW (68.000 Btu/h)

Filtración de aire: 35% y 85%

Configuración de la UMA: horizontal

Temperatura de bulbo seco: 29 °C (302.15 °K)

Temperatura de bulbo húmedo: 22.74 °C (295.89 °K) Caja de mezcla: configuración superior y posterior

Refrigerante: agua helada

Voltaje: 209 - 230 V

Unidad manejadora de aire 2 (UMA - 2)

Caudal de aire: 15630 m³/h (9200 ft³/min)

Caída de presión: 0,83 inc.c.a

Capacidad total: 27.727 Kw (94.600 Btu/h) Capacidad sensible: 19.930 Kw (68.000 Btu/h)

Filtración de aire: 35% y 85%

Configuración de la UMA: horizontal Temperatura de bulbo seco: 29 °C

Temperatura de bulbo húmedo: 22.74 °C

Caja de mezcla: configuración superior y posterior

Refrigerante: agua helada

Voltaje: 209 - 230 V

La empresa TECAM diseña maquinas según los requerimientos de diferentes modelos y ensambladas según la necesidad. En la tabla 4-4 se aprecia características técnicas de las secciones ventiladoras de manejadoras de aire que proporciona la empresa y en la tabla 4-5 se puede observar otras secciones de diseño.

Tabla 4-4: Referencias de módulos para ensamble de unidades ventiladoras para manejadoras de aire marca TECAM.

SECC	ONES VENTILADORAS
FCS0	Sección de Ventilador vacía (sin ventilador, sin motor, sin transmisión, sin resortes, etc.)
FCS1	Sección de Ventilador Forward-Curved Clase I, sin Resortes para Manejadora Horizontal
FCS2	Sección de Ventilador Forward-Curved Clase I, sin Resortes para Manejadora Vertical
FCS3	Sección de Ventilador Forward-Curved Clase I, con Resortes para Manejadora Horizontal
FCS4	Sección de Ventilador Forward-Curved Clase I, con Resortes para Manejadora Vertical
FCS5	Sección de Ventilador Forward-Curved Clase II, con Resortes para Manejadora Horizontal
FCS6	Sección de Ventilador Forward-Curved Clase II, con Resortes para Manejadora Vertical
FCS7	Sección de Ventilador Forward-Curved Clase I, con Resortes para Manejadora Horizontal, Blow-thru
FCS8	Sección de Ventilador Forward-Curved Clase I, con Resortes para Manejadora Vertical, Blow-thru
FCS11	Sección de Ventilador Forward-Curved Clase II, con Resortes para Manejadora Horizontal, Blow-thru
FCS12	Sección de Ventilador Forward-Curved Clase II, con Resortes para Manejadora Vertical, Blow-thru
AFS1	Sección de Ventilador Airfoil Con Resortes para Manejadora Horizontal, Blow-thru
AFS2	Sección de Ventilador Aorfoil Con Resortes para Manejadora Vertical, Blow-thru
AFS3	Sección de Ventilador Airfoil Con Resortes para Manejadora Horizontal
AFS4	Sección de Ventilador Aorfoil Con Resortes para Manejadora Vertical
PFS1	Sección de Ventilador Plenum Fan para Manejadora Horizontal
PFS2	Sección de Ventilador Plenum Fan para Manejadora Verical
PFL1	Sección de Ventilador Plenum Fan para Manejadora Horizontal Compacta
PFM1	Sección de Ventilador Plenum Fan para Manejadora Horizontal Mediana

Nombre de la fuente: Tecam. (27 de 11 de 2020). Obtenido de http://tecam-sa.com/

Capítulo 4 63

Tabla 4-5: Modelos y referencias de módulos para ensamble para unidades manejadoras marca TECAM.

SECC	ONES DE SERPENTINES
LCS1	Sección para Serpentines en Manejadoras Horizontales
VCS1	Sección para Serpentines en Manejadoras Verticales
	IONES DE FILTROS
FLT1	Sección para Filtros Planos con etapas de 2" y 4" (ver detalles en tabla de la pág. 11)
FLT2	Sección para Pre-filtros de 2" (Sin estructura ni páneles) (ver detalles en la columna de FLT1 pág. 11)
FLT3	Sección para Pre-filtros de 2" (Sin estructura ni páneles) (ver detalles en la columna de Bolsa/Hepa pág. 11)
FLT4	Sección para Filtros con etapas de 2" y 4" (ver detalles en la columna de Bolsa/Hepa pág. 11)
BFS1	Sección para Filtros de Bolsa
HFS1	Sección para Filtros Hepa
ANG1	Sección para Filtros en ángulo (baja velocidad)
CFS1	Sección para Filtros de cartucho con etapas de 2" + 4" + 4" (ver detalles en la columna de FLT1 pág. 11)
CFS4	Sección para Filtros de cartucho con etapas de 2" + 4" + 4" (ver detalles en la columna de Bolsa/Hepa pág. 11)
SECC	ONES DE ACCESO
ACC1	Sección Corta para Acceso
ACC2	Sección Larga para Acceso
ACC3	Sección Medium para Acceso
SECC	ONES PLENUM
PLN1	Sección Corta para Plenum
PLN2	Sección Larga para Plenum
PLN3	Sección Medium para Plenum
SECC	IONES DE RECALENTAMIENTO
RHW1	Sección de Recalentamiento con Serpentín de Agua
RHE1	Sección de Recalentamiento con Resistencias Eléctricas
SECCI	IONES DE PRECALENTAMIENTO
PHW1	Sección de Precalentamiento con Serpentín de Agua para Manejadora Horizontal
PHW2	Sección de Precalentamiento con Serpentín de Agua para Manejadora Vertical
PHE1	Sección de Precalentamiento con 1 fila de Resistencias Eléctricas (Con Acceso Corto)
PHE2	Sección de Precalentamiento con 2 filas de Resistencias Eléctricas (Con Acceso Largo)
PHE3	Sección de Precalentamiento con 2 filas de Resistencias Eléctricas (Con Acceso Medium)
OTRA	AS SECCIONES
MXB1	Sección Caja de Mezclas
MXB3	Sección Caja de Mezclas Compacta para modelos 03 al 15
MZB1	Sección Caja de Zoning Dampers
MZB3	Sección Caja de Zoning Dampers Compacta
DIF1	Sección Diffuser
BFE1	Sección para Extensión del BFS1
SHS1	Sección de Humidificador con Vapor
EHS1	Sección para Humidificador de Electrodos
RUS1	Sección de Resistencias y Humídificador en configuración Horizontal
RUS2	Sección de Resistencias y Humídificador en configuración Vertical
RES1	Sección Rueda Entálpica

Nombre de la fuente: Tecam. (27 de 11 de 2020). Obtenido de http://tecam-sa.com/

En los anexos D se proporcionan algunas más características de los equipos seleccionados para este este proyecto.

4.3 Materiales para ductos y accesorios seleccionados

Con los ductos dimensionados en el capítulo 3, se considera lámina galvanizada como el material de fabricación de los ductos. En la tabla 4-6 se muestran calibres recomendados por SMAGNA la norma que rige para ductos que son expuestos a presiones que no sobrepasan 1 (in c.a).

Tabla 4-6: Espesores de lámina galvanizada recomendados para la fabricación de ductos tipo rectangular.

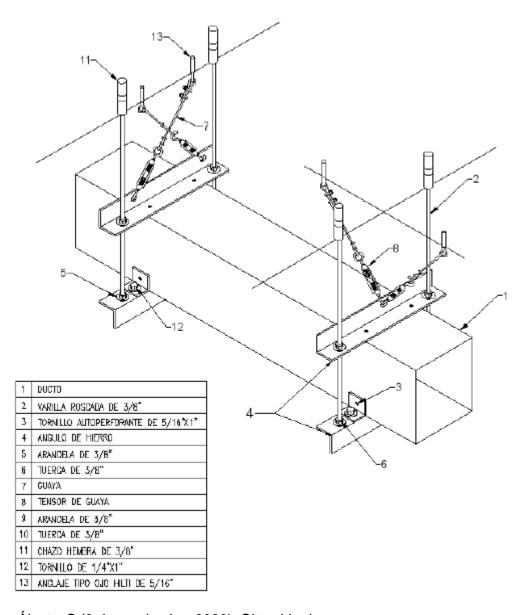
Dimensión mayor	Calibre	Peso $[Kg/m^2]$
1" a 18"	24	4,71
19" a 30"	22	5,51
31" a 54"	20	7,09
55" a 84"	18	9,49
85" a 96"	16	11,87

Nombre de la fuente: SMACNA. (10 de octubre 2020). Obtenido de https://www.smacna.org/

En este diseño en especial se seleccionaron ductos TDF los cuales se conocen normalmente como ductos con conexión a cuatro pernos. Su estructura los hace resistentes, de fácil montaje y hermeticos. La figura 4-2 muestra la sujeción en cada esquina con un tornillo y en el centro con un elemente llamado clips. Tener presente que se deben sellar las uniones de los ductos para evitar las filtraciones de aire.

Figura 4-2: Detalle de instalación para ductos tipos TDF

ENSAMBLE DE DUCTOS TDF

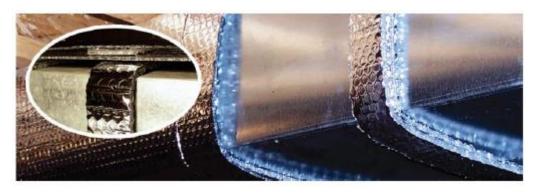

| Ducto sumistro | 2 Esquinero | 3 SELLO DE NEOPRRIO DE 1 1/4" | 4 TORNILLO DE CARRAJE DE 3/8" | 5 ARANDELA DE 3/8" | 7 CLIP

Fuente: Álzate. S (9 de septiembre 2020). Obtenido de http://repositorio.utp.edu.co/dspace/handle/11059/6714

Capítulo 4 65

El tipo de soporte a utilizar son los que se muestran en la figura 4-3, este tipo de soporte estarán ubicados a cada 1,5 m de espacio entre ellos.

Figura 4-3: Detalle de soportes para la instalación de ductos.



Fuente: Álzate. S (9 de septiembre 2020). Obtenido de http://repositorio.utp.edu.co/dspace/handle/11059/6714

Los ductos requieren de aislamiento para evitar la transferencia de calor del ambiente que los circunda, la fibra de vidrio es el tipo de revestimiento que se utilizara para este caso. El material duc wrap cumple con las caracteristicas necesarias.

En la figura 4-4 se aprecia la forma y la contextura del aislamiento el cual lo hace de forma perimetral a la lámina galvanizada del ducto.

Figura 4-4: Forma de intalacion y apariencia de recubrimiento para ductos.

Fuente: Álzate. S (9 de septiembre 2020). Obtenido de http://repositorio.utp.edu.co/dspace/handle/11059/6714

4.4 Materiales para tubería de agua helada

La tubería PVC cedula 40 es un material comúnmente conocido que resiste presiones de 250 PSI, debe aislarse al igual que los ductos de lámina galvaniza con el fin de prevenir la trasferencia de calor por medio del ambiente y la aparición de condensación que se genera por la humedad del aire.

El perímetro de la tubería PVC estará recubierto de material aislante llamado poliuretano de 1 pulgada de espesor con cinta foil de aluminio. En la figura 4-5 se aprecia la forma del aislamiento y su ubicación.

Figura 4-5: Aislamiento para tubería de PVC

Capítulo 4 67

Fuente: Álzate. S (9 de septiembre 2020). Obtenido de http://repositorio.utp.edu.co/dspace/handle/11059/6714

4.5 Presupuesto

Se tiene claridad de los equipos y el tipo de accesorios que se utilizaran, se realizara un presupuesto, donde se especifica el costo monetario de cada elemento, materiales y algunos datos conocidos de mano de obra.

El tener una cuantía del dinero para llevar a cabo un proyecto de sistema de climatización es una de las características más relevantes, ya que permite dar a conocer el monto de las inversiones y poder realizar la ejecución de los proyectos. Como se mencionó en el capítulo cuatro se ha tomado como referencia los equipos de la marca TECAM es una empresa nacional y nuestro punto de partida para llevar a cabo el presupuesto.

En el capítulo tres se especificó la clase de ductos que se utilizaran en proyecto y el capítulo cuatro hace una mención del material de los ductos. En complemento en este capítulo se mencionarán algunas expresiones que nos permitiran cuantificar las láminas necesarias requeridas en la construcción de los conductos.

El cálculo de lámina galvanizada se obtiene utilizando la ecuación:

Área de lámina =
$$(2 * Lado + 2 * Alto) * longitud$$
 (3.48)

$$Número de lámina = \frac{Area total de ductos}{Area de cada lámina}$$
(3.49)

Cuando se tenga el conocimiento de láminas totales utilizadas en la fabricación, se debe considerar un 10% de desperdicios y sobrantes.

Se hace una consulta con la empresa TRS partes especializada en productos para el montaje de sistemas de climatización y se presenta a continuación una descripción detallada de los componentes requeridos para el montaje.

Tabla 5-7: Presupuesto equipos marca TECAM

UND	DESCRIPCION	CANTIDAD	COSTO UNITARIO	COSTO TOTAL		
	EQUIPOS					
UND	UNIDAD MANEJADORA, MARCA TECAM 9000 CFM,220V/3PH/60Hz	1	48,309,420	48,309,420		
UND	UNIDAD MANEJADORA, MARCA TECAM 9200 CFM,220V/3PH/60Hz	1	53,320,150	53,320,150		
UND	CHILLER MARCA TECAM 7EZT-15- 236-PTCB, 30 TR, 220V/3PH/60Hz	1	56,125,245	56,125,245		
UND	EXTRECTOR MARCA LAU CSW-9- BI, 900 CFM, 220 V/3PH/60Hz	2	8,450,254	16,900,508		
		TOTAL	174,655,323			

Fuente: Autor

En la los anexos E se muestra las tablas con los valores detallados de los accesorios a utilizar. Los precios que se estipulan en la tabla 5-7 y los anexos E estan sujetos a cambios debido a que la mayoria de los accesorios requeridos son de fabricación extranjera.

El presupuesto que se muestra en las tablas es con fines académicos, por tal motivo al presupuesto se le debe sumar el 19% de IVA, costos administrativos, diseño del proyecto, imprevistos y costos por garantías.

