

Evaluación mecánica de casetónes armables y recuperables fabricados en plástico reciclado (PET, HDPE, LDPE Y COMBINADO) para losas aligeradas.

Maria Fernanda Mayo Arguello Código:20481726030

Universidad Antonio Nariño

Programa Ingeniería Civil

Facultad de Ingeniería Ambiental y Civil

Duitama, Boyacá, Colombia

2022

Evaluación mecánica de casetónes armables y recuperables fabricados en plástico reciclado (PET, HDPE, LDPE Y COMBINADO) para losas aligeradas.

Autor: Maria Fernanda Mayo Arguello

Proyecto de grado presentado como requisito parcial para obtener el título de:

Ingeniero Civil

Director:

Ingeniero Diego Rodríguez

Codirector:

Msc. Ramón de Jesús Manrique Espíndola

Línea de Investigación: Materiales de construcción.

Universidad Antonio Nariño

Programa Ingeniería Civil

Facultad de Ingeniería Ambiental y Civil

Duitama, Boyacá, Colombia

2022

NOTA DE ACEPTACIÓN

El trabajo de grado titulado Evaluación mecánica de casetones armables y recuperables fabricados en plástico reciclado (PET, HDPE, LDPE Y COMBINADO) para losas aligeradas.

Cumple con los requisitos para optar al título de Ingeniero Civil.

Firma del Director
Firma del Co-director
Firma Jurado
Firma Jurado

Agradecimientos

Primeramente, darle gracias a Dios por permitirme llegar hasta este punto de culminar la meta propuesta.

Agradecerles a todas las personas que han estado durante todo mi proceso, especialmente a mis padres, mi hermano y mi novio que me han apoyado de manera incondicional.

A mis tutores el Ingeniero Ramón de Jesús Manrique y el Ingeniero Diego Rodríguez por los aportes realizados, el apoyo y disposición que fueron fundamentales en el desarrollo de mi proyecto

Contenido

Agrade	cimientos	4
Resume	en	11
Abstrac	et	12
1. Int	troduccióntroducción	13
2. Jus	stificación	14
3. Ob	bjetivos	15
3.1. 0	Objetivo General	15
3.2. (Objetivos Específicos	15
4. Fo	ormulación y planteamiento del problema	16
5. Ma	arco Teórico	17
5.1.	Losa aligerada	17
5.2.	Esfuerzo y deformación	17
5.3.	Casetón:	18
5.3	3.3. Casetón en poliestireno	19
5.4.	Plástico	20
5.5.	Reciclaje del plástico	20
5.6.	Tereftalato de polietileno (PET)	21
5.7.	Polietileno de baja densidad (LDPE)	22
5.8.	Polietileno de alta densidad (HDPE)	23
5.9.	Elemento armable	24
6. Es	stado del conocimiento	25

7.	Met	todología	28
8.	Dise	eño casetón armable	30
9.	Pro	ceso constructivo del casetón	35
	9.1.	Cálculo del plástico	36
	9.2.	Trabajo de campo	38
	9.2.2.	Diseño Nº 2 definitivo	42
10	. R	Resultados de laboratorio	49
	10.1.	Casetón de madera	49
	10.2.	Casetón plástico 10 % LDPE Y 90% HDPE	52
	10.3 C	Casetón plástico 10% PET Y 90% HDPE	57
	10.3 C	Casetón plástico 10% LDPE, 10% PET Y 80% HDPE	61
11	. A	análisis de resultados	65
	11.1. (Comparación casetón de madera con las dosificaciones	65
	11.2.	Comparación casetón de poliestireno expandido con los casetones según la	
	dosific	cación	68
	11.3.	Flexión de una de las piezas	69
12	. Iı	nspección visual de adherencia del concreto al casetón de plástico	71
13	. R	Realización combinación 50% PET – 50% HDPE	73
14	. C	Conclusiones	74
15	. R	Recomendaciones	76
16	Δ	anexos	77

16	6.1. Registro fotográfico	77
16	6.2. Resultados de laboratorio	95
17.	Referencias	102
	Lista de tablas	
Tabl	la 1 Datos técnicos del PET	22
Tabl	la 2 Datos técnicos del LDPE	22
Tabl	la 3 Datos técnicos del HDPE	23
Tabl	la 4 Estado del conocimiento	25
Tabl	la 5 Dosificaciones para la construcción de los casetónes	36
Tabl	la 6 Volumen por pieza	36
Tabl	la 7 Cálculo de masa en Kg por pieza	37
Tabl	la 8 Cálculo masa total en Kg por pieza	38
Tabl	la 9 Carga y deformímetro	50
Tabl	la 10 Deformación unitaria y esfuerzo unitario casetón de madera	51
Tabl	la 11 Carga-deformímetro dosificación 1	53
Tabl	la 12 Deformación unitaria- esfuerzo unitario dosificación 1	55
Tabl	la 13 Carga- deformímetro dosificación 2	57
Tabl	la 14 Deformación unitaria - Esfuerzo Unitario dosificación 2	59
Tabl	la 15 Carga axial - deformímetro dosificación 3	61
Tabl	la 16 Deformación unitaria- esfuerzo unitario dosificación 3	63
Tabl	la 17 Resistencia máxima y deformación	65
Tabl	la 18 Resistencia máxima de falla y deformación de la falla	66
Tabl	la 19 Resistencia máxima vs deformación en falla	67
Tahl	la 20 Poliestireno expandido esfuerzo	68

Tabla 21 Resistencia máxima - deformación de la falla	69		
Lista de figuras			
Figura 1 Partes de la losa aligerada	17		
Figura 2 Casetón guadua	18		
Figura 3 Casetón en lona	19		
Figura 4 Casetón poliestireno expandido	19		
Figura 5 Codificación del plástico	21		
Figura 6 Elemento armable	24		
Figura 7 Fases de la metodología	28		
Figura 8 Plano piezas diseño nº 1	31		
Figura 9 Plano armado diseño Nº 1	32		
Figura 10 Piezas diseño Nº 2	33		
Figura 11 Plano armado diseño Nº2	34		
Figura 12 Flujograma de la construcción del casetón	35		
Figura 13 Masa en Kg por pieza	37		
Figura 14 Masa total en Kg por pieza según dosificación	38		
Figura 15 Lavado y secado de los plásticos	39		
Figura 16 Molde en madera	39		
Figura 17 Toma de peso del plástico	40		
Figura 18 Engrasado del molde	40		
Figura 19 Derretir plástico	41		
Figura 20 Vaciado del plástico	41		
Figura 21 Resultado de la pieza	42		
Figura 22 Molde en acero	43		
Figura 23 Organización lugar de trabajo	43		
Figura 24 Peso del plástico	44		

Figura 25 Calentar plástico	44
Figura 26 Engrasado y calentado del molde.	. 45
Figura 27 Vaciado del molde	. 45
Figura 28 Cierre y presión en el molde.	46
Figura 29 Choque térmico	46
Figura 30 Desmolde de la pieza	. 47
Figura 31 Perfeccionamiento de las piezas.	. 47
Figura 32 Casetón dosificación 1	. 48
Figura 33 Casetón dosificación 2	. 48
Figura 34 Casetón dosificación 3	. 48
Figura 35 Ficha técnica casetón poliestireno expandido	. 49
Figura 36 Casetón en madera y lona	. 49
Figura 37 Curva carga-deformímetro	. 50
Figura 38 Deformación vs esfuerzo casetón de madera	. 51
Figura 39 Falla casetón madera	. 52
Figura 40 Curva carga vs deformímetro dosificación 1	. 54
Figura 41 Curva deformación unitaria - esfuerzo unitario dosificación 1	. 56
Figura 42 Prueba laboratorio LDPE	. 56
Figura 43 Curva carga - deformímetro dosificación 2	. 58
Figura 44 Curva esfuerzo unitario - deformación unitaria dosificación 2	60
Figura 45 Falla casetón PET	60
Figura 46 Curva carga – deformímetro dosificación 3	62
Figura 47 Curva deformación unitario - esfuerzo unitario dosificación 3	64
Figura 48 Falla casetón combinado	. 64
Figura 49 Resistencia vs deformación	. 65
Figura 50 Resistencia máxima vs deformación	. 67

Figura 51 Resistencia Max. vs deformación	68
Figura 52 Falla a flexión	69
Figura 53 Vaciado del concreto	71
Figura 54 Secado del concreto	71
Figura 55 Desencofrado concreto plástico sin desmoldante	72
Figura 56 Desencofrado del concreto con desmoldante (aceite de cocina)	72
Figura 57 Pieza 50% PET - 50% HDPE	73

11

Resumen

Las losas aligeradas usan diferentes tipos de elementos para el alivianamiento en diversos

materiales como el de poliestireno expandido y el de madera con lona, para así cumplir con la

función principal de estas.