En este capítulo se hizo un análisis de los caudales necesarios para suplir cada área, lo que proporcionó los diámetros requeridos de los ductos para cada recinto según se puede ver en las tablas 4-1-1 y 4-1-2. Las medidas obtenidas de los conductos tienen su equivalencia si se desea utilizar del tipo redondo o rectangular, esto depende del espacio entre el techo y el cielo falso, para nuestro caso se hace uso de la sección rectangular.

Al contar con los datos anteriormente calculados, el capítulo finaliza con la caracterización de las dos unidades manejadoras de aire requeridas para el sistema de climatización en el estudio de diseño y se hace una especificación de los materiales aislantes para los ductos de suministro de aire y para la tubería de agua helada que hace la conexión de los Chiller y las unidades condensadoras.

Capítulo 4 69

Finalmente, el capítulo cinco concluye con un presupuesto del costo de las unidades manejadores y el chiller a utilizar, aunque no es tema de estudio en este proyecto el presupuesto, se hace una versión estudiantil del proyecto sin tener en cuenta las consideraciones de la empresa encargada del montaje y pólizas de instalación para dicho proyecto. Pero se da un panorama general del costo de los equipos y el de los accesorios

5. Conclusiones y recomendaciones

5.1 Conclusiones

- Se realizó la evaluación del estado actual del bloque A, donde se pudo ver que el 50% de la fachada son ventanas con vidrios de 8mm de espesor y la incidencia del sol directo en todas las horas del día.
- Los resultados logrados después de hacer los cálculos de cargas térmicas muestran que el valor del calor latente es un porcentaje alto del valor total (72%), debido a que casi la totalidad d la carga térmica es la generada por personas en los diferentes recintos, y el porcentaje de calor sensible es (28%), siendo el de mayor porcentaje la sala de sistema, laboratorio de electromecánica y auditorio del piso cinco debido a los equipos de cómputo y elementos electrónicos existentes en estas áreas.
- El sistema de renovación de aire y extracción calculado en el sistema de este proyecto permite mantener la capacidad de compresión, evitando la escasez de oxígeno y excesiva concentración de CO₂ durante una típica jornada de operación (8 horas por 250 días al año).
- El cálculo de los ductos para cada una de las dos unidades manejadoras de aire, se llevó a cabo según los datos obtenidos de los recintos climatizados lo que da como resultado para la manejadora de aire numero 1 un caudal de 8000 ft³/min (22.5 toneladas de refrigeración), para la manejadora de aire numero 2 9000 ft³/min (23 toneladas de refrigeración). Se concluye que si se desea hacer repotenciación de las maquinas en un futuro se debe considerar el área de la tubería y la velocidad del aire en los ductos analizadas en el capítulo cuatro ya

Capítulo 5

que al aumentar la capacidad de las maquinas puede haber generación de ruido excesivo.

Se elaboraron los planos de la red de ductos de ventilación y la ubicación de cada una de las rejillas de suministro y retorno del sistema de climatización de, manera que cubra las áreas a climatizar y buscando una trayectoria optima que permita ahorro de tubería por ejemplo la ubicación de las unidades manejadoras en los extremos oriental y occidental de la edificación para llegar de una forma directa sin la utilización excesivas de codos y uniones.

5.2 Recomendaciones

- Considerar pre enfriar el aire antes de introducirlo en el sistema en las renovaciones de aire, se puede hacer mediante el uso de ruedas entalpicas esto permite a su vez disminuir en costos de funcionamiento del sistema.
- Considerar el cambio de ventas por cuestiones de sellado y Bypass de aire debido a que se evidencia varias filtraciones en los marcos de las ventanas, esto hace que el sistema sea poco eficiente a la hora de la climatización.
- En la instalación de ductos se propone considerar en las zonas donde sea posible la utilización de ductos flexibles.
- En este proyecto no se habla de instalación de los equipos de refrigeración por lo que se recomienda revisar los manuales del fabricante para hacerlos operar de la manera más óptima.
- Se debe tener en cuenta que las unidades manejadoras a instalar deben contar las recomendaciones del fabricante y todas las consideraciones de operación necesarias para el buen funcionamiento de los equipos.
- Las unidades manejadoras deben instalarse con soportes de caucho para evitar el contacto directo sobre el piso de concreto.

Los ductos de suministro de aire deben ser aislados externamente e internamente con fibra de vidrio recubierta con foil de aluminio para evitar la condensación de los ductos.

A. Anexo: Resumen de cálculo de Cargas por cada recinto

Tabla 3-24: Cargas térmicas aula de apoyo piso 1

AREA	AULA DE APOYO PISO 1					
AREA	A m²	U	SC	SHGF	CLF	CARGA
PARED NORTE	16,19	3,4		631,31		165,14
PARED SUR	12,47	3,4		631,31		127,19
PARED ESTE	17,21	3,4		631,31		175,54
PARED OESTE	17,21	3,4		631,31		175,54
PISO	37,92	1,77				201,36
VIDRIOS	4,54		1	631,31	0,52	1490,40
CARGA LUCES	10(39 x 1,2 x 1 x 1)		468			
CARGA POR PERSONAS	25 x 150 x 0,55 x 0,84				1732,5	
CANGATON FENSONAS	25 x 150 x (1 - 0,55)					1687,5
CARGA POR INFILTRACIONES	(1,08 x 102,80 x 1,8 x 6) / 3,412				351,42	
CARGAT OR INTIETRACIONES	(0,68 x 102,80 x 91,87) / 3,412					1885,20
CARGAS POR ELECTRODOMESTICOS		1	00 x 1 x	:1		100
CARGAS POR MOTORES ELECTRICOS	MOTORES ELECTRICOS 0					
SUBTOTAL						8559,79
FACTOR DE SEGURIDAD (%)	20		1711,95			
CARGA TOTAL POR AULA						10271,74

Tabla 3-25: Cargas térmicas oficina coordinación psicología y bienestar académico

OFICINA COORDINACION PSICOLOGIA Y BIENESTAR ACADEMICO						
TIPO DE LA CARGA		CARGA				
TERMICA	[W]	[TR]	%			
Q_1	4505,486	1,281	0,422			
Q_2	419,78	0,119	0,039			
Q_3	46,8	0,013	0,004			
Q_4	273,6	0,078	0,026			
Q_5	5172,351	1,471	0,484			
Q_6	267,8	0,076	0,025			
Q_7						
Qtotal	10685,817	3,038	100			

Tabla 3-26: Cargas térmicas aula 201A

AULA 201A					
TIPO DE LA CARGA	CARGA				
TERMICA	[W]	[TR]	%		
Q_1	626,48	0,178	0,063		
Q_2	1689,27	0,480	0,170		
Q_3	468	0,133	0,047		
Q_4	3420	0,972	0,345		
Q_5	2205,15	0,627	0,223		
Q_6	1500	0,427	0,151		
Q_7					
Qtotal	9908,9	2,818	100		

Tabla 3-27: Cargas térmicas aula 202A

AULA 202A				
TIPO DE LA CARGA	CARGA			
TERMICA	[W]	[TR]	%	
Q_1	639,23	0,182	0,064	
Q_2	1690,36	0,481	0,170	
Q_3	468	0,133	0,047	
Q_4	3420	0,972	0,344	
Q_5	2217,54	0,631	0,223	
Q_6	1500	0,427	0,151	
Q_7				
Qtotal	9935,13	2,825	100	

Tabla 3-28: Cargas térmicas aula 203A

AULA 203A					
TIPO DE LA CARGA	CARGA				
TERMICA	[W]	[TR]	%		
Q_1	639,23	0,182	0,065		
Q_2	1690,36	0,481	0,172		
Q_3	374,4	0,106	0,038		
Q_4	3420	0,972	0,348		
Q_5	2217,54	0,631	0,225		
Q_6	1500	0,427	0,152		
Q_7					
Qtotal	9841,53	2,798	100		

Tabla 3-29: Cargas térmicas aula 204A

AULA 204A				
TIPO DE LA CARGA	CARGA			
TERMICA	[W]	[TR]	%	
Q_1	626,48	0,178	0,063	
Q_2	1689,27	0,480	0,170	
Q_3	468	0,133	0,047	
Q_4	3420	0,972	0,345	
Q_5	2205,15	0,627	0,223	
Q_6	1500	0,427	0,151	
Q_7				
Qtotal	9908,9	2,818	100	

Tabla 3-30: Cargas térmicas aula 205A

AULA 205A				
TIPO DE LA CARGA	CARGA			
TERMICA	[W]	[TR]	%	
Q_1	639,23	0,182	0,064	
Q_2	1864,8	0,530	0,186	
Q_3	374,4	0,106	0,037	
Q_4	3420	0,972	0,341	
Q_5	2217,54	0,631	0,221	
Q_6	1500	0,427	0,150	
Q_7				
Qtotal	10015,97	2,848	100	

Tabla 3-31: Cargas térmicas aula 206A

AULA 206A				
TIPO DE LA CARGA	CARGA			
TERMICA	[W]	[TR]	%	
Q_1	796,83	0,227	0,049	
Q_2	1795,5	0,511	0,110	
Q_3	561,6	0,160	0,035	
Q_4	4104	1,167	0,252	
Q_5	3383,47	0,962	0,208	
Q_6	5615	1,597	0,345	
Q_7				
Qtotal	16256,4	4,622	100	

Tabla 3-32: Cargas térmicas aula 207A

AULA 207A				
TIPO DE LA CARGA		CARGA		
TERMICA	[W]	[TR]	%	
Q_1	636,38	0,181	0,074	
Q_2	1692,07	0,481	0,198	
Q_3	468	0,133	0,055	
Q_4	3420	0,972	0,400	
Q_5	2236,23	0,636	0,261	
Q_6	100	0,028	0,012	
Q_7				
Qtotal	8552,68	2,432	100	

Tabla 3-33: Cargas térmicas aula 208A

AULA 208A			
TIPO DE LA CARGA			
TERMICA	[W]	[TR]	%
Q_1	641,78	0,182	0,065
Q_2	1690,36	0,481	0,171
Q_3	374,6	0,107	0,038
Q_4	3420	0,972	0,347
Q_5	2238,63	0,637	0,227
Q_6	1500	0,427	0,152
Q_7			
Qtotal	9865,37	2,805	100

Tabla 3-34: Cargas térmicas aula 209A

AULA 209A			
TIPO DE LA CARGA			
TERMICA	[W]	[TR]	%
Q_1	628,73	0,179	0,063
Q_2	1864,8	0,530	0,188
Q_3	374,4	0,106	0,038
Q_4	3420	0,972	0,344
Q_5	2150,63	0,612	0,216
Q_6	1500	0,427	0,151
Q_7			
Qtotal	9938,56	2,826	100

Tabla 3-35: Cargas térmicas aula 301A

AULA 301A			
TIPO DE LA CARGA	CARGA		
TERMICA	[W]	[TR]	%
Q_1	626,48	0,178	0,063
Q_2	1689,27	0,480	0,170
Q_3	468	0,133	0,047
Q_4	3420	0,972	0,345
Q_5	2205,15	0,627	0,223
Q_6	1500	0,427	0,151
Q_7			
Qtotal	9908,9	2,818	100

Tabla 3-36: Cargas térmicas aula 302A

AULA 302A			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	639,23	0,182	0,065
Q_2	1690,36	0,481	0,172
Q_3	374,4	0,106	0,038
Q_4	3420	0,972	0,348
Q_5	2217,54	0,631	0,225
Q_6	1500	0,427	0,152
Q_7			
Qtotal	9841,53	2,798	100

Tabla 3-37: Cargas térmicas aula 303A

AULA 303A			
TIPO DE LA CARGA	CARGA		
TERMICA	[W]	[TR]	%
Q_1	639,23	0,182	0,065
Q_2	1690,36	0,481	0,172
Q_3	374,4	0,106	0,038
Q_4	3420	0,972	0,348
Q_5	2217,54	0,631	0,225
Q_6	1500	0,427	0,152
Q_7			
Qtotal	9841,53	2,798	100

Tabla 3-38: Cargas térmicas aula 304A

AULA 304A			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	626,48	0,178	0,063
Q_2	1689,27	0,480	0,170
Q_3	468	0,133	0,047
Q_4	3420	0,972	0,345
Q_5	2205,15	0,627	0,223
Q_6	1500	0,427	0,151
Q_7			
Qtotal	9908,9	2,818	100

Tabla 3-39: Cargas térmicas aula 305A

AULA 305A LABORATORIO DE ELECTRICIDAD Y MAGNETISMO				
TIPO DE LA CARGA		CARGA		
TERMICA	[W]	[TR]	%	
Q_1	953,39	0,271	0,060	
Q_2	3180,77	0,904	0,201	
Q_3	655,2	0,186	0,041	
Q_4	3420	0,972	0,216	
Q_5	4306,46	1,225	0,272	
Q_6	3320	0,944	0,210	
Q_7				
Qtotal	15835,82	4,503	100	

Tabla 3-40: Cargas térmicas laboratorio de química

LABORATORIO DE QUIMICA			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	628,73	0,179	0,065
Q_2	1684,15	0,479	0,175
Q_3	374,4	0,106	0,039
Q_4	4221	1,200	0,440
Q_5	2148,45	0,611	0,224
Q_6	545	0,155	0,057
Q_7			
Qtotal	9601,73	2,730	100

Tabla 3-41: Cargas térmicas laboratorio de electromecánica

LABORATORIO DE ELECTROMECANICA			
TIPO DE LA CARGA	CARGA		
TERMICA	[W]	[TR]	%
Q_1	1502,86	0,427	0,097
Q_2	3946,36	1,122	0,255
Q_3	1591,2	0,452	0,103
Q_4	3420	0,972	0,221
Q_5	3542,82	1,007	0,229
Q_6	1500	0,427	0,097
Q_7	59966,4		
Qtotal	75469,64	4,408	100

Tabla 3-42: Cargas térmicas oficina coordinador y docentes

OFICINA COORDINADOR Y DOCENTES			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	635,87	0,181	0,082
Q_2	3180,77	0,904	0,410
Q_3	280,8	0,080	0,036
Q_4	820,8	0,233	0,106
Q_5	2234,06	0,635	0,288
Q_6	600	0,171	0,077
Q_7			
Qtotal	7752,3	2,204	100

Tabla 3-43: Cargas térmicas aula 401A

AULA 401A			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	626,47	0,178	0,063
Q_2	1689,27	0,480	0,170
Q_3	468	0,133	0,047
Q_4	3420	0,972	0,345
Q_5	2205,15	0,627	0,223
Q_6	1500	0,427	0,151
Q_7			
Qtotal	9908,89	2,818	100

Tabla 3-44: Cargas térmicas aula 402A

AULA 402A				
TIPO DE LA CARGA		CARGA		
TERMICA	[W]	[TR]	%	
Q_1	639,23	0,182	0,065	
Q_2	1690,36	0,481	0,172	
Q_3	374,4	0,106	0,038	
Q_4	3420	0,972	0,348	
Q_5	2217,54	0,631	0,225	
Q_6	1500	0,427	0,152	
Q_7				
Qtotal	9841,53	2,798	100	

Tabla 3-45: Cargas térmicas aula 403A

AULA 403A			
TIPO DE LA CARGA	CARGA		
TERMICA	[W]	[TR]	%
Q_1	639,23	0,182	0,065
Q_2	1690,36	0,481	0,172
Q_3	374,4	0,106	0,038
Q_4	3420	0,972	0,348
Q_5	2217,54	0,631	0,225
Q_6	1500	0,427	0,152
Q_7			
Qtotal	9841,53	2,798	100

Tabla 3-46: Cargas térmicas aula 404A

AULA 404A			
TIPO DE LA CARGA			
TERMICA	[W]	[TR]	%
Q_1	626,48	0,178	0,079
Q_2	844,63	0,240	0,106
Q_3	468	0,133	0,059
Q_4	3420	0,972	0,430
Q_5	1102,57	0,314	0,138
Q_6	1500	0,427	0,188
Q_7			
Qtotal	7961,68	2,264	100

Tabla 3-47: Cargas térmicas aula 405A laboratorio de física

AULA 405A LABORATORIO DE FISICA			
TIPO DE LA CARGA	CARGA		
TERMICA	[W]	[TR]	%
Q_1	639,23	0,182	0,065
Q_2	1690,36	0,481	0,172
Q_3	374,4	0,106	0,038
Q_4	3420	0,972	0,348
Q_5	2217,54	0,631	0,225
Q_6	1500	0,427	0,152
Q_7			
Qtotal	9841,53	2,798	100

Tabla 3-48: Cargas térmicas aula 406A

AULA 406A			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	793,86	0,226	0,049
Q_2	1795,5	0,511	0,110
Q_3	561,6	0,160	0,035
Q_4	4104	1,167	0,253
Q_5	3383,47	0,962	0,208
Q_6	5615	1,597	0,345
Q_7			
Qtotal	16253,43	4,622	100

Tabla 3-49: Cargas térmicas aula 407A

AULA 407A			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	636,38	0,181	0,074
Q_2	1692,07	0,481	0,198
Q_3	468	0,133	0,055
Q_4	3420	0,972	0,400
Q_5	2236,23	0,636	0,261
Q_6	100	0,028	0,012
Q_7			
Qtotal	8552,68	2,432	100

Tabla 3-50: Cargas térmicas aula 408A

AULA 408A				
TIPO DE LA CARGA		CARGA		
TERMICA	[W]	[TR]	%	
Q_1	641,78	0,182	0,065	
Q_2	1690,36	0,481	0,171	
Q_3	374,4	0,106	0,038	
Q_4	3420	0,972	0,347	
Q_5	2238,63	0,637	0,227	
Q_6	1500	0,427	0,152	
Q_7				
Qtotal	9865,17	2,805	100	

Tabla 3-51: Cargas térmicas aula 409A

AULA 409A			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	628,73	0,179	0,064
Q_2	1795,5	0,511	0,182
Q_3	374,4	0,106	0,038
Q_4	3420	0,972	0,347
Q_5	2150,63	0,612	0,218
Q_6	1500	0,427	0,152
Q_7			
Qtotal	9869,26	2,806	100

Tabla 3-52: Cargas térmicas aula 501A

AULA 501A				
TIPO DE LA CARGA		CARGA		
TERMICA	[W]	[TR]	%	
Q_1	626,48	0,178	0,065	
Q_2	1689,28	0,480	0,175	
Q_3	230,4	0,066	0,024	
Q_4	3420	0,972	0,354	
Q_5	2205,15	0,627	0,228	
Q_6	1500	0,427	0,155	
Q_7				
Qtotal	9671,31	2,750	100	

Tabla 3-53: Cargas térmicas aula 502A

AULA 502A			
TIPO DE LA CARGA		CARGA	
TERMICA	[W]	[TR]	%
Q_1	639,23	0,182	0,066
Q_2	1690,36	0,481	0,174
Q_3	230,4	0,066	0,024
Q_4	3420	0,972	0,353
Q_5	2217,54	0,631	0,229
Q_6	1500	0,427	0,155
Q_7			
Qtotal	9697,53	2,757	100

Tabla 3-54: Cargas térmicas cámara gessel

CAMARA GESSEL			
TIPO DE LA CARGA	CARGA		
TERMICA	[W]	[TR]	%
Q_1	369,44	0,105	0,143
Q_2	1534,25	0,436	0,594
Q_3	57,6	0,016	0,022
Q_4	136,8	0,039	0,053
Q_5	486,49	0,138	0,188
Q_6			
Q_7			
Qtotal	2584,58	0,735	100

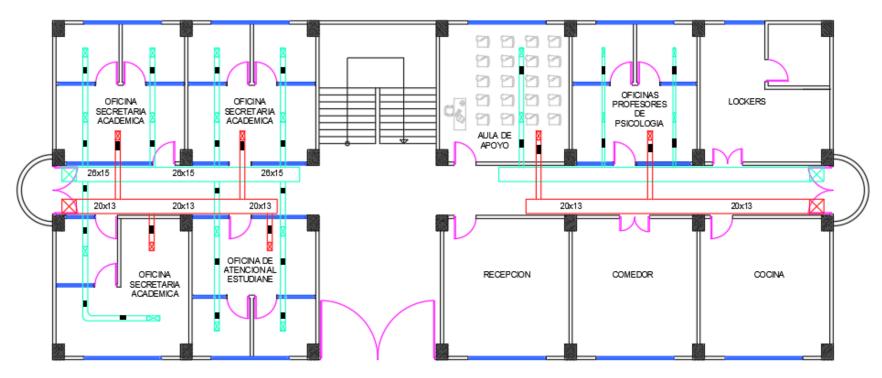
Tabla 3-55: Cargas térmicas aula 504A auditorio

AULA 504A AUDITORIO				
TIPO DE LA CARGA		CARGA		
TERMICA	[W]	[TR]	%	
Q_1	1013,68	0,288	0,064	
Q_2	3384,72	0,962	0,214	
Q_3	864	0,246	0,055	
Q_4	4104	1,167	0,259	
Q_5	4479,21	1,274	0,283	
Q_6	2000	0,569	0,126	
Q_7				
Qtotal	15845,61	4,506	100	

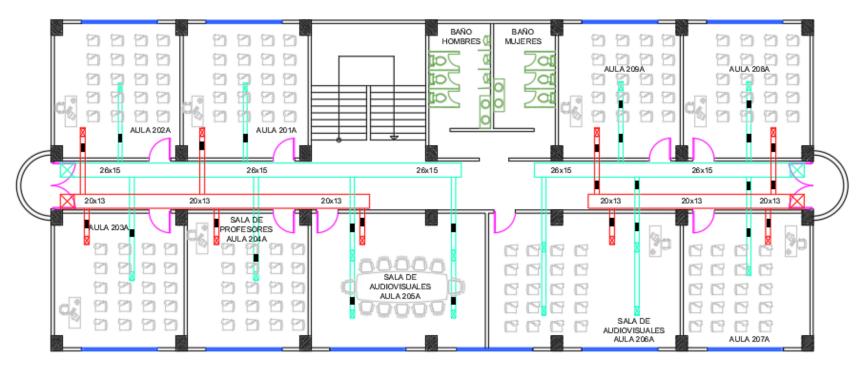
Tabla 3-56: Cargas térmicas oficina monitor

OFICINA MONITOR							
TIPO DE LA CARGA	CARGA						
TERMICA	[W]	[TR]	%				
Q_1	660,34	0,188	0,077				
Q_2	3169,35	0,901	0,371				
Q_3	230,4	0,066	0,027				
Q_4	273,6	0,078	0,032				
Q_5	2090,87	0,595	0,245				
Q_6	2126	0,605	0,249				
Q_7							
Qtotal	8550,56	2,431	100				

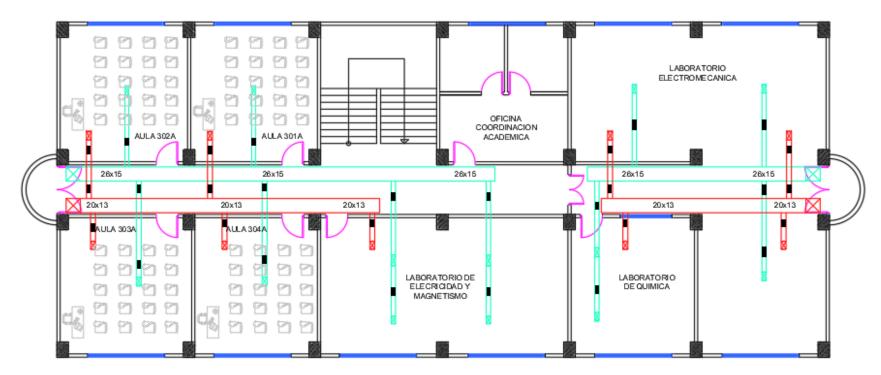
Tabla 3-57: Cargas térmicas sala de sistemas

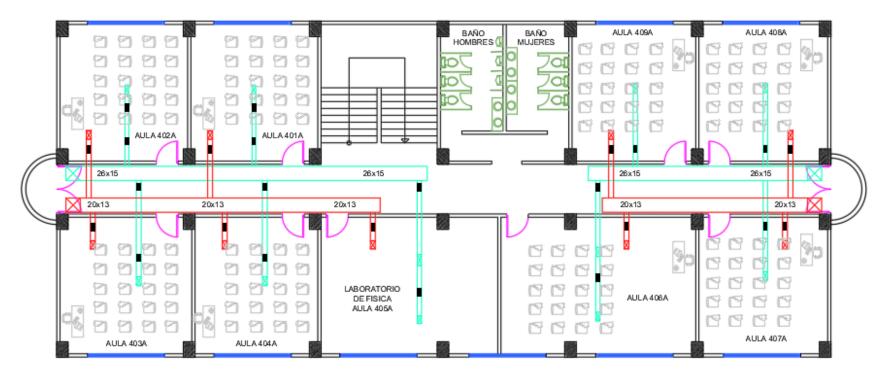

SALA DE SISTEMAS						
TIPO DE LA CARGA	CARGA					
TERMICA	[W]	[TR]	%			
Q_1	1840,9	0,523	0,052			
Q_2	8914,35	2,535	0,254			
Q_3	1728	0,491	0,049			
Q_4	4104	1,167	0,117			
Q_5	16216,19	4,611	0,462			
Q_6	2310	0,657	0,066			
Q_7						
Qtotal	35113,44	9,984	100			

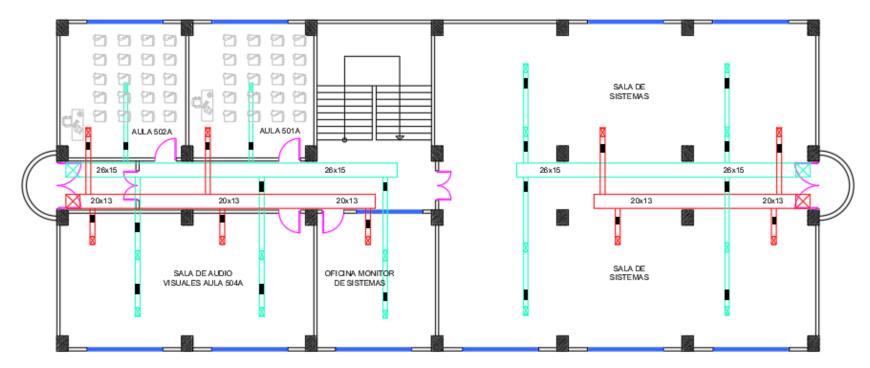
B. Anexo: Tabla 45 de Handbook Carrier, caudales de aire exterior


TABLA 45. CAUDALES DE AIRE EXTERIOR

APLICACION	NÚMERO DE FUMADORES	m'/h POR PERSONA		m³/h por m³ de
		Recomendada	Minima *	superficie de suelo Mínima *
Normal	Pequeño	34	25	-
Apartamento Lujo	Muy pequeño	51	42	6,0
Hall de banco	Pequeño	17	13	
Barberia	Grande	25	17	
Salon de belleza	Muy pequeño	. 17	13	•
Bolsa	Muy grende	85	51	
Bar was a series of	Grande	51	. 42	
Corredores (insuffación o extracción)	200 - TV 64 5 5 5	-		4,6
Grandes almacenes	Pequeño	. 13	8,5	0,9
Sala de consejo	Muy grande	85	51	•
(12+15-25) + 11+11+11+11	Grande	17	13	
Formacia	Ninguno	17	13	1,8
Precio único	Ninguno	13	8,5	
Salon de funeraria	Ninguno	17	. 13	
Garage			•	18,3
CQuirofano !	Ninguno			36,6
Hospital Habitación privada	Ninguno	51	- 42	6,0
Cale comité	Ninguno	34	25	-
Habitación de hotel	Grande	51	42	6,0
Restaurante ***	Herotopical Control of			73,0
Cocina Privada	Date (14 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14			36,6
Leboratorio ***	Pequeño	34	25	
Sala de conferencias	Muy grande	85	51	22,8
(Común	Pequeño	25	17.	
Despecho A Privado	Ninguno	42	25	4,6
Privedo	Grande	51	42	4,6
Continuety Con	Grande	20	17	•
Restaurante Comedor	Grande 4	. 25	20	•
Aula **	Ninguno			
Tienda al detali	Ninguno	17	13	
Teatro o sala de cine	Ninguno	13	8,5	
Teatro o sala de cine	Pequeño	25	17	
Cuartos de aseo ** (Extracción)	1. Fr (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			36,6


C. Anexo: Planos de distribución de ductos de retorno y suministro


PISO 1


PISO 2

PISO 3

PISO 4

PISO 5

D. Anexo: Características unidades manejadoras marca TECAM

Características de serpentines de enfriamiento.