En la actualidad es necesario buscar diferentes acciones para reciclar y reutilizar esos

plásticos de un solo uso que afectan diferentes ecosistemas en el mundo, por esta razón se realiza

el diseño y construcción de un casetón que sea armable y recuperable elaborado en plástico

reciclado, para la construcción de losas aligeradas.

Al realizar los ensayos en laboratorio se pudo observar que el casetón con mejores

propiedades mecánicas es el elaborado con la combinación 10% LDPE, 10% PET y 80% HDPE,

puesto que es el que más soporta en la carga última y menos deformación presenta, comparado

con los convencionales como el de poliestireno expandido y el de madera lona.

Palabras clave: Losa aligerada, casetón, plástico.

Abstract

The lightened slabs use different types of elements for lightening in various materials such as

expanded polystyrene and wood with canvas, in order to fulfill their main function.

At present it is necessary to look for different actions to recycle and reuse those single-use plastics

that affect different ecosystems in the world, for this reason the design and construction of a coffers

that is buildable and recoverable made of recycled plastic is carried out, for the lightweight slab

construction.

When carrying out the tests in the laboratory, it was possible to observe that the coffers with the

best mechanical properties is the one made with the combination of 10% LDPE, 10% PET and

80% HDPE, since it is the one that supports the most in the ultimate load and presents the least

deformation compared to conventional ones such as expanded polystyrene and canvas wood.

Keywords: Lightened slab, coffers, plastic

1. Introducción

A medida que se realizan avances tecnológicos, un aspecto que ha venido generando preocupación es el impacto que se le genera al medio ambiente con los progresos logrados, por lo cual se han ido buscando alternativas para que los efectos que se causen a este cada vez sea el menor posible. La ingeniería civil no es indiferente a esta problemática razón por la que se realizan diferentes proyectos sostenibles con el medio ambiente, buscando protegerlo de diferentes formas como: los agregados al concreto, las mezclas asfálticas y materiales de construcción y así de esta manera minimizar el impacto negativo que las actividades de construcción generan al entorno.

La investigación a efectuar en el presente proyecto es la realización de un casetón que sea armable y recuperable en plástico reciclado junto a su evaluación mecánica, esto para comprobar si es posible la utilización de este tipo de casetón en la realización de losas aligeradas.

El casetón se va a realizar con diferentes composiciones de plástico reciclado, ya sea PET y HDPE, LDPE y HDPE o COMBINADO, comparando los resultados de resistencia con los diferentes casetones que existen en la actualidad como el de madera con lona y el de poliestireno expandido, para así poder determinar si el casetón en plástico reciclado ofrece la resistencia requerida en la construcción de las losas aligeradas.

2. Justificación

"El medio ambiente, es el espacio en el que se desarrolla vida y permite la interacción entre los diferentes organismos." (Etecé,2022)

Con la presente investigación se pretende favorecer el ambiente ya que el plástico es uno de los componentes que más contaminan y afectan al entorno, debido a su lenta degradación, al mismo tiempo se quiere favorecer a la industria de la construcción al utilizar casetones recuperables en plástico reciclado.

Es importante crear alternativas para ayudar a minimizar los impactos negativos al medio ambiente, debido a lo cual se ha decidido utilizar el plástico reciclado Tereftalato de polietileno (PET), Polietileno de alta densidad (HDPE) y el Polietileno de baja densidad (LDPE) para poder transformarlo en un elemento constructivo y realizar la evaluación mecánica del plástico reciclado en el uso de casetones recuperables para la construcción de losas aligeradas.

3. Objetivos

3.1. Objetivo General

 Realizar la evaluación mecánica de elementos de plásticos reciclados elaborados a partir de PET, HDPE, LDPE Y Combinado, empleados en la construcción de casetones recuperables, mediante pruebas de laboratorio patronadas y no patronada, que permitan analizar su viabilidad técnica.

3.2. Objetivos Específicos

- Conocer información sobre la literatura de trabajos prácticos y/o teóricos similares que sean de ayuda en la investigación.
- Caracterizar propiedades mecánicas como resistencia y deformación de los elementos usados convencionalmente y los elaborados con plástico reciclado para conocer los parámetros.
- Diseñar casetón elaborado en plástico reciclado y que sea recuperable, para que permita que este sea reutilizable.

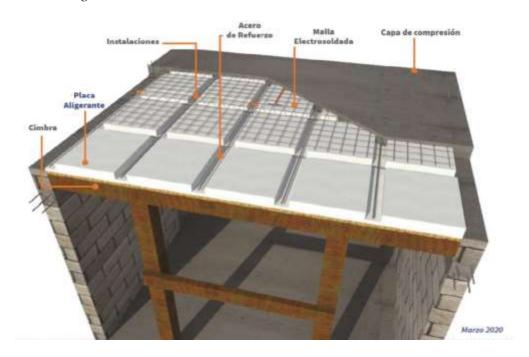
4. Formulación y planteamiento del problema

En las construcciones hay diferentes tipos de entrepiso como la losa maciza, lamina colaborante; losa aligerada: esta puede clasificarse según como se transmita la carga en una o dos direcciones. Actualmente, estas losas se construyen utilizando diferentes aligerantes como el casetón en diversos materiales tales como el de madera con lona, poliestireno expandido y fibra de vidrio. La utilización de estos materiales genera impactos negativos en el medio ambiente, por ejemplo, la madera y la guadua se obtiene de árboles, las lonas son un material obtenido de la rafia (material que se adquiere de palma de bambú o rafia) y luego es plastificada con polietileno, los casetones realizados en madera no siempre se reutilizan ya que estos quedan incorporados en la placa; la utilización de estas materias primas genera deforestación en diferentes zonas del país. El poliestireno expandido es un material que no es de fácil degradación y en la mayoría de sus casos cuando se pretende reutilizar, no siempre es posible debido a que presenta deformaciones al quedarse adherido algunas partes de este en la losa.

"En Colombia cada persona consume 24 kilos de plástico al año y solo se recicla el 20 % del más de 1,4 millones de toneladas desechos que de este material se consumen. Esto ubica al país como la nación que más contribuye a la contaminación del mar Caribe con plásticos, por encima de México y Estados Unidos." (Semana, 2021.)

Por tal razón es importante que desde el sector construcción se pueda favorecer al medio ambiente al realizar una evaluación mecánica del plástico reciclado ya sea PET, HDPE, LDPE Y COMBINADO en casetones reutilizables para losas aligeradas y de esta manera responder a la siguiente pregunta:

¿Qué tan factible resulta el empleo de plástico reciclado en la elaboración de casetones recuperables para la construcción de losas aligeradas?


5. Marco Teórico

5.1. Losa aligerada

Medina y Blanco (2020) indican que la losa aligerada forma parte de la estructura de una edificación, constituido por viguetas, aligerante (de diferentes materiales) y concreto. Teniendo como funciones las de transferir a las vigas y muros las cargas vivas, cargas muertas y las fuerzas ejercidas por sismos, también la de conectar todos los componentes estructurales.

Figura 1

Partes de la losa aligerada.

Nota. En la figura se ven las partes en la construcción de una losa aligerada. (FANOSA,2021)

5.2. Esfuerzo y deformación

El esfuerzo es la fuerza a la que se ve sometida el área en la que se encuentra actuando esta.

Como resultante del esfuerzo el elemento sufre unas deformaciones que alteran su geometría.

Existen diferentes tipos de ensayos para los diversos esfuerzos (compresión, tensión y de corte.)

El esfuerzo de compresión: en este las fuerzas de igual magnitud son aplicadas al cuerpo y vienen en sentido contrario hasta aproximarse la una a la otra.

El esfuerzo de tensión: en este las fuerzas de igual magnitud son ejercidas en el elemento y van en direcciones opuestas.

El esfuerzo de corte: las fuerzas aplicadas al sólido son de diferentes magnitudes o pueden ser iguales que se trasladan en sentido opuesto al sólido. (Esfuerzo y deformación,2011)

5.3. Casetón:

Knaufindustries (2020) indica que el casetón es un componente que tiene una estructura ya sea cubica o rectangular, empleado para el aligeramiento de las losas en las edificaciones. Estos son elaborados en diferentes materiales como lo son: el poliestireno expandido, madera.

5.3.1. **Casetón de guadua.** Es un elemento con la forma rectangular constituido por una armadura hecha en madera de eucalipto recubierto por esterilla de guadua. (casetones JC, s.f)

Figura 2

Casetón guadua.

Nota. En la figura 2 se puede apreciar el casetón en guadua. (Fabrica de casetón JAR, s.f)

5.3.2. Casetón en lona sintética. Elemento rectangular fabricado de una estructura de madera forra en lona sintética. Es más ligero que la guadua. (CANY, s.f).


Figura 3Casetón en lona

Nota. En la figura 3 casetón en madera forrado por lona. (Fabrica de casetón PJ, s.f)

5.3.3. *Casetón en poliestireno expandido*. Componente generalmente hecho con forma rectangular, pero con la opción de fabricarse en diferentes formas. Este hecho de poliestireno expandido con baja densidad. (CEMPOSA, s.f).