SERPENTINES

Los serpentines de expansión directa para R-410A en tubería de 3/8" y tubería de 1/2", lo mismo que los serpentines de Agua Helada en tubería de 1/2", se ofrecen certificados bajo el Standard 410 de "The AHRI Forced-Circulation Air-Cooling and Air-Heating Coils Cerification Program", la selección y cálculo del desempeño del serpentín se hace mediante el software TECAM-COIL certificado por AHRI. También se pueden instalar serpentines de Expansión Directa con otros refrigerantes, Agua Caliente y Condensadores. Los serpentines son fabricados con aletas de aluminio y tubería de cobre, entre 8 y 16 aletas por pulgada, desde 1 fila hasta 8 filas; opcionalmente se pueden fabricar serpentines con diferentes características. Cada modelo de Manejadora tiene la opción de usar serpentines de cara grande y cara pequeña.

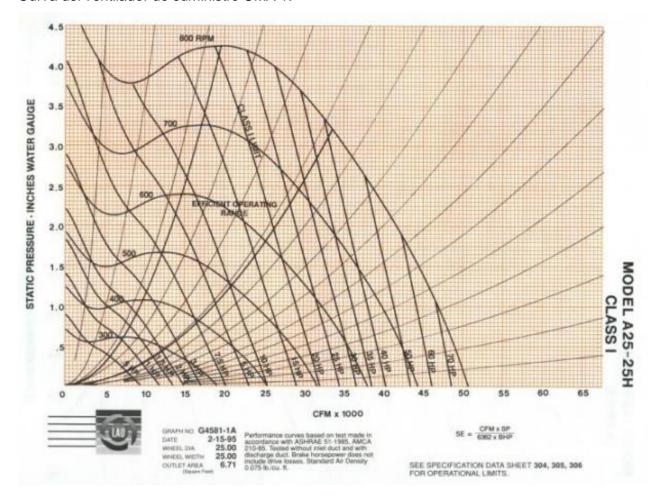
SERPENTINES DE CARA PEQUEÑA

MODELO	03	06	09	13	15	17	21	26	32	36	39	48	57
Cap. Nom. (TR) a 550 fpm	5.0	7.1	11.6	17	18.4	21.2	25.5	32.2	38.7	44.1	61.6	74.7	88.4
Area en la Cara en pie ²	2.71	4.73	7.92	11.25	12.19	14.1	16.93	21.45	28.04	32.1	39.00	48.10	56.90
Tubos en la Cara	12	16	24	24	26	30	30	38	38	44	44	44	52

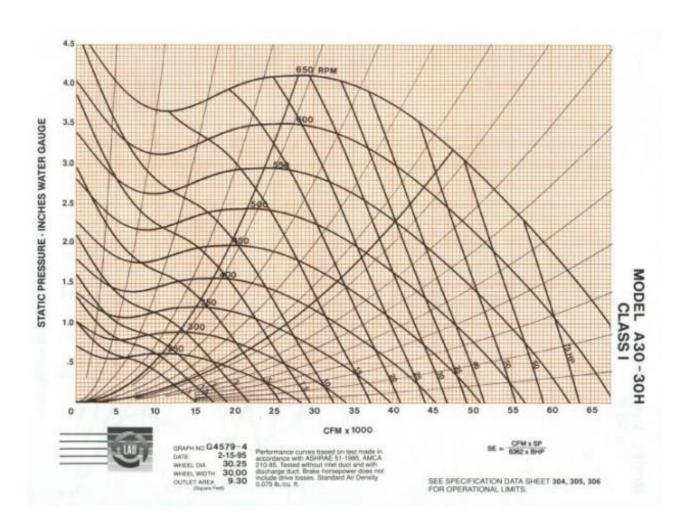
SERPENTINES DE CARA GRANDE

	MODELO	03	06	09	13	15	17	21	26	32	36	39	48	57
	p. Nom. (TR) a 550 fpm	5.7	8.5	14.4	18.4	21.2	25.5	32.2	38.7	44.2	50.3	67.6	88.4	93.9
	ea en la Cara en pie ²	3.62	5.91	9.59	12.19	14.1	16.93	21.45	28.04	30.75	36.6	42.80	56.90	61.40
Tub	os en la Cara	16	16	24	24	30	30	38	38	46	44	44	52	52

Característica serpentín de enfriamiento UMA 1.

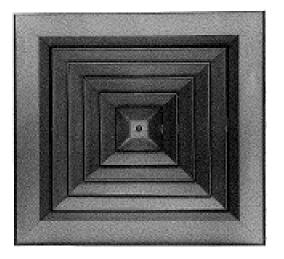

Analysis Type:	Rating	Coils/Bank:	1
Coil Height/Length: (In)	20.0 / 34.0	Fin Type/Fin Thickness: (In)	Corrugated / 0.0055
Coil Hand:	Right	Tube Mat / TubeType:	Copper / Smooth
Casing Material:	Galvanized	Wall Thickness: (in)	0.016
Altitude: (Ft)	4920	Coil Type:	1/2-1.25x1.08
Fin Side Fouling Factor:	0.0000	Tube Side Fouling Factor:	00000.0
Number of Circuits/Coil:		8	
Coil Face Area/Coil: (Sq. F	t)	4.7	
Number of Rows:		6	
Connections In/Out: (In)		1.25	
Fin Material/Fins per (In):	Alu	minum / 14	
Coil Wt/Coil: (Lb)		83	
Airside Information:			
Air Flow Rate: (CFM)		3,092.0	
Face Velocity: (Ft per min)		654.8	
Air Pressure Drop: (In-wg)		1.33	
Entering Dry Bulb /Wet Br	ulb: (°F)	73.4 / 61.5	
Leaving Dry Bulb /Wet Bu	lb: (°F)	51.2 / 51.0	
Sensible Heat: (BTUVHr)		61,642	
Total Heat: (BTUVHr)		85,914	
Sensible Heat Ratio:		0.72	
Air Enthalpy Diff, (BTU/Lb)	7.45	
Liquid Side Information	on:		
Liquid Type/Conc.:		Water / 100%	
Ent/Leaving Liq Temp: (°F)	45.0 / 55.7	
Fl Flow(GPM)/Liquid Velo	city(Ft/Sec):	16.1 / 3.5	
		10.32	

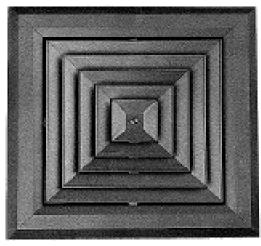
Característica serpentín de enfriamiento UMA 2.


Analysis Type:	Rating	Coils/Bank:	1
Coil Height/Length: (In)	32.5 / 56.0	Fin Type/Fin Thickness: (In)	Corrugated / 0.0055
Coil Hand:	Right	Tube Mat / TubeType:	Copper / Smooth
Casing Material:	Galvanized	Wall Thickness: (ln)	0.016
Altitude: (Ft)	4920	Coil Type:	1/2-1.25x1.08
Fin Side Fouling Factor:	00000	Tube Side Fouling Factor:	0.0000
Number of Circuits/Coil:		26	
Coil Face Area/Coil: (Sq. Ft)	1	12.6	
Number of Rows:		6	
Connections In/Out: (In)		1.5	
Fin Material/Fins per (In):	Alt	minum / 14	
Coil Wt./Coil: (Lb)		200	
Face Velocity: (Ft per min) Air Pressure Drop: (In-wg) Entering Dry Bulb /Wet Bull Leaving Dry Bulb /Wet Bull Sensible Heat: (BTUNH) Total Heat: (BTUNH) Sensible Heat Ratio:	h: (°F)	0.89 73.4 / 61.8 51.2 / 51.0 128.852 184.840 0.70	
Air Enthalpy Diff. (BTU/Lb)		7.68	
Liquid Side Informatio	n:		
Liquid Type/Conc.:		Water / 100%	
Ent/Leaving Liq Temp: (°F)		45.0 / 56.2	
Fl Flow(GPM)/Liquid Veloc	Control of the contro	33.1 / 2.2	
Liquid Pressure Drop; (Ft of		5.61	

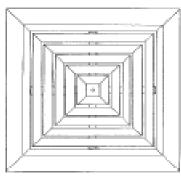
Anexo D. Característica unidades manejadoras

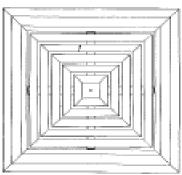
Curva del ventilador de suministro UMA 1.

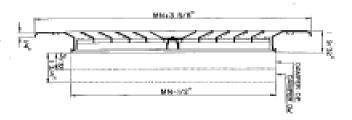



Curva del ventilador de suministro UMA 2.

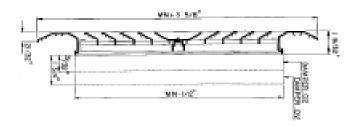
Catalogo para la selección de rejillas y difusores para sistemas de climatización


DIFUSOR LINEA 2D




MARCO PLANO

MARCO DESCOLGADO DETALLE DE DIMENSIONES



MARCO PLANO

MARCO DESCOLGADO

ESPECIFICACIONES TECNICAS

Difusor línea 2D son fabricados para la inyección del aire a través de techos.

Esta línea se desarrolla en: Una vía

Dos vías 180 grados Dos vías 90 grados

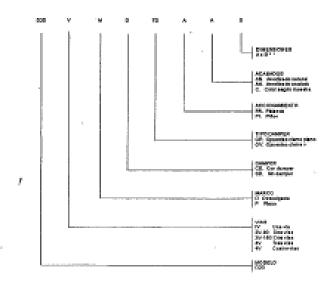
Tres vias Cuatro vias

Los difusores 2D se suministran con marco plano o marco descolgado, según se indica en el detalle de dimensiones. Este último presenta características especiales de diseño que evitan el tiznado sobre los cielos alrededor del difusor.

Existen dos alternativas de damper:

op (paletas opuestas cierre plano) ov (paletas opuestas cierre V)

Las dimensiones van desde 6" x 6" hasta 22" x 22" con incrementos de 2" en cada lado.


Acepta combinaciones rectangulares sólo en múltiplos de 2".

Adicionalmente se suministrarán difusores línea 2D cuadrados en dimensiones 9 - 15 - 21.

El núcleo central es removible o fijo, :

El accionamiento del damper puede realizarse mediante PALANCA o PIÑON.

IDENTIFICACION DE MODELOS

HOTA:

* " En irre-des y une sie le A corresponde e le via anuiede

Calle 7 sur No. 50C- 36 Telt (4) 255 0422 Fax: (4) 255 5062 Apartado Poetal 10734

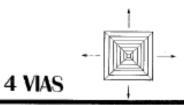
Anexo D. Característica unidades manejadoras

	Velocidad on al Cuallo	100	200	300	400	500	600	700	800	900
	Presión Total	.005	.016	.035	.072	,102	.140	,207	,265	,350
	Lado con tiro asignado	A	A	A	A	A	Α .	A	A	Α
6 X 6	Total cfm/NC	20/-	40/	75/	120/	140/22	170/29	200/35	225/40	250/42
Ak = .21 ft2	efm por lado	20	40	75	120	140	170	200	225	250
	Tiro en ples	7	11	13	16	17	22	25	27	30
0 V 0	Tetal cfm/NC	35/-	70/-	145/	220/	250/24	300/31	345/36	375/40	415/43
8 X 8	ofm per lade	35	70	146	220	260	300	345	375	415
, 300 K	Tiro en pies	9	13	21	26	27	29	30	31	32
10 7 10	Total cfm/NC	60/-	125/	215/-	330/25	365/28	420/33	490/38	540/42	600/44
10 X 10	ofm por lado	60	125	215	230	365	420	490	640	800
AK = .59 II	Tiro ets pies	14	20	31	35	38	43	45	46	49
	Total ofm/NC	150/-	200/	300/	450/29	490/30	575/34	670/41	750/43	865/45
12 X 12	ofm per lado	150	200	300	450	490	575	670	750	865
AK = .80 IT	Tiro en pies	24	26	36	39	42	.47	50	63	55
	Total ofm/NC	170/	250/	390/22	580/30	680/31	810/35	925/42	1055/43	1200/45
14 X 14	cfm per lade	170	250	390	- 580	680	810	926	1066	1200
AK = 1.16 ft	ofm per lade Tiro en pies	24	28	38	41	48	62	66	60	65
16 1/ 16	Total cfm/NC	200/	350/	500/21	7:35/32	900/34	1075/36	1225/43	1415/44	1600/46
16 X 16	ofin por lado	200	350	500	735	900	1075	1225	1415	1600
AK = 1.52 ft	Tiro en pies	23	32	39	44	52	55	59	63	67
	Total cfm/NC	250/	460/-	620/22	900/33	1125/36	1375/37	1600/44	1800/45	2100/47
18 X 18	ofm per lade	250	450	620	800	1 125	1375	1600	1800	2100
AK = 1.92 T	Tiro en pies	23	32	41	62	63	72	75	80	83
	Total cfm/NC	280/	550/	740/22	1060/33	1300/34	1640/37	1925/45	2180/46	2565/48
20 X 20	z ofm por lado	280	550	740	1060	1300	1640	1925	2180	2565
Ak = 2.38 ft	Tiro en pies	20	30	39	48	84	69	76	80	82
22 V 22	Total ofm/NC	320/	650/21	860/24	1235/35	1480/36	1875/38	2315/44	2675/47	2935/50
22 X 22	ofm per lade	320	650	860;	1236	1480	1875	2315	2675	2935
AK = 2.88 ft	Tiro en pies	19	30	38	48	62	69	77	88	92
	Total ofm/NC	360/	750/	990/25	1400/36	1640/37	2060/39	2625/46	2875/47	3160/50
24 X 24	ofm por lado	380	750	990	1400	1640	2060	2625	2875	3160
Ak = 3.42 ft	Tiro en pies	19	31	42	53	63	70	82	88	92

Ak= Area efectiva en pies'
Los Parámetros de selección pera los elementos rectangulares se deben asimilar a las dimensiones equivalentes en área nominal.