Figura 4Casetón poliestireno expandido

Nota. En la Figura 4 se observa el casetón en poliestireno expandido. (Valero, s.f)

5.4. Plástico

La mayor parte de los plásticos son compuestos por materiales sintéticos y derivados del petróleo, cuentan con una elasticidad y flexibilidad cuando se encuentra a ciertas temperaturas, lo que facilita dar diferentes formas, según se requiera. Este es uno de los materiales sintéticos con gran utilidad, pero también es de los que más contaminan el mundo.

Los plásticos pueden catalogarse de diferentes formas esto dependiendo de: el origen de sus monómeros, la reacción al calor y la estructura molecular. Sus usos son diversos como lo es para: la envoltura de alimentos, fundas, bolsas, envases, tuberías, impermeabilizantes, entre otros. (Ondarse,2021).

5.5. Reciclaje del plástico

Así como el papel, cartón, vidrio y otros materiales tienen diferentes fases para el reciclaje justamente pasa lo mismo con el plástico, por lo que para este último se tiene en cuenta las siguientes fases:

- Depósito de envases en el contenedor correspondiente.
- Recogida y traslado a la planta de selección.
- Trituración y lavado, generación de un nuevo producto. (BBVA,2021)

El plástico tiene diferentes códigos para la identificación de estos, los cuales permiten realizar la separación y el reciclaje de estos, en la siguiente imagen se puede observar las diferentes codificaciones y propiedades de los plásticos.

Figura 5

Codificación del plástico

Símbolo	Tipo de Plástico	Propiedades	Usos Comunes
(L) PET	PET PolietilenTereftalato (Polyethylene Terephthalate)	Contacto alimentario, resistencia fisica, propiedades térmicas, propiedades barreras, ligereza y resistencia química.	Bebidas, refrescos y agua, envases para alimentos (aderezos, mermeladas, jaleas, cremas, farmacéuticos, etc.)
23 HDPE	HDPE Polietileno de alta densidad (High Density Polyethylene)	Poco flexible, resistente a químicos, opaco, fácil de pigmentar, fabricar y manejar. Se suaviza a los 75°C	Algunas bolsas para supermercado, bolsas para congelar, erwases para leche, helados, jugos, shampoo, químicos y detergentes, cubetas, tapas, etc.
BVC	PVC Policloruro de vinilo (Plasticised Polyvinyl Chloride PCV-P)	Es duro, resistente, puede ser claro, puede ser utilizado con solventes, se suaviza a los 80°C. Flexible, claro, elástico, puede ser utilizado con solventes.	Envases para plomería, tuberías, "blister packs", envases en general, mangueras, suelas para zapatos, cables, correas para reloj.
43 LDPE	LDPE Polietileno de baja densidad (Low density Polyethylene)	Suave, flexible, traslucido, se suaviza a los 70°C, se raya fácilmente.	Película para empaque, bolsas para basura, envases para laboratorio.
<u>s</u>	PP Polipropileno (Polypropylene)	Dificil pero aún flexible, se suaviza a los 140°C, traslucido, soporta solventes, versátil.	Bolsas para frituras, popotes, equipo para jardinería, cajas para alimentos, cintas para empacar, envases para uso veterinario y farmacéutico.
<u>a</u>	PS Poliestireno (Polystyrene)	Claro, rígido, opaco, se rompe con facilidad, se suaviza a los 95°C. Afectado por grasas y solventes.	Cajas para discos compactos, cubiertos de plástico, imitaciones de cristal, juguetes, envases cosméticos.
€S PS-E	PS-E Poliestireno Expandido (Expanded Polystyrene)	Esponjoso, ligero, absorbe energía, mantiene temperaturas	Tazas para bebida calientes, charolas de comida para llevar, envases de hielo seco, empaques para proteger mercancia frágil
AS OTHER	OTHER Otros (SAN, ABS, PC, Nylon)	Incluye de muchas otras resinas y materiales. Sus propiedades dependen de la combinación de los plásticos.	Auto partes, hieleras, electrónicos, piezas para empaques.

Nota. (AM GROUP, s.f)

5.6. Tereftalato de polietileno (PET)

Según Arapack (2018) PET es un tipo de plástico por lo general es empleado por la industria alimenticia y su uso común es de envases para bebidas. Tiene como características son un material transparente y es reciclable.

Los envases de PET son impermeables y no biodegradables.

Tabla 1Datos técnicos del PET

Propiedades	Método de prueba	Unidad	Valor típico		
Densidad	ISO 1183	g/cm ³	1.40		
Esfuerzo en el punto	ISO 527	Mpa	80		
de fluencia					
% elongación en el	ISO 527	%	20		
punto de ruptura	punto de ruptura				
Resistencia al	ISO 179/IeU	KJ/m^2	82		
impacto					
Dureza	ISO 13000-2	Shore D	81		
Punto de Fusión	ISO 3146	°C	255		

Nota. Información obtenia de los datos técnicos de multimarc.

5.7. Polietileno de baja densidad (LDPE)

El polietileno de baja densidad tiene estructuras demasiado ramificadas lo que permite que tenga menor densidad, gran flexibilidad y posibilidad de ser reciclable. Es común verlos en bolsas, film transparente, envolturas de alimentos. Tiene color lechoso dependiendo el espesor que tenga, por lo que algunas veces puede ser casi transparente. (Envaselia, s.f).

Tabla 2Datos técnicos del LDPE

Propiedades	Método de prueba	unidad	Valor típico
Densidad	D1505	g/cm ³	0,920
Índice de fluidez	D1238	g/10min	0,73
(190°C/2,6 Kg)			

Propiedades		Método de prueba	unidad	Valor típico
%	elongación	D882	%	1260/1530
máxima				

Nota. Información obtenida de los datos técnicos de Braskem

5.8. Polietileno de alta densidad (HDPE)

Envaselia (s.f) indica que el HDPE es un plástico, cuyas moléculas son lineales, lo cual significa que casi no tiene ramificaciones, razón por la que tiene una densidad más alta que el LDPE y el PET, que le permite que pueda soportar las altas temperaturas, y produce un plástico más rígido.

Tabla 3Datos técnicos del HDPE

Propiedades	Método de prueba	unidad	Valor típico		
Densidad	D1505	g/cm ³	0,955		
Resistencia a la	D638 (50	Psi	4000		
tracción en la	MM/MIN,iv)				
fluencia					
% elongación en la	D638 (50	%	600		
ruptura	MM/MIN,iv)				
Temperatura de	D746	°C	<-118		
fragilidad al impacto					
Módulo de	D790	Psi	200.000		
elasticidad					

Nota. Información obtenida de los datos técnicos de Manuchar Colombia

5.9. Elemento armable

Es un elemento que está constituido por piezas sueltas, para que pueda ser amado, ensamblado y retirado de manera sencilla. (RAE, s.f.)

Figura 6

Elemento armable

Nota. En la figura 5 se observa la imagen de ejemplo de fichas tipo lego, con el que se puede realizar un elemento. (Garrán, 2021).

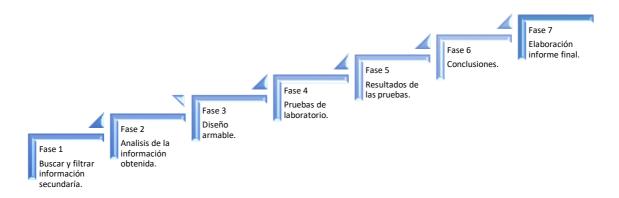
6. Estado del conocimiento

Para este capítulo se buscó y se filtró información de trabajos similares a la investigación a desarrollar y/o avances de la construcción de casetones y de este modo contribuir en el progreso del presente proyecto, esta información fue adquirida en google académico. La literatura obtenida se muestra en la tabla 1, esta tendrá el año, autor o autores, el título de la investigación, tipo de publicación y una corta descripción de lo que va a tratar el trabajo.

Tabla 4

Estado del conocimiento

Año	Autor	Título	Tipo de	Descripción	
			publicación		
2017	Padilla, Luis Treespalacios , Carlos	Implementación de un sistema de aligeramiento de losas de entrepiso de concreto con botellas PET y cartón.	Trabajo de grado	Estudio y diseño de un casetón hecho a partir de botellas (PET) y cartón, pruebas a compresión y si es económicamente viable.	
2018	Gómez, David Saavedra, Joan	Estudio del uso de plástico reciclable en casetones para placas de entrepiso aligeradas	Monografía trabajo de grado	Estudio y comparación del tereftalato de polietileno (PET) reciclado con madera de pino radiata y poliestireno expandido, para verificar si es posible usarse como casetón para placa aligerada, pruebas de compresión y flexión, al comparar la madera radiata y el plástico ven que no hay gran variación en el esfuerzo deformación.	
2018	Villacís, Juan	Análisis comparativo de factibilidad técnica y económica entre casetones de telgopor de alta densidad y encofrados modulares semiesféricos de caucho reciclado	Tesis pregrado	Comparación entre casetón de caucho reciclado con una forma semicircular entre el casetón de fibra de vidrio, concluye que el caucho utilizado tiene mayor resistencia mecánica que el de espuma flex y el plástico.	