	Velocidad en el Caello	100	200	300	400	500	600	700	800	900
	Presión total	,005	.016	.035	,072	,102	.140	.207	.265	.350
	Lado con tiro esignado	A	Α	А	Α	Α	Α	Α	Α	Α
	Total cfm/NC	20/	40/-	75/	120/	140/22	170/29	200/35	225/40	250/42
6 X 6	cfm por lado	10	20	38	60	70	95	100	112	125
AK = .21 It .	Tiro en pies	5	9	10	13	14	18	21	23	26
8 X 8	Total cfm/NC	35/	70/-	145/	220/	250/24	300/31	346/36	375/40	415/43
Ak = .38 ft ²	ofm par lado	18	36	72	110	125	150	172	187	207
, - , 30 IL	Tiro en pies	7	11	18	23	24	26	28	27	28
	Total cfm/NC	60/	125/	215/-	330/26	365/28	420/33	490/38	640/42	600/44
10 X 10	ofm per lado	30	62	107	165	182	210	245	270	300
JI 00 AF	Tiro en pies	10	16	27	30	33	37	39	41	43
12 X 12	Total cfm/NC	150/-	200/	300/	450/29	490/30	675/34	670/41	750/43	865/45
.Ak = .86 ft ²	cfm por lado	75	100	160	226	245	287	335	375	432
AX00 IL	Tire en pies	18	20	30	33	36	40	43	46	48
14 X 14	Total cfm/NC	170/	250/-	390/22	580/30	680/31	810/35	925/42	1055/43	1200/45
14 A 14	ofm por lado Tiro en pits	85	125	195	290	340	405	462	527	600
AK = 1.10 IL	Tiro en pits	18	22	32	35	41	45	49	53	58
	Total cfm/NC	200/	350/-	500/21	735/32	900/34	1075/36	1225/43	1415/44	1600/46
16 X 16	ofm por lado	100	175	250	367	450	537	612	707	800
AK = 1.52 IL	Tiro en pies	18	27	34	38	46	49	52	56	60
18 X 18	Total efm/NC	260/	450/	620/22	900/33	1125/35	1375/37	1600/44	1800/45	2100/47
	ofm por lado	125	225	310	450	562	687	800	900	1050
Ak = 1.92 ft^	Tiro en pies	18	27	35	46	56	65	68	72	75
20 V 20	Total cfm/NC	280/-	550/-	740/22	1060/33	1300/34	1640/37	1925/45	2180/46	2565/48
20 A 20	ofm por lado Tire en ples	140	275	370	530	650	820	962	1090	1282
AK = 2.38 π	Tire en ples	15	25	33	42	57	62	68	72	74
	Yotel ofm/NC	320/	650/21	860/24	1235/35	1480/36	1875/38	2315/44	2675/47	2935/50
22 X 22	ofm per lade	160	325	430	617	740	937	1157	1337	1467
AK = 2.66 ft	Tìro en pies	14	25	32	42	55	62	69	. 80	84
24 X 24	Total ofm/NC	380/	750/	990/25	1400/38	1640/37	2060/39	2625/46	2875/47	3160/50
47 A 49 Ak = 3 92 9 ²	ofm per lade	. 190	375	495	700	820	1030	1312	1437	1580
M - 4.82 (t	Tiro en pies	14	26	38	47	56	63	75	80	84

Aix= Area efectiva en ples* Los Parámetros de selección para los elementos rectangulares se deben asimilar a las dimensiones equivalentes en área nominal.

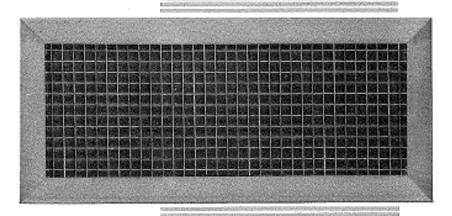

D2D

GUIA DE SELECCION

	Velocidad en el Cuello	_ 10	00	2	00	30	00	40	00	5	00	- 60	00	70	00	8	00	9	00
	Presion Total	.00	05	.0	16	.0	35	.0	72	.1	02	.1	40	.2	07	.2	65	.3	50
	Ludo con tiro asignado	Α	В	Α	В	-д	В	Α	В	A	В	А	В	A	В	А	В	A	В
	Total cfm/NC	20.	/	40	V	75	<i>I</i>	120	ot-	140	1/22	170	V29	200	736	22	5/40	250	0/42
6 X 6	ofm per lade	13	4	26		48	f 14	78	1 22	91	25	110		130	1 36	146	1 41	162	1 46
Ak = .21 M2	Tiro en ples	7	4	8	- 5	10	6	11	7	12	8	13	9	14	10	15	-11	16	12
	Total cfm/NC	35	V	71)/	14	5/-	22	0/	28	0/24	300	0/31	348	5/36	379	5/40	415	5/4/3
8 X 8	ofm par lado	22	8	46	13	94	26	143	40	163	45	195	54	224	1 82	243	68	269	
Ak = .36 ft ²	Tiro en ples	7	4	8	6	10	7	14	11	16	12		15	22	18	23	19	24	20
	Total ofm/NC	80	V—	128	5/-	215	i/	330	0/26	386	5/28	420	/33	490	/38	540	/42	900	V4Z
10 X 10	afm par ledo	39	11	81	23	140	40	214	59	2 37	00	273	76	318	88	351	97	3901	1108
AK = .59 II	Tiro en pies	8	В	11	8.	26	15	25	16	28	17	29	19	30	20	30	24	31	27
	Total cfm/NC	150	N	200	V	300	V-	450	1/2:9	490	V30	676	/34	670	0/41	790	V43	866	746
12 X 12	ofm per lade	98	27	130	36	195	54	293	81	348	88	374	104	436	121	486	135	562	156
Ak = .86 ft ²	Tiro en pies	12	8	16	10	78	14	22	21	26	21	28	23	30	26	36	30	36	31
	Total cfm/NC	170	W	250	V	390	/22	580	1/30	680	/31	810	/35	92:	y/42	106	5/43	1200	0/45
14 X 14	efm per lade	110	31	163	45	264	70	377	104	442	122	527	146	801	167	636	190	780	216
Ak = 1,16 ft ²	Tiro en ples	12	10	14	12	18	15	25	21	29	23	33	26	38	30	42	31	45	33
*C V *C	Total chn/NC	200)/—	360	V-	500	/21	735	/32	900	/34	1076	J/36	122	6/43	1415	5/44	1800	0/46
16 X 16 Ak = 1.52 ft ²	cfm por lada .	130	36	228	63	325	90	478	132:	586	162	899	194	796	221	920	255	1040]	288
AK = 1.02 H	Tire en pies	14	10	17	13	22	17	26	22	30	25	34	28	36	32	40	34	46	35
70 W 40	Total ofm/NC	290)/	450	I/	620	22	800	/33	1 129	5/36	1375	/37	180	0/46	1800	/45	2100	0/47
18 X 18	ofm por lade	163	46	293	81	403	112	586	162	731	203	884	248	1040	288	1170	324	1365	378
Ak = 1,92 ft ²	Tire en pies	14	12	16	14	21	16	30	20	33	23	38	26	42	31	46	33	50	34
20 V 20	Total cfm/NC	280	V-	550	Y-	740	/52	106	0/33	1300	/34	1840	/37	192	5/45	2180	/46	2565	0/48
20 X 20 Ak=2.38 ft ²	efm por lado	182	50	358	99	481	133	689	191	846	234	1066	295	1251	347	1417	392	1667	462
- 2.30 N	Tire on pies	16	10	18	14	23	16	27	18	34	20	40	27	44	33	48	35	61	38
99 W 96	Total cfm/NC	320	V	650	/21	860	24	1235/	35	1480	/36	1876	/38	231	5/44	2875	/47	2936	_
22 X 22	cfm por lado	208	58	423	.117	589	155	803	222	962	266	1219	338	1505	417	1739	482	1908	528
4k = 2.86 ft ²	Tire en ples	16	10	19	12	22	13	28	18	36	19	43	23	50	29	52	34	54	37
a. v a.	Total ofm/NC	380	V-	750	V- :	990	25	140	0/36	1640	/37	2090	V39	262	5/46	2875	/47	3160	
24 X 24	ofm por lado	247	68	488	135	644	178	910	262	1066	296	1339	371	1708	473	1869[518	2054	569
4k = 3,42 ft ²																			

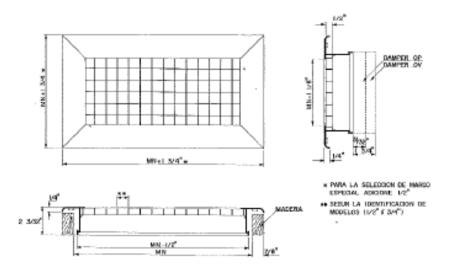
Ak = Area efective en ples"

Los Parámetros de selección para los elementos rectanguiares se deben asimilar a las dimensiones equivalentes en área nomina-



D2D

GUIA DE SELECCION

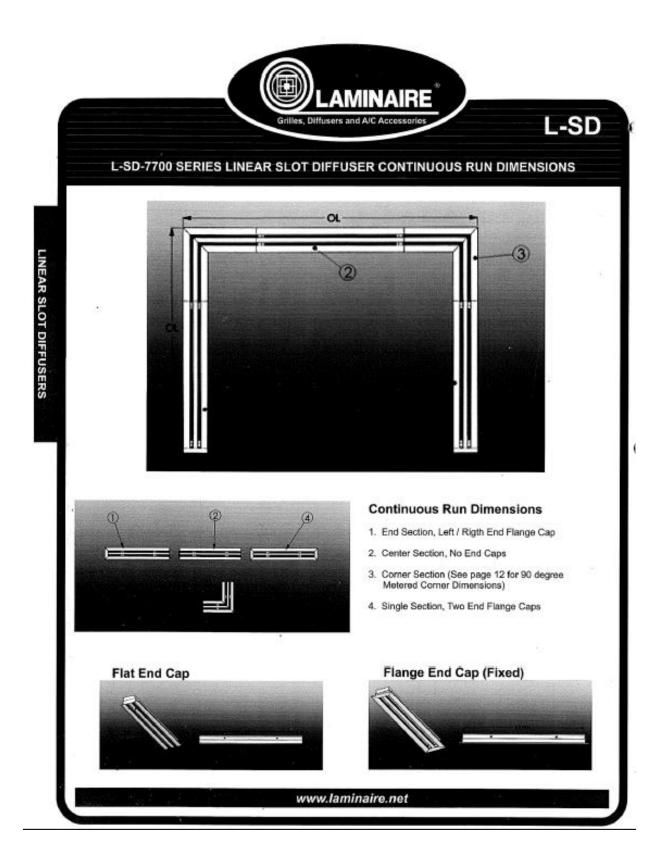

	Velocided on al Cualto	100	200	300	400	600	600	700	800	900
	Presion Total	.005	.016	.036	.072	.102	.140	.207	.265	,350
	Lado con tiro asignado	A	A	A	A	A	A	A	A	A
	Total cfm/NC	20/-	40/	75/	120/	140/22	170/29	200/35	225/40	250/42
6 X 6 Ak = .21 ft ²	otm per lade	5	10	18	200	38	43	50	56	63
Ak = .21 ft	Tire en pias	4	5	9 "	9	10	- 11	12	13	13
	Total cfm/NC	35/-	70/-	145/	220/	250/24	300/31	345/36	375/40	415/43
8 X 8 Ak = .36 ft ²	ofm per lade	9	18	36	56	63	75	86	94	104
FR - 300 JA	Tiro en pies	6	7	11	15	18 .	19	20	22	25
9 X 9	Total efm/NC	48/	100/	180/	280/20	300/26	360/32	420/37	485/41	500/43
Ak = .40 ft ²	cfm por lade	12	26	46	70	76	90	105	116	125
A	Tiro en pies	6	8	14	16	19	20	21	22	24
10 X 10	Total ofm/NC	60V	125/	215/	330/25	365/28	420/33	490/38	540/42	600/44
	efm per latio	- 16	21	54	83	91	105	123	135	150
Par - 200 11	Tire on pies	6	10	16	21	24	27	28	29	30
12 X 12	Total cfm/NC	150/	200/	300/	460/29	490/30	575/34	670/41	750/43	885/45
AR = .85 ft ²	cfm per lado	37	50	75	112	122	144	168	188	216
	Tire en ples	10	14	50	26	30	31	32	33	34
14 X 14	Total elm/NC	170/-	250/	390/22	580/30	680/31	810/36	925/42	1065/43	1200/46
14 X 14 Ak = 1.16 ft ²	ofm per lade	43	63	97	146	170	203	231	264	300
	Tiro en pies	12	15	21	27	32	33	33	34	36
11 S Y 1 S	Total ctm/NC	186/-	300/	445/	660/31	800/31	9 60 / 36	1075/42	1240/43	1400/47
Ak = 1.34 ft ²	ofm per lado	46	75.	111	166	200	240	268	310	360
	Tird on pies	13	16	21	27	33	34	34	36	40
16 X 16	Total chm/NC	200/-	200/	800/21	735/32	900/34	1075/36	1225/43	1415/44	1600/48
Ak = 1.52 ft ²	elm per lade	50	88	125	183	226	268	306	363	400
	Tire en pias	13	17	22	28	34	35	37	384	64
	Total efm/NC	250/-	450/-	650/55	900/33	1125/36	1375/37	1800/44	1800/45	2100/48
18 X 18 Ak=1.92 ft ²	efm por Isdo	63	113	155	225	281	344	400	450	625
	Tiro en pies	13	16	21	27	36	36	40	46	66
	Total cfm/NG	280/-	BB0/-	740/32	1060/33	1300/34	1640/37	1925/45	2180/45	2565/49
Ak = 2.38 ft ²	ofm por lada	70	138	185	265	325	410	481	545	641
	Tiro en ples	12	15	18	26	32	36	42	47	57
	Total ofm/NC	300/	800/	810/	1150/34	1280/34	1775/37	2125/45	2400/48	2750/49
Ak = 2,62 ft ²	ofm por lado	75 -	150	202	288	348	443	631	600	888
	Tiro en pies	12	15	18	. 24	31	38	42	47	55
	Total ofm/NC	320/	050/21	860/24	1235/36	1480/36	1875/38	2315/44	2675/47	2936/60
Ar = 2.88 ft ²	ofm per lude	. 80	163	216	309	370	468	570	009	734
	Tiro en ples	11	14	18	24	30	34	42	47	56
24 X 24	Total cfm/NC	380/	750/-	990/25	1400/36	1640/37	2060/39	2625/46	2875/47	3160/60
24 X 24 Ak = 3,42 ft ²	clim per lado	95	188	247	350	410	515	656	718	790
	Tiro en pies	9	14	17	26	30	37	45	40	55

REJILLA DE RETORNO TIPO CUBO

DETALLE DE DIMENSIONES

TIPO CUBO 1/2" - 3/4"

REJILLA DE RETORNO TIPO CUBO - ALETA FIJA - CON PORTA FILTRO GUA DE SELECCION


		(APACID	AD DEL	AIRE EN	ICFM (p	ies cubico	os x min.)	
DIMEN. NOM,	AREA LIBRE EFEC. Ft ²	300 FPM	400 FPM	500 FPM	600 FPM	700 FPM	800 FPM	900 FPM	1000 FPM
10 x 6	.291	87	116	146	175	204	233	262	291
12 x 6	.356	107	142	178	214	249	285	320	356
10 x 8	.398	119	169	199	239	279	318	358	398
12 x 8	.485	146	194	243	291	340	388	437	485
14 x 8	.574	172	230	287	344	402	450	517	574
12 x 12	.750	225	300	375	450	525	600	675	750
20 x 10	1.04	312	416	520	624	728	832	936	1040
18 x 12	1.13	339	452	565	678	791	904	1017	1130
30 x 8	1,26	378	504	630	756	882	1008	1134	1260
24 x 12	1,55	465	620	775	930	1085	1240	1395	1550
18 x 18	1.73	519	692	865	1038	1211	1384	1557	1730
24 x 14	1.81	543	724	905	1086	1267	1448	1629	1810
30 x 12	1,96	588	784	980	1176	1372	1568	1764	1960
24 x 18	2.40	720	960	1200	1440	1680	1920	2160	2400
30 x 18	3.01	903	1204	1505	1806	2107	2408	2709	3010
24 x 24	3,20	960	1280	1600	1920	2240	2560	2880	3200
36 x 18	3,61	1083	1444	1805	2166	2527	2888	3249	3610
30 x 24	4.05	1215	1620	2025	2430	2835	3240	3645	4050
36 x 24	4,83	1449	1932	2415	2898	3381	3884	4347	4830
30 x 30	5.10	1530	2040	2550	3060	3570	4080	4590	5100
36 x 30	6,09	1827	2436	3045	3654	4263	4872	5481	6090
48 x 24	6,50	1950	2600	3250	3900	4550	5200	5850	6500
48 x 24	8, 14	2442	3256	4070	4884	5698	6512	7326	8140
48 x 36	9,84	2952	3936	4920	5904	6888	7872	8856	9840
	estatica vo H20	.014	.023	.038	,060	.083	.115	.147	.188
	N,C,	20	_ 25	26 -	- 30	30	- 35	35 -	- 40

- Los parámetros de selección para los elementos rectangulares se deben asimilar a las dâmonsiones equivalentes en área nominal.
- 2. En función de la especificación del producto incremente la capacidad listada, así :

TIPO	INCREMENTO EN CAP
RRAFE	10
RRTCP	33
RRTC 1/2 x 1/2	50
RRTC 3/4 x 3/4	60

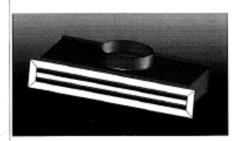
- -3. Adhiera 0,07 a la presión estática cuando use rejillas con porta filtro,
- En las rejillas con porta filtro el área de filtrado efectiva corresponde al área nominal 3/4" pulgadas por cada dimensión.

L-SD

L-SD-7700 LINEAR SLOT DIFFUSER PERFORMANCE DATA

L-SD-7702 SERIES LINEAR SLOT DIFFUSER PERFORMANCE 1/2"

SLOT										
	AIRFLOW, CFM	4.8	. 10	15.2	20	24.7	30	35.2	40	45.2
	STATIC PRESSURE, INCHES.W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
	NC				17	21	26	29	33	37
	HORIZONTAL THROW, FT.	1-1-5	3-5-12	6-10-14	9-12-16	10-12-19	12-14-21	13-15-21	13-16-23	14-17-24
	VERTICAL THROW.FT	2.0	6.0	8.0	11.0	12.0	13.0	14.0	16.0	16.0
	AIRFLOW, CFM	10.0	20	31.0	40	49.0	60	70.0	81	89.5
	STATIC PRESSURE, INCHES.W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
2	NC				19	24	31	33	36	38
	HORIZONTAL THROW, FT.	1-2-7	4-8-16	7-13-19	14-17-23	15-19-25	17-19-28	17-22-30	19-23-32	21-24-34
	VERTICAL THROW.FT	3.0	8.0	13.0	14.0	16.0	18.0	20.0	21.0	23.0
	AIRFLOW, CFM	15.0	35	44.0	59	75.0	91	103.0	118	133.0
	STATIC PRESSURE, INCHES.W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
3	NC			16	21	27	31	34	38	40
	HORIZONTAL THROW, FT.	2-4-12	6-12-21	13-17-25	16-21-28	18-23-31	20-24-34	21-26-37	24-29-40	25-30-42
	VERTICAL THROW.FT	5.4	10.3	16.0	18.0	20.3	23.0	24.6	26,0	27.0
	AIRFLOW, CFM	20.0	39	60.0	79	99.0	119	140.0	161	182.0
	STATIC PRESSURE, INCHES.W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
4	NC			17	23	29	32	37	41	43
	HORIZONTAL THROW, FT.	3-5-14	10-14-23	14-19-28	18-23-32	21-25-36	23-28-40	26-30-43	26-32-46	28-35-51
	VERTICAL THROW.FT	5.8	12.6	17.5	21.0	23.0	25.0	29.0	30.0	32.0
	AIRFLOW, CFM	24.0	49	73.0	101	123.0	147	173.0	198	223.0
	STATIC PRESSURE, INCHES.W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
5	NC			18	27	31	35	36	40	43
	HORIZONTAL THROW, FT.	2-6-15	10-16-25	16-22-31	21-25-36	23-29-41	25-32-45	28-35-48	30-37-52	32-39-55
200	VERTICAL THROW.FT	6.0	14.0	21.0	23.0	26.0	28.0	30.0	33.0	35.0
	AIRFLOW, CFM	29.0	61	92.0	118	150.0	178	208.0	239	265.0
	STATIC PRESSURE, INCHES, W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
6.	NC		17	19	27	31	36	38	41	43
	HORIZONTAL THROW, FT.	4-7-19	13-20-28	19-24-33	23-28-40	26-31-45	28-34-49	31-37-53	32-40-59	34-44-60
	VERTICAL THROW.FT	6.4	15:0	23.0	25.0	30.0	33.0	34.0	36.0	40.0
	AIRFLOW, CFM	34.0	67	103.0	139	175.0	208	243.0	279	311.0
	STATIC PRESSURE, INCHES.W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
7.0	NC '		19	20	28	32	36	40	43	44
	HORIZONTAL THROW, FT.	5-8-19	12-17-30	17-27-37	23-31-42	29-33-46	30-37-53	34-40-58	36-42-61	38-48-65
80 C C C C	VERTICAL THROW.FT	7.4	16.0	23.0	29.0	30.0	33.0	38.0	40.0	41.0
	AIRFLOW, CFM	39.0	78	118.0	157	197.0	241	282.0	316	355.0
	STATIC PRESSURE, INCHES.W.	0.005	0.020	0.046	0.082	0.131	0.187	0.256	0.332	0.42
8	NC		20	23	30	33	40	41	44	47
	HORIZONTAL THROW, FT.	5-9-20	13-18-24	19-27-40	26-31-46	31-36-51	32-40-57	35-43-62	40-49-66	47-47-70
STOLEN	VERTIČAL THROW.FT	7.8	18.0	25.0	29.0	33.0	38.0	41.0	42.0	44.0


AIR FLOW FOR FEET LENGTH

L-SD

L-SD-7700 LINEAR SLOT DIFFUSER WITH BP/BPI BOOT PLENUM

FINIM PERFORMANCE DATA FOR TYPE 01-02 -03-04-07-09

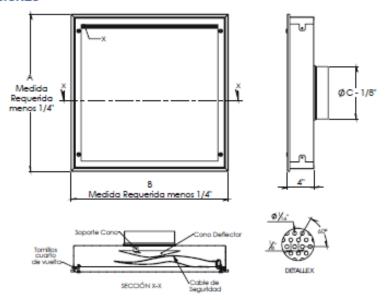
L = Diffuser Lenght B=Diffuser width D=Plenum top width E= Plenum Neck Higth inlet

SLOT 1/2"																				
DIMENSION				AND			1	100	1000		1000	40.5	10	150	300		1992	21.0	2000	
L	24"	36"	41"	40"	72"	24"	36"	48"	60"	72"	24*	36"	48*	60"	72"	24"	36"	46"	60"	72"
н	23 94"	3598	47.8/8*	89 6/8*	716/8"	23 5/8"	35 5/0"	47.9%*	59 5/8"	715/6"	23 5/6"	355/6"	47.68*	98 N/6"	719/8*	23.5/8*	3698*	47.9%*	59 576*	715/0"
В	17/16"	12/81	12716*	17/8*	1076*	2 1916*	2 17 16"	2 1/10"	2 17 10"	2 19 6"	3 55 55"	3 6/6*	3 8/6"	3 1911	3 19/16"	63/16*	63/16*	53/16"	63161	53/16*
D	4 7/16*	4 7091	4 3716"	4776*	4.7/16"	519'6"	51716"	5 19 16"	5 17 10"	59961	6 M.E.	6 6/81	0 M.E.	6 1918*	6 19 16"	8.3/16*	8.3/16*	0.3/10*	8.3/10*	0.0/16*
E	3"	3"	3.	3"	3.	3"	3.	3.	3.	31	91	3"	3*	3*	3*	3"	r	3.	3.	3*

SLOT 3/4"																				
DIMENSION.													100		400	2500	3410			
L	24"	31.	48*	61"	72*	24"	24"	61"	69.	72"	24"	36"	48"	10.	72.	24*	30*	41"	60"	72"
Н	23.9/8*	35.98*	4798*	00 5/8"	7168*	23.6%	3663*	16719/8"	50 5/0"	7158*	20.58*	3659*	475/0"	50 548*	7198	23 8/8"	355/8"	47.9%*	99 9/8"	71918*
В	11716"	1176*	11916*	1178"	11976*	33/8"	33/8"	3 3/16*	3 3/10"	0.3/10*	4.1982	4 1916"	4 19 8*	4 1916*	4 WW	6.3/16*	0.3/10*	63/6"	9.31'6"	6.2/10*
D	4 17161	4 19 19"	4 17161	4 19161	4 17 16"	6 7/16"	6 W W	6 19 6"	6 19 16*	6 11 10*	7 19 10*	7.9/6*	7 17 10*	718'8"	7 17 16"	93/10*	9.2/16"	9.31%*	9.31%*	93/9"
E	3"	3.	3"	32	3"	3'	3"	8"	3"	3*	3*	3"	3"	3*	3*	8*	8*	3*	3*	3*

SLOT 1"	NO.		e luc				3	allo												
L	24*	36"	48"	60"	72"	24*	38.	48"	ae-	72"	24"	36"	40"	69"	72"	24"	36"	48"	40*	72"
Н :	23 6/8"	355/8"	4758*	59 5/8*	715/8"	23 6/8"	355%*	475%	59 548*	715%*	23 5/6"	355/61	47553*	58 5Y6*	715/6*	23.97*	3698*	475/01	58 5/6"	715/0°
В	110'82	119/16"	110/81	19/9*	119/81	3 1916"	3 17 %*	3 W W*	3 W 6"	3 W 6"	57016*	57YE*	67/16*	611.81	63/36*	73/10"	7.3/16"	73/16"	73/10*	73/16*
D	4 10/10"	4 19/16*	4 19110*	4 19/16"	4 10 10	6 1916*	6 17 16"	6 W %*	0 W 6"	6 1916*	67/6*	8 73 16"	8.7/10*	87/16*	8778	10.3/16"	03/6*	10 3/16"	10 37 16"	0.3/6*
E	3"	3*	r	3"	3.	3"	3.	3*	9"	3"	3"	3"	3'	3.	3*	3*	- 9*	3*	3*	3*

www.laminaire.net


DFLS
AMBIENTES CRÍTICOS

HOJA DE ESPECIFICACIONES SUBMITTAL

DESCRIPCIÓN GENERAL

- › Difusor tipo perforado para aplicaciones donde se requiera un patrón de flujo laminar .
- Placa frontal desmontable.
- Tornillos cuarto de vuelta en acero inoxidable.
- Caja plenum de uso rudo.
- Cables de seguridad entre plenum y placa frontal.

DIMENSIONES

Tabla de dimensiones DFLS								
Modulo	A (pulg)	B (pule)	Ø C (pule)					
24 x 24	24	24	8 8					
48 x 24	48	24	10					

Notas: Dimensiones en pulgadas (± 1/16)

 Nombre de la obra :
 Presentado por:
 Ax. Di Cui

 Ublicación :
 Cui

 Arquitecto :
 Ingeniero :
 Fecha:

 Contratista :
 WV

Av. Divición del Norte Nº78 Col. Memetia, Cuajimaipa México. C.P. 06330 D.F. Lada sin costo: 01 800 OK INNES E-mail: ventas@innes.com.mx

www.lnnes.com.mx

Reyialón: 01

Nota: Este autorital está desfado para demostrar dimensiones generales de doto producto. Los dibujos de este autorital no son elaborados con la intención de especificar aspectos esactos del producto

Estos dibujos no están a secale. Innes Aire S.A. de C.V. se reserva el desecho de hacer cambios sin previo permiso.