Año	Autor	Título	Tipo	de	Descripción
			publicación		
2018	Gómez, Laura Acero, Juan	usado como sistema de alivianamiento en losas. Formaletas aligeradas para losas de entrepisos (casetones) con un sistema de montaje plegable y modular.	Monogra tecnólog		Diseño de casetones de manera modular y plegable para el retiro y posible reutilización de estos y beneficios por espacio en transporte y almacenamiento,
2018	Botet, Ana	Estudio de los plásticos como material reciclado para la obtención de material de construcción	Trabajo grado	de	Mediante la información que recopila puede concebir algunas de las posibilidades que tiene el plástico en el campo de la construcción y arquitectura, teniendo en cuenta los beneficios que trae al medio ambiente, dado que el plástico se obtendría mediante el reciclaje.
2018	Betancourt, Fernando	Estudio de nuevas tecnologías de la construcción con bloques de materiales plásticos reciclados	Trabajo final master	de	Diseño de un bloque, hecho a partir de plástico reciclado PET, con forma tipo lego, concluye que este bloque es factible debido a la resistencia, permeabilidad y peso que este presenta,
2018	García De Los Santos Emanuel, Martínez Mateo Melissa, Pérez Arleen Nina, Mejía Suero Ariesp, Olivo Núñez Alvin, Morantín Ventura Benito,Ortiz Fannelly, Escorbores Iyeisys, Fèliz Irving Roberto, Mentor de facultad.		Ponencia	1	Realizan el estudio de factibilidad para poder sustituir un porcentaje en volumen de agregado grueso por plástico ABS triturado y recolectado como desecho para la elaboración de bloques de 6 pulgadas. Cuando se sustituye en el 40% del agregado el peso por unidad se redujo un 10%.

Año	Autor	Título	Tipo de	Descripción
			publicación	
2018	Alaluddin Mohammed, MedCrave	Use of plastic waste in civil constructions and innovative decorative material (Eco-Friendly	Articulo	El articulo muestra el uso del plástico en la construcción civil, ya sea desde tornillos hasta piezas más grandes como decoración. El usar el plástico, contribuye a la reducción de emisiones de CO2.
2018	Sánchez Soloaga Iris, Oshiro Ángel, Positieri María, & Pontificia Universidad Católica de Chile.	Te use of recycled plastic in concrete. An alternative to reduce the ecological footprint.	Articulo revista de construcció n	Realizan un estudio para utilizar el plástico como agregado grueso en el hormigón para reducir la huella ecológica, sin embargo en la construcción del hormigo lo que más contamina es el uso del cemento, aunque el uso del plástico si ayuda al aportar beneficios ambientales.
2020	Soza, Elizabeth	Propuesta de bloque ecológico como material de construcción sostenible a base de plástico reciclado en Managua	Tesis de grado	Diseño y elaboración de bloque ecológico hecho a partir de polietileno de alta densidad y polipropileno, con pruebas de inspección visual, a la intemperie y de compresión, donde concluyen que el polietileno de alta densidad tiene mayor resistencia al compararlo con el polipropileno.
2020	Martinez, Jehisson Cruz, Jose Lemus, Nelson	Construcción de estructura para domo geodésico, a base de plástico PET reciclado.	Proyecto de investigació n de grado.	Muestran el diseño del domo realizado a partir de botellas plásticas, quienes adicional, hacen plan financiero, constitución de empresa, marketing.
2021	Chávez, Diego Londoño, Dayan	Diseño de casetones y muros no estructurales con botellas pet para construcciones en obras civiles	Proyecto de investigació n de grado	Diseño de casetones y muros no estructurales por medio de botellas PET, a los casetones se le realizaron pruebas con cargas, compresión, concluyen que los envases deben tener tapa sin defectos ya que por la presión del aire dentro de la botella genera mayor resistencia.

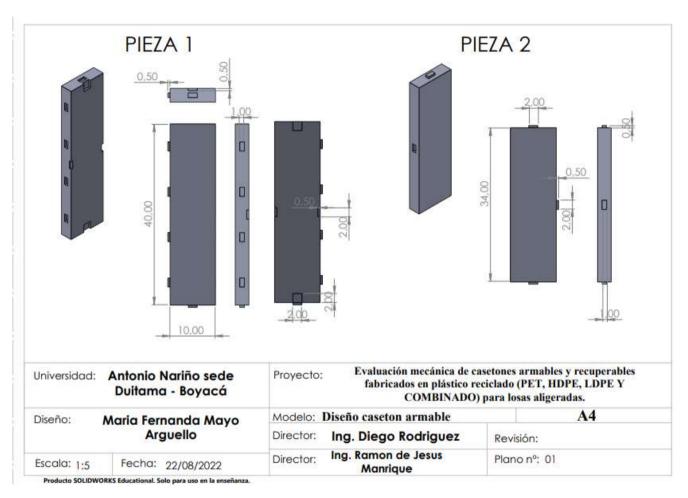
7. Metodología

La metodología que se utilizará en el desarrollo de este proyecto será mixta (cualitativa y cuantitativa), estará dividido en seis fases, lo que permitirá el progreso de la investigación se realice de manera ordenada, las fases se muestran en la siguiente figura:

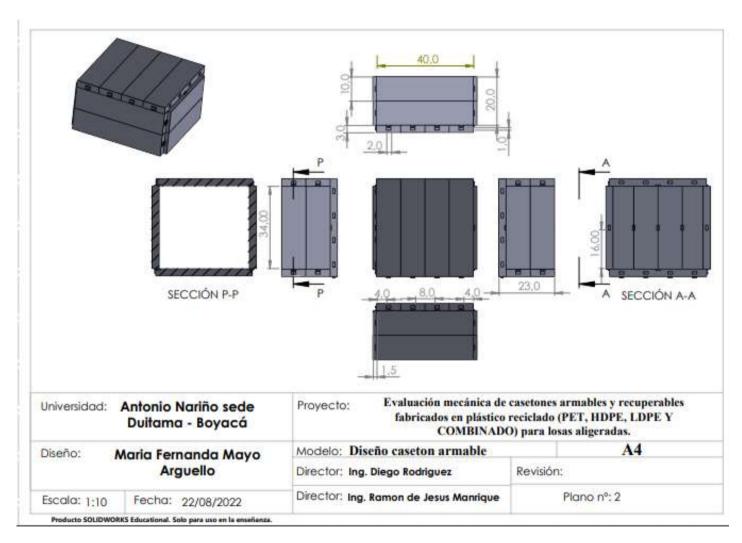
Figura 7Fases de la metodología

Nota. Elaboración propia

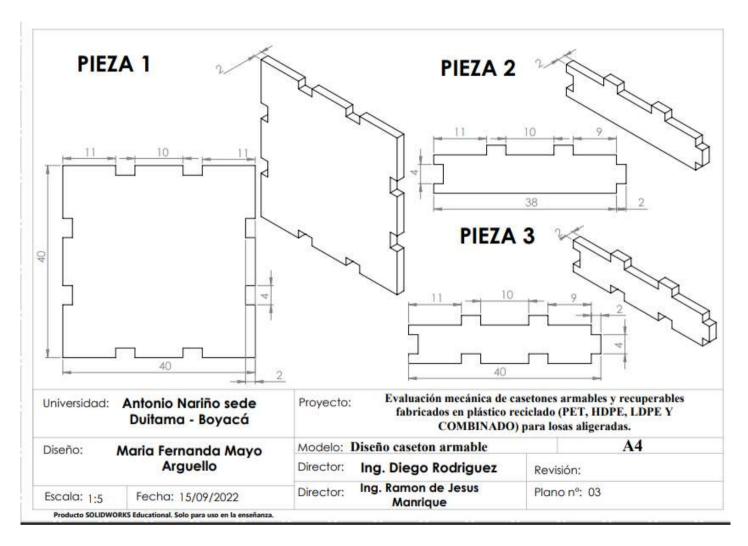
Las diferentes fases mostradas en la figura 1 se van a desarrollar de la siguiente manera:


- Fase 1. Buscar y filtrar información secundaria: se realiza una búsqueda en google académico, bases de datos, libros, repositorios seleccionando la información que sea útil para la investigación.
- Fase 2. Análisis de información obtenida: de la indagación realizada en la fase anterior se interpreta, para facilitar las definiciones necesarias en la investigación, y realizando un estudio de mercado de casetones.
- Fase 3. Diseño y construcción armable: Producir el diseño del casetón para que pueda ser recuperable de manera fácil.
- Fase 4. Pruebas laboratorio: Ejecutar pruebas de laboratorios patronadas y no patronadas comparando el casetón de plástico reciclado con los casetones convencionales.

- Fase 5. Resultados de las pruebas: Mediante las pruebas realizadas en la fase 4, se hará el análisis de resultados y así poder indicar cuál de los tipos de plásticos es viable según la resistencia del material.
- Fase 6. Conclusiones: Analizando las fases anteriores se procede a concluir la investigación.
- Fase 7. Elaboración Informe final: a partir de la información obtenida en las fases anteriores realizar el informe final del proyecto


8. Diseño casetón armable

A continuación, se puede observar en la Figura 8 y Figura 9 el plano del diseño Nº1 de casetón armable realizado en el programa SOLIDWORKS por medio de la licencia educativa otorgada por el desarrollador. Este diseño está constituido por dos piezas esenciales para realizar el armado, en las figuras se encontrarán todas las medidas los cuales sirvieron de guía para elaborar el molde en madera de las dos piezas que lo componen. Debido a que la madera no es un buen conductor térmico, y no puede mantenerse a temperaturas altas, produce que el plástico no se distribuya de manera uniforme, obteniendo piezas no homogéneas, con gran con gran cantidad de vacíos posterior al desencofre, por esta razón se realiza el diseño Nº2 como se muestra en la Figura 10 y la Figura 11, el cual está compuesto por tres piezas fundamentales para realizar el armado del casetón.


Figura 8Plano piezas diseño nº 1

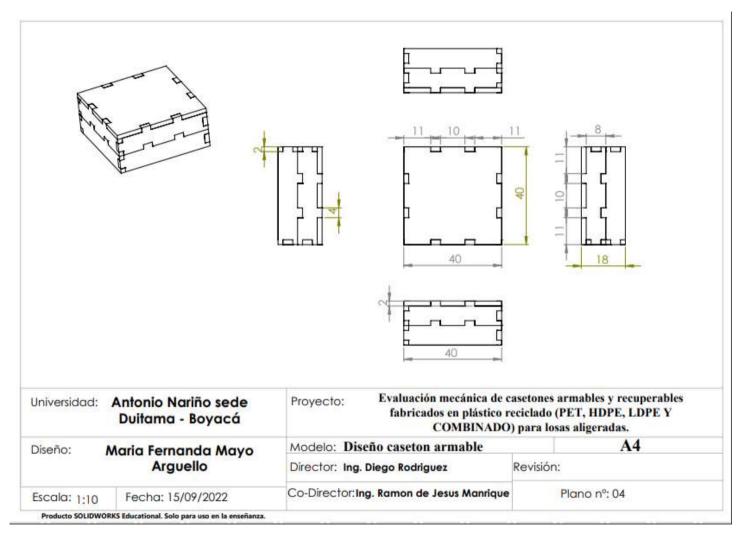
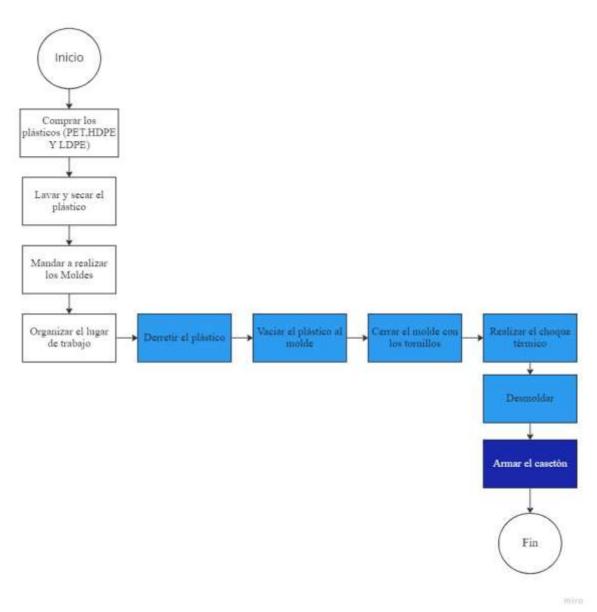

Figura 9Plano armado diseño Nº 1

Figura 10Piezas diseño Nº 2


Figura 11Plano armado diseño Nº2

9. Proceso constructivo del casetón

Para realizar la construcción del casetón armable se realiza un proceso paso a paso como se muestre en la Figura 12, los pasos que se reflejan en azul claro, son actividades iterativas según la dosificación, mientras que, el paso en azul oscuro se repite para cada dosificación en el armado del casetón.

Figura 12Flujograma de la construcción del casetón

Para la elaboración de los casetones se tiene en cuenta las dosificaciones que se muestran en la tabla 5.

Tabla 5Dosificaciones para la construcción de los casetónes

DOSIFICACIÓN	HDPE(%)	LDPE(%)	PET(%)
1	90	10	0
2	90	0	10
3	80	10	10

Nota. Elaboración propia

9.1. Cálculo del plástico

Para la elaboración de las piezas se determinan las cantidades de plástico a emplear en cada elemento, considerando el volumen de cada elemento y la densidad del plástico.

El volumen es calculado multiplicando el ancho por el largo por el alto de cada figura como se observa en la tabla 6.

Tabla 6Volumen por pieza

Pieza]	Largo (m)	Ancho (m)	Alto (m)	Volumen (m^3)
Anclaje		0,02	0,02	0,04	0,000016
1		0,4	0,4	0,02	0,0032256
2	2	0,4	0,08	0,02	0,0007056
3	3	0,4	0,08	0,02	0,0006432

Nota. Elaboración propia

Para obtener la masa en kilogramos de cada pieza se multiplica densidad de cada plástico y el volumen de la pieza dependiendo de la dosificación propuesta en la tabla 5, teniendo en cuenta un 5 por ciento de desperdicio.

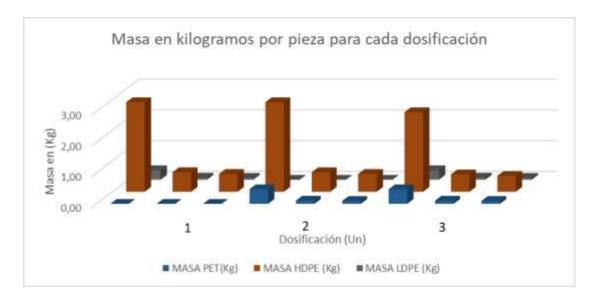

 $La~densidad~del~PET~es~de~1400~Kg/~m^3,~la~del~HDPE~es~de~955~Kg/~m^3~y~la~del~LDPE~920$ $Kg/~m^3.$

Tabla 7Cálculo de masa en Kg por pieza

Dosificación	Pieza	Volumen	Densidad PET	Densidad HDPE	Densidad LDPE	Masa PET	Masa HDPE	Masa LDPE
		(m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg)	(kg)	(kg)
	1	0,0032256	1400	955	920	0,00	2,91	0,31
1	2	0,0007056	1400	955	920	0,00	0,64	0,07
	3	0,0006432	1400	955	920	0,00	0,58	0,06
	1	0,0032256	1400	955	920	0,47	2,91	0,00
2	2	0,0007056	1400	955	920	0,10	0,64	0,00
	3	0,0006432	1400	955	920	0,09	0,58	0,00
	1	0,0032256	1400	955	920	0,47	2,59	0,31
3	2	0,0007056	1400	955	920	0,10	0,57	0,07
	3	0,0006432	1400	955	920	0,09	0,52	0,06
					Total	1,34	11,93	0,88

En la Figura 13 se muestra la masa en kilogramos de cada tipo de plástico según la dosificación que va utilizar por cada pieza

Figura 13 *Masa en Kg por pieza*

Nota. Elaboración propia

En la tabla 8 se presenta el cálculo de masa en kilogramos total a utilizar por cada dosificación, debido a que la cantidad de elementos es variable según la pieza.

Tabla 8Cálculo masa total en Kg por pieza

Dosificación	Pieza	Volumen (m^3)	Densidad PET (Kg/m^3)	Densidad HDPE (Kg/m^3)	Densidad LDPE (Kg/m^3)	Masa PET(Kg)	Masa HDPE (Kg)	Masa LDPE (Kg)
	1	0,0032256	1400	955	920	0,00	2,91	1,25
1	2	0,0007056	1400	955	920	0,00	2,55	0,27
	3	0,0006432	1400	955	920	0,00	2,32	0,25
	1	0,0032256	1400	955	920	0,47	2,91	0,00
2	2	0,0007056	1400	955	920	0,41	2,55	0,00
	3	0,0006432	1400	955	920	0,38	2,32	0,00
	1	0,0032256	1400	955	920	0,47	2,59	0,31
3	2	0,0007056	1400	955	920	0,41	2,26	0,27
	3	0,0006432	1400	955	920	0,38	2,06	0,25
					TOTAL	2,53	22,48	2,60

La Figura 14 muestra la masa total en kilogramos a utilizar de cada plástico por pieza según la dosificación que se esté trabajando.