Ningas pete de este discreto podá ser espectos as activación de inalgent trans, centro este escólosas o reserva;

ARSIA DE C.V. se reserva el desecho de hacer cambios sin previo permiso.

ARSIA DE C.V. se reserva el desecho de hacer cambios sin previo permiso.

ARSIA DE C.V. se reserva el desecho de hacer cambios sin previo permiso.

DATOS DE INGENIERÍA

DFLH

Difusor de flujo laminar con plenum para filtro Hepa

Dimension nominal (pulg)	Tamaño de Cuello (puig)	Vel de cuello (CFM/ft³)	Flujo de aire (CFM)	Presión Estática (Ps) (in. wg)	Nivel de ruido (NC)	Dif. De Temp ▲T (*F)	DISTANCIA E	PROMEDIO A SPECIFICADA TECHO
(bad) (bad)							4' (fpm)	6' (fpm)
		20	80	0.002	<15	-5	45	50
		30	120	0.003	<15	-5	50	48
20.24		40	160	0.006	<15	-5	77	80
24x24		50	200	0.009	<15	-5	83	82
		60	240	0.014	<15	-5	97	86
		70	280	0.018	15	-5	101	100
		20	80	0.002	<15	-15	43	41
		30	120	0.003	<15	-15	62	60
		40	160	0.006	<15	-15	83	91
24x24		50	200	0.009	<15	-15	94	98
		60	240	0.014	<15	-15	110	118
		70	280	0.018	15	-15	119	126
		20	160	0.004	<15	-5	42	45
		30	240	0.009	<15	-5	45	52
		40	320	0.016	<15	-5	65	65
48x24	10	50	400	0.025	<15	-5	75	81
		60	480	0.036	19	-5	87	87
		70	560	0.049	23	-5	103	104
		20	160	0.004	<15	-15	55	60
		30	240	0.009	<15	-15	64	73
40-24	40	40	320	0.016	<15	-15	79	94
48x24	10	50	400	0.025	<15	-15	89	100
		60	480	0.036	19	-15	104	113
		70	560	0.049	23	-15	114	125

Notas:

- Las pruebas estan realizadas de acuerdo con el Standard ANSI/ASHRAE 70-2006, en condiciones isotérmicas.
- 2. Pruebas basadas con entrada rigida en posición recta. Otras condiciones de entrada puede cambiar el comportamiento.
- 3. La presión estática (Ps), están medida en pulgadas columna de agua y el flujo de aire esta dado en pies cúbicos por minuto.
- 4. Los valores de nível de sonido (NC), están basados en una absorción del cuarto de 10 dB, para una potencia de nível de sonido (Re: 10 ⁻¹² watts). De acuerdo con el Standard ASHRAE 36-72.
- ΔT= Diferencia de temperatura medida en grados Fahrenheit (°F), entre la temperatura del aire inyectado y la temperatura promedio del aire ambiente.
- 6. Cfm/ft2= Tasa de flujo de aire que pasa por cada pie cuadrado del área de inyección del difusor.

E. Anexo: Presupuestos de accesorios utilizados

MTS MTS MTS MTS MTS MTS MTS MTS MTS	CINTA FOIL PEGANTE AMINA GALVANIZADA CALIBRE 24 AMINA GALVANIZADA CALIBRE 22 AISLAMIENTO Y DUCTO DUCT WRAP DUCTO FLEXIBLE AISLADO DE 8" PRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	560 64	8.294 11.867	3,815,240 400,026 5,429,380 7,043,520 - 4,644,640 759,475 AGUA 48,064 62,764 48,126 103,989
MTS	AMINA GALVANIZADA CALIBRE 24 AMINA GALVANIZADA CALIBRE 22 AISLAMIENTO Y DUCTO DUCT WRAP DUCTO FLEXIBLE AISLADO DE 8" DRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	115 120 560 64 EA TUE	47.212 58.696 (IBE 8.294 11.867 BERÍA DE A 4.005 5.230 8.021	5.429.380 7.043.520 - 4.644.640 759.475 AGUA - 48.064 62.764 48.126
MTS	AMINA GALVANIZADA CALIBRE 22 AISLAMIENTO Y DUCTO DUCT WRAP DUCTO FLEXIBLE AISLADO DE 8" DRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	120 560 64 2A TUE 12 12 12 6 8	58.696 (IBE 8.294 11.867 BERÍA DE A 4.005 5.230 8.021	7.043.520 - 4.644.640 759.475 AGUA - 48.064 62.764 48.126
MTS MTS MTS MTS MTS MTS MTS MTS MTS	AISLAMIENTO Y DUCTO DUCT WRAP DUCTO FLEXIBLE AISLADO DE 8" DRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	560 64 8A TUE	8.294 11.867 BERÍA DE A 4.005 5.230 8.021	4.644.640 759.475 AGUA - 48.064 62.764 48.126
MTS I	DUCT WRAP DUCTO FLEXIBLE AISLADO DE 8" PRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	560 64 RA TUE	8.294 11.867 BERIA DE A 4.005 5.230 8.021	759.475 AGUA - 48.064 62.764 48.126
MTS I	DUCT WRAP DUCTO FLEXIBLE AISLADO DE 8" PRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	560 64 RA TUE	8.294 11.867 BERIA DE A 4.005 5.230 8.021	759.475 AGUA - 48.064 62.764 48.126
MTS I	DUCTO FLEXIBLE AISLADO DE 8" DRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	12 12 6 8	11.867 BERÍA DE A 4.005 5.230 8.021	759.475 AGUA - 48.064 62.764 48.126
MTS MTS MTS MTS MTS UND UND OO	DRIOS Y MATERIALES PAR HELADA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	12 12 6 8	4.005 5.230 8.021	48.064 62.764 48.126
MTS MTS MTS MTS MTS UND UND UND OO	TUBERIA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	12 12 6 8	4.005 5.230 8.021	48.064 62.764 48.126
MTS MTS MTS MTS MTS UND UND UND OO	TUBERIA TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	12 12 6 8	4.005 5.230 8.021	48.064 62.764 48.126
MTS MTS MTS UND UND UND OO	TUBERIA TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	12 6 8	5.230 8.021	62.764 48.126
MTS MTS MTS UND UND UND OO	TUBERIA SCH 40 DE 1 1/4" TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	12 6 8	5.230 8.021	62.764 48.126
MTS MTS MTS UND UND UND OO	TUBERIA SCH 40 DE 1 1/2" TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	12 6 8	5.230 8.021	62.764 48.126
MTS MTS UND CO	TUBERIA SCH 40 DE 2" TUBERIA SCH 40 DE 2 1/2" CODO DOO EN TUBERIA SCH 40 DE 1 1/4"	6 8	8.021	48.126
UND CO	TUBERIA SCH 40 DE 2 1/2" CODO DO EN TUBERIA SCH 40 DE 1 1/4"	8		
UND CO	CODO DO EN TUBERIA SCH 40 DE 1 1/4"		12.999	103 999
UND CO	DO EN TUBERIA SCH 40 DE 1 1/4"	4		203,303
UND CO				-
			1.753	7.013
	DDO EN TUBERIA SCH 40 DE 1 1/2"	4	5.363	21.452
UND CO	DO EN TUBERIA SCH 40 DE 2 1/2"	4	15.446	61.784
LINE	UNIONES	-	- 002	1.702
	ONES DE TUBERIA SCH 40 DE 1 1/4" ONES DE TUBERIA SCH 40 DE 1 1/2"	2	1,205	1.763 2.409
	VIONES DE TUBERIA SCH 40 DE 1 1/2	2	1.973	3,945
	ONES DE TUBERIA SCH 40 DE 2 1/2"	2	7.807	15,613
OI4D OI4E	TEE	-	7.007	13.013
UND	TEE EN TUBERIA SCH 40 DE 2"	2	6,853	13,707
	EE EN TUBERIA SCH 40 DE 2 1/2"	10	16,256	162,562
	UNION UNIVERSAL		-	-
UND	UNION UNIVERSAL DE 1 1/4"	4	8,677	34,707
	UNION UNIVERSAL DE 1 1/2"	2	11.229	22,458
	BUJE REDUCCIÓN		-	-
UND	REDUCCION DE 2" A 1 1/4"	2	2.547	5.094
UND	REDUCCION DE 2" A 1 1/2"	2	2.547	5.094
UND	REDUCCION DE 2 1/2" A 1 1/4"	2	8.932	17.864
UND	REDUCCION DE 2 1/2" A 2"	8	10.846	86.768
	VALVULA DE CORTE		-	-
	VULA DE BOLA ROSCADA DE 1 1/4"	4	26.222	104.887
UND VAL	VULA DE BOLA ROSCADA DE 1 1/2"	6	37.451	224.704
			-	
	VALVULA DE GLOBO		- 402.000	204.450
UN	VALVULA DE GLOBO DE 1 1/4"	2	102.080	204.160
UN	VALVULA DE GLOBO DE 1 1/2"	2	178.640	357,280

l	ACCESORIOS CHILLERS	l	ا۔ ا	_
	JUNTA ANTIVIBRATORIA FLANCHADA DE 1			
UND	1/2"	4	70.180	280.720
UND	FILTRO EN Y DE 1 1/2"	2	255.200	510.400
UND	TERMOMETRO DE COLUMNA DE MERCURIO DE 9"ESCALA 20-120 ºF TERMOPOZO	4	114.840	459.360
UND	MANOMETRO DE 0-100 PSIG CARATULA DE 4.5"	4	102.080	408.320
UND	CONEXIÓN TIPO SIFÓN RECTO (COLA DE CERDO) DE 1/4"	4	12.760	51.040
UND	VALVULA DE CORTE TIPO BOLA DE 1/4"	4	3.828	15.312
UND	CONEXIÓN METALICA PARA CHILLERS	4	114.840	459,360
GLB	OTROS ACCESORIOS	1	510.400	510.400
	ACCESORIOS TANQUE DE EXPANSIÓN		-	-
GLB	SISTEMA DE EXPANSION ABIERTO (TANQUE DE 250 L, PURGA Y TUBERÍA PVC DE 1/2")	1	510.400	510.400
	SISTEMA DE PURGA		-	-
GLB	VENTOSAS Ó PURGAS CON TUBERÍA PVC Y ACCESORIOS	1	191.400	191.400
			-	
	VALVULA DE TRES VIAS TIPO CCV ON-OFF MARCA BELIMO A 24 V		-	-
UND	VALVULA DE TRES VIAS TIPO CCV DE 20 GPM, CV 11.5	1	3.334.571	3.334.571
UND	VALVULA DE TRES VIAS TIPO CCV DE 16 GPM, CV 11.5	1	3.334.571	3.334.571
UND	VALVULA DE TRES VIAS TIPO CCV DE 31 GPM, CV 11.5	1	3.872.532	3.872.532
	CAÑUELA DE POLIURETANO		-	-
MTS	CAÑUELA DE 1 1/4" DE DIAMETRO Y ESPESOR DE 1"	12	9.187	110.246
MTS	CAÑUELA DE 1 1/2" DE DIAMETRO Y ESPESOR DE 1"	12	9.698	116.371
MTS	CAÑUELA DE 2" DE DIAMETRO Y ESPESOR DE 1"	6	10.208	61.248
MTS	CAÑUELA DE 2 1/2" DE DIAMETRO Y ESPESOR DE 1"	8	10.974	87.789
GLB	OTROS MATERIALES (COLLARINES)	1	255,200	255.200
				-
	SOPORTES ANCLAJES Y TO	DRNIL	LEARIA	
	(255 UND) SOPORTERÍA DE DUCTOS TDF EN LAMINA GALV.			
MTS	ANGULO DE HIERRO DE 1 1/2" X 1/8"	95	4.721	448.514
MTS	ARANDELA 3/8"	950	38	36,366

UND	BROCA LAMINA DE 3/8"	10	4.083	40.832
UND	BROCA MURO DE 3/8"	10	2.935	29,348
MTS	CHAZO DE EXPANSION DE 3/8"	490	447	218.834
UND	CHAZO HEMBRA DE 3/8"	480	255	122,496
MTS	DISCO PULIDORA	5	5,742	28.710
MTS	SOLDADURA ELECTRICA 6013	50	255	12.760
UND	SOPORTES DE CAUCHO Nº 4	20	2,807	56.144
UND	TUERCA GALV 3/8"	950	26	24,244
MTS	VARILLA ROSCADA 3/8"	340	1.404	477.224
UND	CLIPS	2700	638	1.722.600
UND	ESQUINEROS	1850	766	1.416.360
UND	TORNILLO DE CARRIAJE	935	1.531	1.431.672
М	EMPAQUE	430	638	274.340
	(15 UND) SOPORTERÍA DE TUBERÍAS DE			
	AGUA		-	-
MTS	ANGULO DE HIERRO DE 1 1/2" X 1/8"	8,5	4.721	40.130
UND	ARANDELA 3/4"	80	38	3.062
UND	BROCA MURO DE 3/4"	2	2.935	5.870
MTS	PLATINA DE ALUMINIO DE 1" X 1/16"	5	1.531	7.656
UND	LAMINA COLD ROLLED DE 1/4	15	3.855	57.822
UND	TUERCA GALV 3/8"	80	26	2.042
UND	CHAZO HEMBRA DE 3/8"	40	255	10.208
UND	VARILLA ROSCADA 3/8"	10	1.404	14.036
UND	SOLDADURA ELECTRICA 6013	20	255	5.104
	CONSUMIBLES			-
GLN	ANTICORROSIVO GRIS	1	31.900	31,900
UND	SILICONA INDUSTRIAL	5	8.166	40.832
UND	SIKA FLEX	5	23,606	118.030
UND	LIJA 180	10	1.276	12.760
MTS	PLASTILONA	36	8.932	321.552
LB	MASILLA MAESTRAL	20	3,700	74.008
UND	INSUMOS PARA TUBERIA (CINTA TEFLON, SOLDADURA PVC Y LIMPIADOR DE SOLDADURA)	1	500.000	500.000
	TABLEROS DE POTI	ENICI/		
			•	
MTS	TABLERO DE POTECNIA Y CONTROL UMA 1, UMA 2 Y UMA 3	1	2.552.000	2,552,000
MTS	TABLERO DE EXTRACTOR	1	812.000	812.000
	DIELLOCREO V. DE III	11.46		
	DIFUSORES Y REJI	LLAS		
UND	DIFUSOR SUMINISTRO LINEAL 6 FT, 1 SLOT DE 1/2", CUELLO 6"	6	325.728	1.954.368