Figura 14Masa total en Kg por pieza según dosificación

Nota. Elaboración propia

9.2. Trabajo de campo

El trabajo realizado en campo se divide en dos fases, la primera es referente al casetón diseño Nº1 y la fase dos con el modelo definitivo que corresponde al diseño Nº2.

En la Figura 15 se presenta el lavado del plástico PET y HDPE y el secado al aire de los mismos.

Figura 15

Lavado y secado de los plásticos

Nota. Elaboración propia

9.2.1. Diseño modelo Nº1

Como prueba inicial se realiza el molde en madera del diseño Nº 1 como se muestra en la Figura 16, que se observa en las Figuras 8 y 9.

Paso 1. Elaboración del molde en madera

Figura 16

Molde en madera

Nota. Elaboración propia

Paso 2. pesado y dosificación del plástico por pieza.

Figura 17Toma de peso del plástico

Paso 3. Engrasado del molde y espátula, para evitar que el plástico se adhiera a estos.

Figura 18Engrasado del molde

Nota. Elaboración propia

Paso 4. Derretir el plástico. se realiza con calor producido por la leña, evidenciando que no hay temperatura constante y además se requiere de un tiempo prolongado, aproximadamente de dos horas y media, para que obtenga la consistencia que permita la manejabilidad adecuada.

Figura 19

Derretir plástico

Paso 5. Realizar el vaciado del plástico al molde y se utiliza una espátula para compactar y disminuir los vacíos.

Figura 20Vaciado del plástico

Nota. Elaboración propia

Paso 6. Se cierra el molde con la tapa y se procede a realizar el choque térmico al introducir el molde en agua fría durante 20 minutos y se procede a desmoldar.

Paso 7. Pieza final.

Figura 21Resultado de la pieza

Nota. Elaboración propia

En la Figura 21 se observa el resultado, donde se presenta una cantidad importante de vacíos ya que el plástico al momento de realizar el vaciado el molde debe estar caliente para que este se distribuya uniformemente y no queden los huecos que se observan.

Debido a esta condición, se modifica el diseño eliminando los elementos de encaje pequeños, elaborándolo en acero con lo que se obtiene un producto más funcional, que permite su precalentamiento durante el vaciado y un sistema de ensamblaje mejorado.

9.2.2. Diseño Nº 2 definitivo

En las Figuras 10 y 11 se muestra el diseño Nº 2, utilizado para la elaboración de los casetones de las diferentes dosificaciones mostradas en la tabla 5.

Paso 1. Se fabrica el molde en lámina de acero con espesor de 3/16 de pulgada y ángulo en acero de 2 cm *2 cm

Figura 22

Molde en acero

Nota. Elaboración propia

Paso2.Se prepara los materiales y equipos necesarios en las condiciones ambientales adecuadas para permitir que el calor se suministre de manera constante y no se presente cambio de temperatura que alteren el producto.

Figura 23Organización lugar de trabajo

Nota. Elaboración propia

Paso 3. Se pesó todas las cantidades por pieza calculadas en la tabla 7.

Figura 24Peso del plástico

Paso 4. Se calienta el plástico para derretirlo. Este proceso se realiza en una estufa industrial para mantener una temperatura constante de 180°C constante. Y cuyo tiempo para obtener el plástico derretido es de 50 minutos.

Figura 25Calentar plástico

Nota. Elaboración propia

Paso 5. Engrasar y calentar el molde para que el plástico no se adhiera a este, y se realiza el vaciado de manera adecuada.

Figura 26

Engrasado y calentado del molde.

Paso 6. Vaciado del plástico en el molde. este se realiza cuando el plástico ya está con la apariencia de una masa uniforme.

Figura 27Vaciado del molde

Nota. Elaboración propia

Paso 7. Se cierra el molde con la tapa y se le aplica presión con el peso de tres personas con masa total de 250 kilogramos para la pieza 1 y para las piezas 2 y 3 solo una persona con la masa de 90 kilogramos.

Figura 28

Cierre y presión en el molde.

Paso 8. Se realiza choque térmico al introducir el molde en agua fría y dejarlo en esta por un tiempo de 10 minutos, posteriormente se extrae del agua, se desarma el molde y vuelve a introducirse la pieza de plástico en agua fría por otros 10 minutos.

Figura 29

Choque térmico

Nota. Elaboración propia

Paso 9. Se procede a desmoldar la pieza plástica.

Figura 30

Desmolde de la pieza

Paso 9. Perfeccionar las piezas, ya que el proceso es artesanal entonces quedan imperfecciones en estas.

Figura 31

Perfeccionamiento de las piezas.

Nota. Elaboración propia

Los pasos del 3 al 9 se repiten para la elaboración de cada pieza que componen los 3 diferentes casetones según la dosificación que corresponda.

Paso 10. Armado del casetón con las dosificaciones de la tabla 5.

Figura 32Casetón dosificación 1

Figura 33

Casetón dosificación 2

Nota. Elaboración propia

Figura 34

Casetón dosificación 3

Nota. Elaboración propia.

10. Resultados de laboratorio

Luego de realizar el armado del casetón con todas sus piezas, estas fueron llevadas al laboratorio, donde se realizó el ensayo de falla para los tres dosificaciones y el casetón de madera para obtener un valor de referencia o de comparación, las fallas se realizan a compresión.

Se realiza la búsqueda y se encuentra la ficha técnica del casetón de poliestireno expandido.

Figura 35Ficha técnica casetón poliestireno expandido

% Volumen % Volumen # m m fs		24 A Rillo metro Cuada Metro Poscales	triedo	24 3 'X W %	3	Unit	NOM-C212 Fallos Retien Watts Percentage lad da Prosidin Termica Strateica
% Volümen % Volümen R m2	d Centr	RHo metro Cuad	d rado	1 1		2 6	rados Renan Watts Porcentaje
% Volümen % Volümen K	4	A File	4	1 1		2	risdon former
% Volümen % Volümen		A	4	3		2	
% Volümen							NOM-C212
% Volümen							
1000000000000	DESCRIPTION OF THE PERSON OF T	ENDAMENT	THE REAL PROPERTY.				
	40.14-07	2017/01/05	and small	*10(10:0)	222/23.00	area language	munit Caldy
kitta Insili	18 (2.6)	AD IS 40	70/10/21	110/16/0	135 (19.4)	200 (29:0)	NOM-C209
kPa (psi)	16 (2.3)	35 (5.1)	55 (8.0)	90 (13.1)	115 (16.7)	170 (24.7)	NOM-C209
kPa (psi)	7(1.0)	15 (2.2)	25 (3.6)	40 (5.8)	50 (7.3)	75(10.9)	NOM-C209
kPa (psi)	55 (8)	99 HW	177 (25)	207 (30)	276 (40)	345 (50)	NOM-C176
1.00		THE RESERVE OF THE PARTY OF THE	1700	The state of the state of	The second second	DICORDING TRANSPORT	The State of
THE PERSON NAMED OF THE PERSON					4		ASTM C 578-874
W/m·*K	0.0445	100000000000000000000000000000000000000	0.0052	110000000000000000000000000000000000000	0.0331		NOM-C189
4.000	9	12	15	18	22	30	
Valores			Den	sidad			Método de Prueba
1	TUHA	TECH	ILA DE	LEPS			
	Valores W/m*K L=*F-ft*-nr/BTU *K-m*/W kPa (psi) kPa (psi)	Valores 9 W/m*K 0.04e5 L=*f*-ft*-hr/BTU 3.24 *K-m*/W 0.5814 kPa (psi) 35 (8) kPa (psi) 7 (1.0) kPa (psi) 16 (2.3)	Valores 9 12 W/m*K 0.0445 0.0448 L=*f-ft²-hr/BTU 3.24 3.2 *K-m²/W 0.5814 0.55 kPa (psi) 35 (8) 69 (10) kPa (psi) 7 (1.0) 15 (2.3) kPa (psi) 16 (2.3) 35 (5.1)	Valores Den 9 12 15 W/m*K 0.0445 0.0448 0.0343 L=*F-ft*-hr/BTU 3.24 3.2 3.6 *K·m*/W 0.5814 0.55 0.63 kPa (psi) 35 (8) 69 (10) 172 (25) kPa (psi) 7 (1.0) 15 (2.3) 25 (3.6) kPa (psi) 16 (2.3) 15 (5.1) 55 (8.0)	9 12 15 18	Valores Densidad 9 12 15 18 22 W/m*K 0.0445 0.0448 0.0352 0.043 0.0331 L=*f-ft*-înr/BTU 3.2 3.2 3.6 3.8 4 *K-m*/W 0.5814 0.55 0.63 0.67 0.7 kPa (psi) 35 (8) 69 (10) 172 (25) 207 (30) 276 (40) kPa (psi) 7 (1.0) 15 (2.3) 25 (3.6) 40 (5.8) 50 (7.3) kPa (psi) 16 (2.3) 15 (5.1) 55 (8.0) 90 (13.1) 115 (3.6.7)	Valores Densidad 9 12 15 18 22 30 W/m*K 0.0445 0.0441 0.0352 0.0343 0.0331 0.0316 L=*f-ft*-nr/BTU 3.2 3.6 3.8 4 4.2 *K-m*/W 0.5814 0.55 0.63 0.67 0.7 0.74 kPa (psi) 35(8) 69(10) 172(25) 207(30) 276(40) 345(50) kPa (psi) 7(1.0) 15(3.2) 25(3.6) 40(5.8) 50(7.3) 75(10.9) kPa (psi) 16(2.3) 35(5.1) 55(8.0) 90(13.1) 115(6.7) 370(24.7)

Nota. (Covintec,2011)

10.1. Casetón de madera

A continuación, se muestran tablas con los resultados dados del laboratorio y las fotos durante la falla.

Figura 36

Casetón en madera y lona

Nota. Elaboración propia

En la tabla 9 se encuentran los datos de la carga axial, la lectura del deformímetro y en la Figura 37 la curva de esfuerzo-deformación.

Tabla 9Carga y deformímetro

Casetón en madera					
Carga Axial (N)	Lectura deformímetro (mm)				
0	0				
3700	32				
5380	65				
6360	85				
7820	50				
9920	60				
12460	70				
14940	40				
17840	60				
20520	10				
25100	90				
29240	80				

Nota. Elaboración propia en laboratorio

Figura 37Curva carga-deformímetro

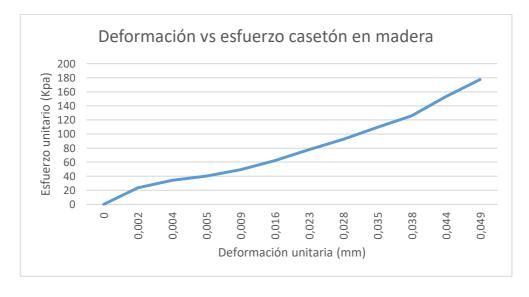

En la Tabla 10 se observan los datos obtenidos en laboratorio, para la deformación unitaria en milímetros que se genera a partir del esfuerzo unitario en Kilopascales, y en la Figura 42 se muestra la curva de esfuerzo-deformación.

Tabla 10Deformación unitaria y esfuerzo unitario casetón de madera

Casetón en madera				
Deformación unitaria (mm)	Esfuerzo unitario (Kpa)			
0	0			
0,002	23,5			
0,004	34,2			
0,005	40,3			
0,009	49,4			
0,016	62,2			
0,023	77,6			
0,028	92,6			
0,035	109,7			
0,038	125,8			
0,044	153,1			
0,049	177,3			

Nota. Elaboración propia en laboratorio

Figura 38Deformación vs esfuerzo casetón de madera

En la Figura 42 se observa que el casetón de madera falla a un esfuerzo unitario de 177,3 Kilopascales.

La figura 43 se muestra el casetón aplicándole la fuerza y la falla de este.

Figura 39

Falla casetón madera

Nota. Elaboración propia en laboratorio

10.2. Casetón plástico 10 % LDPE Y 90% HDPE

Se muestran la información tomada en laboratorio para el Casetón de la dosificación 1, carga axial - lectura de deformímetro como se muestra en la Tabla 11 y la Figura 44 y esfuerzo unitario – deformación unitaria, esta información se encuentra en la tabla 12 y la Figura 45.

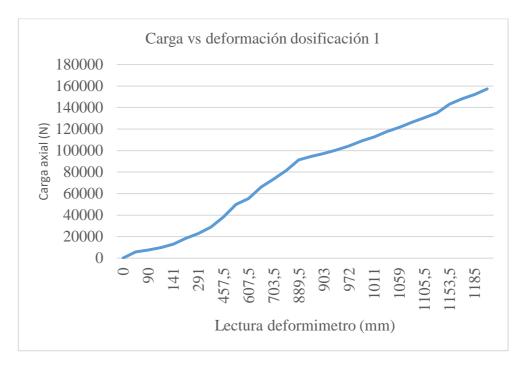

En los círculos anaranjados se observa la falla que presenta el casetón de madera con lona, donde se observa que en los laterales presenta rotura.

Tabla 11Carga-deformímetro dosificación 1

Dosificación 1	(10%	I DPF	V 90%	HDbE)
Dosincación i	(1070	LDFL	1 9070	\mathbf{HDFL})

`	,		
Carga Axial (N)	Lectura deformímetro (mm)		
0	0		
5670	60		
7560	90		
9720	120		
12990	141		
18330	228		
22980	291		
28875	360		
38190	457,5		
50010	540		
55485	607,5		
66030	652,5		
73425	703,5		
81360	862,5		
91380	889,5		
94650	898,5		
97260	903		
100590	955,5		
104220	972		
108900	993		
112680	1011		
117570	1038		
121740	1059		
126420	1084,5		
130500	1105,5		
135120	1116		
143280	1153,5		
148260	1170		
152250	1185		
157350	1210,5		

Figura 40Curva carga vs deformímetro dosificación 1

Tabla 12Deformación unitaria- esfuerzo unitario dosificación 1

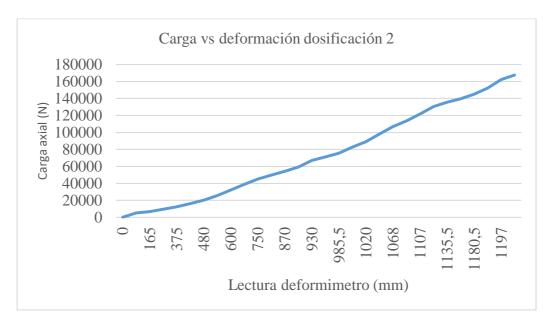
Dosificación 1 (10% LDPE Y 90% HDPE)				
Deformación unitaria (mm)	Esfuerzo unitario (Kpa)			
0	0			
0,003	35,3			
0,005	47			
0,006	60,3			
0,008	80,5			
0,012	113			
0,016	141,2			
0,019	176,7			
0,025	232,5			
0,029	303			
0,033	334,9			
0,035	397,6			
0,038	440,9			
0,046	484,1			
0,048	542,9			
0,048	562,1			
0,049	577,4			
0,051	595,4			
0,052	616,3			
0,054	643,2			
0,054	664,9			
0,056	692,7			
0,057	716,4			
0,058	742,8			
0,06	765,9			
0,06	792,5			
0,062	838,6			
0,063	866,9			
0,064	889,5			
0,065	917,9			

Figura 41Curva deformación unitaria - esfuerzo unitario dosificación 1

En la figura 45 se puede visualizar que la deformación en milímetros es de 0,065 para una carga de 917,9 Kilopascales, por lo que se afirma que es una distorsión menor para el esfuerzo tan alto que recibe.

Figura 42

Prueba laboratorio LDPE


10.3 Casetón plástico 10% PET Y 90% HDPE

Los datos tomados en laboratorio para el Casetón de la dosificación 2, carga axial - lectura de deformímetro como se muestra en la Tabla 13 y la Figura 47 y esfuerzo unitario – deformación unitaria, esta información se encuentra en la tabla 14 y la Figura 48.

Tabla 13Carga- deformímetro dosificación 2

Carga Axial (N)	Lectura deformímetro	
-	(mm)	
0	0	
5160	90	
6840	165	
9390	270	
12480	375	
16020	442,5	
20160	480	
25650	555	
32160	600	
38670	693	
45210	750	
49680	819	
54300	870	
59310	898,5	
66960	930	
71250	958,5	
75540	985,5	
82770	1003,5	
88980	1020	
98160	1041	
107070	1068	
113460	1087,5	
121830	1107	
130410	1117,5	
135480	1135,5	
139620	1147,5	
145140	1180,5	
152100	1188	
162150	1197	
167550	1216,5	

Figura 43Curva carga - deformímetro dosificación 2

Tabla 14Deformación unitaria - Esfuerzo Unitario dosificación 2

Dosificación 2 (10% PET Y 90% HDPE) Deformación unitaria (mm) Esfuerzo unitario (Kpa) 0 0 31,7 0,005 0,009 41,9 0,015 57,2 0,02 75,6 0,024 96,6 0,026 121,4 0,03 153,8 0,033 192,3 0,038 230 268 0,041 293,4 0,045 0,048 319,7 0,049 348,6 392,9 0,051 0,052 417,4 0,054 441,8 0,055 483,6 0,056 519,4 0,057 572,3 0,058 623,2 0,059 659,7 707,6 0,06 0,061 756,9 0,062 785,5 0,063 809 0,065 839,3 0,065 879,2 0,065 936,8 966,9 0,066

Figura 44

Curva esfuerzo unitario - deformación unitaria dosificación 2

Figura 45Falla casetón PET

Nota. Elaboración propia en laboratorio.