UND	DIFUSOR SUMINISTRO LINEAL 6 FT, 2 SLOT DE 1/2", CUELLO 6"	2	384.192	768.384
UND	DIFUSOR SUMINISTRO LINEAL 5 FT, 1 SLOT DE 1/2",CUELLO 6"	12	281.184	3.374.208
UND	DIFUSOR SUMINISTRO LINEAL 5 FT, 2 SLOT DE 1/2", CUELLO 6"	4	329.904	1.319.616
UND	DIFUSOR SUMINISTRO DE FLUJO LAMINAR 48" X 24" CUELLO 10"	8	1.273.680	10.189.440
UND	DIFUSOR SUMINISTRO 4 VIAS 3D 4" X 4" C.D.	1	36.470	36.470
UND	DIFUSOR SUMINISTRO 4 VIAS 3D 8" X 8" C.D.	5	49.277	246.384
UND	DIFUSOR SUMINISTRO 4 VIAS 3D 9" X 9" C.D.	1	55.680	55.680
UND	DIFUSOR SUMINISTRO 4 VIAS 3D 12" X 12" C.D.	2	73.080	146.160
UND	DIFUSOR SUMINISTRO 4 VIAS 3D 14" X 14" C.D.	6	90.480	542.880
UND	DIFUSOR SUMINISTRO 3 VIAS 3D 14" X 14" C.D.	1	99.528	99.528
UND	DIFUSOR SUMINISTRO 4 VIAS 3D 18" X 18" C.D.	2	127.786	255.571
UND	REJILLA RETORNO ALETA FIJA 12"X12" C.D.	1	52.200	52,200
UND	REJILLA RETORNO ALETA FIJA 26"X12" C.D.	4	99.528	398.112
UND	REJILLA RETORNO ALETA FIJA 20" X 12" C.D.	5	81.989	409.944
UND	REJILLA RETORNO ALETA FIJA 30" X 12" C.D.	1	117.206	117.206
UND	REJILLA RETORNO ALETA FIJA 18" X 24" C.D.	2	138.922	277.843
UND	REJILLA RETORNO ALETA FIJA 8" X 14" C.D.	1	45.379	45,379
UND	REJILLA RETORNO ALETA FIJA 10" X 6" C.D.	2	41.760	83,520
UND	REJILLA RETORNO ALETA FIJA 18" X 12" C.D.	1	725.232	725,232
UND	DAMPER DE BALANCEO 1 ALETA 14"X14"	1	109.272	109,272
UND	DAMPER DE BALANCEO 1 ALETA 10"X14"	1	89.506	89.506
UND	DAMPER DE BALANCEO 1 ALETA 18"X14"	1	119.016	119.016
UND	DAMPER DE BALANCEO 1 ALETA 16"X14"	1	112.195	112.195
	FILTROS Y ACCESORIOS A	DICIO	NALES	
UND	FILTRO PARA AIRE HEPA 12"X24"	1	678.600	678.600
UND	INDICADOR DIF. PRES. MAGNEHELIC PARA FILTROS DE AIRE (0-3) in c.a.	7	310.000	2.170.000
UND	TRANSMISOR DIFERENCIAL DE PRESIÓN PARA FILTROS DE AIRE (1-5 in c.a.)	3	320.000	960.000
UND	VARIADOR DE VELOCIDAD PARA 3/4 HP, 208-230 V	1	500.000	500.000
	SUBTOTAL MATERIALES			75.063.900
	HERRAMIENTA			. 0.000.000
DIA			37.040	1 353 000
DIA	ANDAMIOS CERTIFICADOS 4 CUERPOD	45	27.840	1,252,800
GLB	IZAJE DE EQUIPOS	1	2.784.000	2.784.000

UND	FLETES EQUIPOS AIRE ACONDICIONADO UMAS	1	2.088.000	2.088.000
CAJA	FLETES EQUIPOS AIRE ACONDICIONADO CHILLER	1	1.392.000	1.392.000
UND	FLETES EXTRACTORES	1	580.000	580.000
UND	ACARREOS EN LA CIUDAD	5	34.800	174.000
UND	ACARREOS A ARMENIA	4	150.800	603.200
GLB	FELETES MATERIALES VARIOS	2	174.000	348.000
	SUBTOTAL TRANSPORTE	s		5.185.200
	VIATICOS Y MANO DE OBRA D	E SU	PERVISIÓ	N
DIA	MANO DE OBRA UBICACIÓN EQUIPOS 2 TECNICOS	2	177.492	354.983
DIA	MANO DE OBRA CONEX, Y ARRANQUE 2 TECNICOS	15	177.492	2.662.374
DIA	INGENIERIA (JEFE DEPTO)	6	440.502	2.643.011
DIA	INGENIERIA (ASISTENTE DEPTO)	25	166.197	4.154.917
UND	TRANSPORTE DE 2 INSTALADORES DE TUBERIAS ARMENIA	15	48.256	723.840
UND	ALIMENTACION SUPERVISOR ARMENIA	25	30.160	754.000
UND	TRANSPORTE DE SUPERVISOR	25	30.160	754.000
UND	ALIMENTACION INGENIERIA	6	52.780	316.680
UND	TRNASPORTE DE INGENIERIA	6	226.200	1.357.200
OND	TRINASPORTE DE INGENIERIA	6	220,200	1,337,200
UND	TRINGSPORTE DE INGENIERIA	ь	220,200	1,337,200
UND	SUBTOTAL MANO DE OBRA PERSON			13.721.005
		IAL NO	MINA	13.721.005
	SUBTOTAL MANO DE OBRA PERSON	IAL NO	MINA	13.721.005
V	SUBTOTAL MANO DE OBRA PERSON	IAL NO	MINA OS Y TUBE	13.721.005 ERÍA
V	SUBTOTAL MANO DE OBRA PERSON IATICOS Y MANO DE OBRA DE D MANO DE OBRA INSTALACION DE LONAS	UCT(MINA OS Y TUBE 47.502	13.721.005 ERÍA 380.016
UND UND	SUBTOTAL MANO DE OBRA PERSON IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES	UCT(MINA OS Y TUBE 47.502 12.064	13.721.005 ERÍA 380.016 772.096
UND UND Kg	SUBTOTAL MANO DE OBRA PERSON (IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV.	8 64 2600	MINA OS Y TUBE 47.502 12.064 6.635	13.721.005 ERÍA 380.016 772.096 17.251.520
UND UND Kg UND	SUBTOTAL MANO DE OBRA PERSON (IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC	8 64 2600 2	MINA OS Y TUBE 47.502 12.064 6.635 90.480	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960
UND UND Kg UND UND UND	SUBTOTAL MANO DE OBRA PERSON (IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA	8 64 2600 2	MINA OS Y TUBE 47.502 12.064 6.635 90.480 271.440 52.780	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640
UND UND Kg UND UND UND UND	SUBTOTAL MANO DE OBRA PERSON IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA MANO DE OBRA PUNTOS PVC	8 64 2600 2 3	MINA OS Y TUBE 47.502 12.064 6.635 90.480 271.440 52.780 37.700	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640 1.508.000
UND UND Kg UND UND UND UND	SUBTOTAL MANO DE OBRA PERSON IATICOS Y MANO DE OBRA DE D MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA MANO DE OBRA PUNTOS PVC ENCHAQUETADO DE TUBERIA	8 64 2600 2 3 38 40 38	MINA 27.502 12.064 6.635 90.480 271.440 52.780 37.700 82.940	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640 1.508.000 3.151.720
UND UND Kg UND UND UND UND	SUBTOTAL MANO DE OBRA PERSON IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA MANO DE OBRA PUNTOS PVC ENCHAQUETADO DE TUBERIA PUNTO ENCHAQUETADO MANO DE OBRA UBICACIONDE TANQUE Y	8 64 2600 2 3 38 40	MINA OS Y TUBE 47.502 12.064 6.635 90.480 271.440 52.780 37.700	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640 1.508.000
UND UND Kg UND UND UND UND UND UND UND	SUBTOTAL MANO DE OBRA PERSON (IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA MANO DE OBRA PUNTOS PVC ENCHAQUETADO DE TUBERIA PUNTO ENCHAQUETADO	8 64 2600 2 3 38 40 38 83	MINA 27.502 12.064 6.635 90.480 271.440 52.780 37.700 82.940 67.860	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640 1.508.000 3.151.720 5.632.380
UND	SUBTOTAL MANO DE OBRA PERSON IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA MANO DE OBRA PUNTOS PVC ENCHAQUETADO DE TUBERIA PUNTO ENCHAQUETADO MANO DE OBRA UBICACIONDE TANQUE Y ACCESORIOS MANO DE OBRA CONTRATISTA AISLAMIENTO	8 64 2600 2 3 38 40 38 83 1	MINA OS Y TUBE 47.502 12.064 6.635 90.480 271.440 52.780 37.700 82.940 67.860 377.000 9.048	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640 1.508.000 3.151.720 5.632.380 377.000 5.066.880
UND	SUBTOTAL MANO DE OBRA PERSON (IATICOS Y MANO DE OBRA DE DE MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA MANO DE OBRA PUNTOS PVC ENCHAQUETADO DE TUBERIA PUNTO ENCHAQUETADO MANO DE OBRA UBICACIONDE TANQUE Y ACCESORIOS MANO DE OBRA CONTRATISTA AISLAMIENTO MANO DE OBRA CONTRATISTA DUCTOFLEX ALIMENTACION DE CUATRO DUCTEROS	8 64 2600 2 3 38 40 38 83	MINA 27.502 47.502 12.064 6.635 90.480 271.440 52.780 37.700 82.940 67.860 377.000	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640 1.508.000 3.151.720 5.632.380 377.000
UND	SUBTOTAL MANO DE OBRA PERSON IATICOS Y MANO DE OBRA DE D MANO DE OBRA INSTALACION DE LONAS MANO DE OBRA INSTALACION DIFUSORES MANO DE OBRA INSTALACION LAMINA GALV. MANO DE OBRA UBICACION VENTILADORES MANO DE OBRA UBICACIÓN UMA MANO DE OBRA INSTALACION TUBERÍA PVC CON CAÑUELA MANO DE OBRA PUNTOS PVC ENCHAQUETADO DE TUBERIA PUNTO ENCHAQUETADO MANO DE OBRA UBICACIONDE TANQUE Y ACCESORIOS MANO DE OBRA CONTRATISTA AISLAMIENTO MANO DE OBRA CONTRATISTA DUCTOFLEX	8 64 2600 2 3 38 40 38 83 1 560 64	MINA 27.502 47.502 12.064 6.635 90.480 271.440 52.780 37.700 82.940 67.860 377.000 9.048 10.556	13.721.005 ERÍA 380.016 772.096 17.251.520 180.960 814.320 2.005.640 1.508.000 3.151.720 5.632.380 377.000 5.066.880 675.584

SUBTOTAL MANO DE OBRA DUCTERI	ÍA Y TUBERÍA	44.330.676
SUBTOTAL EQUIPOS		227.275.552
SUBTOTAL MATERIALES, TRANSPORTES Y VIATICOS		84.285.900
SUBTOTAL MANO DE OBRA SUPERVICIÓN E ISNTALACION DE EQUIPOS		13.721.005
SUBTOTAL MANO DE OBRA INSTALACION DE DUCTOS Y TUBERIAS		44.330.676
SUBTOTAL PRESUPUESTO		369.613.133
IMPREVISTOS SOBRE COSTOS DE MATERIALES	4%	5.693.503
TOTAL PRESUPÙESTO		375.306.636
PROVISION GARANTIAS	0,5%	1.848.066
POLIZAS	1,0%	3.753.066
TOTAL PRESUPÙESTO		380.907.768

Bibliografía 125

6. Bibliografía

Alzate, S. V. (2016). Diseño de sistema de aire acondicionado para el área de quirofanos. Pereira, Risaralda.

- ASHRAE. (1985). AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING ENGINNERS. Atlanta.
- Cengel, Y. A., & Michael A, B. (2011). Termodinámica. Reno, EE.UU: Mc Graw Hill.
- Diebel, J., & Norda, J. (18 de Julio de 2020). weatherspark. Obtenido de https://es.weatherspark.com/y/21494/Clima-promedio-en-Buga-Colombia-durantetodo-el-a%C3%B1o
- Dossat, R. J. (1991). Principles of Refrigeration.
- Flicard. (13 de Octubre de 2020). *Blogpots*. Obtenido de http://psicrometria-imi131.blogspot.com/
- Frank Kreith, R. M. (1959). *Principos de transferencia de calor.* Cengage Learning Editores.
- Handbook, A. (2013). AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING ENGINNERS. Atlanta.
- Incropera, F. P., & Dewitt, D. P. (1996). *Fundamentos de trasferencia de calor.* Lafayette, Indiana: John Wiley & sons.
- Murillo, R. M. (2019). Diseño de un sistema de acondicionamiento de aire y extracción mecánica para la sucursal del instituto nacional de seguros de Jacó. Puntarenas, Costa rica.
- Orozco H, C. A. (s.f.). *Método para calcular cargas termicas.* pereira: Proyectos de airea acondicionado UTP-ACAIRE.
- Pardo, G. M. (2008). Diseño, instalación y mantenimiento de un sistema de aire acondicionado para las oficinas de Colmena BCSC. Pereira.
- Pereira, U. t. (2013). Refrigeración y aire acondicionado. Pereira.
- Rodriguez, M. G., & Diaz, C. A. (2011). Determinacion de las cargas térmicas para garantizar el confort en el auditorio de la universidad tecnológica de Bolivar. cartagena de indias.
- SMACNA. (05 de 10 de 2020). SMACNA. Obtenido de https://www.smacna.org/

Tecam. (27 de 11 de 2020). Obtenido de http://tecam-sa.com/

Valerezo, J. D. (2015). Diseño e Instalación del Sistema de Climatización y Ventilación Mecánica del Hospital del Niño Francisco Ycaza Bustamante. Guayaquil, Ecuador.