En la Figura 47 se observa que la deformación es de 0,066 milímetros ante el esfuerzo de 966,9 Kilopascales.

10.3 Casetón plástico 10% LDPE, 10% PET Y 80% HDPE

Los datos tomados en laboratorio para el Casetón de la dosificación 3, carga axial - lectura de deformímetro como se muestra en la Tabla 15 y la Figura 50 y esfuerzo unitario – deformación unitaria, esta información se encuentra en la tabla 16 y la Figura 51.

Tabla 15Carga axial - deformímetro dosificación 3

Carga Axial (N)	Lectura deformímetro (mm)	
0	0	
6990	7,5	
9210	46,5	
13500	52,5	
18075	28,5	
22545	37,5	
25725	72	
28680	63	
37545	87	
42195	94,5	
58950	100,5	
67920	106,5	
75180	114	
98385	118,5	
105180	129	
119490	133,5	
127950	136,5	
136920	148,5	
148725	153	
155685	168	
167055	181,5	
188580	198	
204150	217,5	
217680	235,5	


Figura 46Curva carga – deformímetro dosificación 3

Tabla 16Deformación unitaria- esfuerzo unitario dosificación 3

Dosificación 3 (10% PET, 10%	LDPE Y 80%HDPE)
Deformación unitaria (mm)	Esfuerzo unitario (Kpa)
0	0
0	42,3
0,002	55,7
0,002	81,6
0,002	109,2
0,003	136,2
0,003	155,3
0,004	173,1
0,005	226,4
0,005	254,4
0,005	355,3
0,006	409,2
0,006	452,7
0,006	592,3
0,007	632,9
0,007	718,8
0,007	769,6
0,008	823
0,008	893,8
0,009	934,8
0,01	1002,4
0,011	1130,5
0,012	1222,5
0,013	1302,3

Figura 47Curva deformación unitario - esfuerzo unitario dosificación 3

En la Figura 51 se observa que la deformación es de 0,013 milímetros ante el esfuerzo de 1302,3 Kilopascales.

Figura 48Falla casetón combinado

11. Análisis de resultados

En este apartado se compara los valores de esfuerzos y deformaciones de los elementos fabricados con la inclusión de plástico reciclado respecto de los elaborados primero de madera con lona y segundo poliestireno expandido.

11.1. Comparación casetón de madera con las dosificaciones

11.1.1. Comparación casetón dosificación 10% LDPE- 90% HDPE con el casetón de madera Se incluyen los resultados del título 10 y las Figura 49 y la tabla 17.

Tabla 17Resistencia máxima y deformación

Dosificación	Resistencia máxima (Kpa)	Deformación en falla (%)
10 % LDPE-90 %HDPE	918	6,5
Madera con lona	177	4,9

Nota. Elaboración propia.

Figura 49Resistencia vs deformación

Nota. Elaboración propia.

El casetón de madera tiene una deformación en porcentaje del 4,9 y una resistencia máxima de 177 Kilopascales, y el de la dosificación 1 tiene una deformación de 6,5% y 918 Kilospascales,

lo cual indica que tanto la resistencia como la deformación presentan unos valores mayores en el casetón 10% LDPE y 90% HDPE.

Al comparar los resultados vistos en la Figura 38 con los de las Figura 41, podemos observar que la madera en un esfuerzo de 34,2 kilopascales sale del rango elástico y llega a la falla con un esfuerzo del 177,3 Kilospascales como se observa en la Figura 43. al visualizar los datos de la tabla 10 se asume que la zona elástica del casetón 1 va de 0 milímetros a 0,003 milímetros y el esfuerzo más alto que se le aplicó de 917,9 Kilospascales no produce fractura, evidenciando una mayor resistencia a la rotura.

11.1.2. Comparación casetón dosificación 10 % PET – 90 % HDPE con el casetón de madera.

Al realizar la comparación con de la Figura 38 con la Figura 44 se puede observar que el esfuerzo unitario máximo soportado por el casetón de madera es de 177,3 kilopascales y el del casetón es de 966,9 Kilospascales.

Tabla 18Resistencia máxima de falla y deformación de la falla

Dosificación	Resistencia máxima (Kpa)	Deformación en falla (%)
10% PET - 90% HDPE	967	6,6
Madera con lona	177	4,9

Nota. Elaboración propia.

En la tabla 18 y la figura 50, podemos visualizar que el casetón madera tiene un porcentaje menor de deformación en falla que el casetón de la dosificación 10% PET – 90% HDPE, aunque la resistencia es mejor. A demas se evidencia que el casetón de madera si presenta rotura.

Figura 50

Resistencia máxima vs deformación

11.1.3. Comparación del casetón de madera con el casetón de la dosificación 3.

Al realizar la comparación de la figura 38 y la figura 47 podemos observar que el casetón de la dosificación 3 tiene un esfuerzo unitario máximo de 1302,3 Kilopascales y no llega a la rotura y una deformación mucho menor que el casetón de madera con lona.

Tabla 19Resistencia máxima vs deformación en falla

Dosificación	Resistencia máxima (Kpa)	Deformación en falla (%)
10% LDPE-10%PET-80% HDPE	1302	1,3
Madera con lona	177	4,9

Nota. Elaboración propia.

En la tabla 19 y la figura 51 se observa la que la resistencia del casetón de dosificación 10% LDPE - 10% PET - 80% HDPE tienen una resistencia de 1302 Kilopascales con una deformación del 1,3% lo que significa que es mejor para el uso propuesto, ya que tiene mayor resistencia y la deformación en falla en menor que el casetón de madera.

Figura 51Resistencia Max. vs deformación

11.2.Comparación casetón de poliestireno expandido con los casetones según la dosificación.

Esta comparación se realiza con la información de la Figura 35 donde se encuentra la ficha técnica del casetón de poliestireno expandido y las tablas 12, 14, 16 donde se encuentran los datos de esfuerzo unitario de las dosificaciones analizadas.

Tabla 20Poliestireno expandido esfuerzo

Densidad	Esfuerzo (Kpa)	Método de la prueba
30	75	NOM-C209
30	170	NOM-C209
30	200	NOM-C209
	30 30	30 75 30 170

Nota. (Covintec, 2011)

Al comparar estos datos con los de la tabla 21, se concluye que al contrastar con los porcentajes de deformación del 1%, 5% y 10%, el casetón de la dosificación 10% LDPE - 10% PET - 80% HDPE, cumple con los criterios de deformación y resistencia; las dosificaciones 10% LDPE - 90% HDPE y 10% PET - 90% HDPE cumplen con la resistencia.

Para el de deformación del 10% en el casetón de poliestireno expandido todos los casetones elaborados en plástico reciclado presentan mejor comportamiento.

Tabla 21Resistencia máxima - deformación de la falla

Dosificación	Resistencia máxima (Kpa)	Deformación en falla (%)
10 % LDPE-90 % HDPE	918	6,5
10% PET - 90% HDPE	967	6,6
10% LDPE-10%PET-80% HDPE	1302	1,3
Madera con lona	177	4,9

Nota. Elaboración propia.

11.3.Flexión de una de las piezas.

La pieza 3 de las que se muestran en el plano de la Figura 9, con una dosificación 3 (10% LDPE, 10%PET Y 80% HDPE), se le realiza el ensayo de falla a flexión, para analizar su comportamiento de manera individual.

Como resultados se encuentra que el elemento falla con un esfuerzo máximo de 11,3 Kilopascales.

Figura 52Falla a flexión

Nota. Elaboración propia en laboratorio.

12. Inspección visual de adherencia del concreto al casetón de plástico.

Se realiza un concreto con resistencia de 3200 PSI, para realizar la prueba de adherencia, en un casetón engrasado con aceite reciclado de cocina y en otro que no tiene desmoldante.

Figura 53Vaciado del concreto

Nota. Elaboración propia.

En la Figura 54 se visualiza el vaciado del concreto en el casetón y luego de que haya fraguado realizar la inspección visual de adherencia.

Figura 54
Secado del concreto

Nota. Elaboración propia.

Con esta prueba se evidencia que no se presenta adherencia en ninguno de los moldes, y también se observa una mayor facilidad del desencofrado de la muestra con antiadherente (aceite de cocina), convirtiéndose así en un elemento opcional que mejora el proceso sin que sea necesario.

Figura 55Desencofrado concreto plástico sin desmoldante

Nota. Elaboración propia.

Figura 56

Desencofrado del concreto con desmoldante (aceite de cocina)

Nota. Elaboración propia.

13. Realización combinación 50% PET – 50% HDPE

En la Figura 57 se observa una pieza realizada con la dosificación de plástico 50% PET Y 50% HDPE, pero esta pieza al realizar una fuerza se fractura.

Figura 57

Pieza 50% PET - 50% HDPE

Nota. Elaboración propia.

14. Conclusiones

El diseño Nº 2 fue el definitivo para la realización de la investigación ya que fue la mejor opción de las dos estructuras propuestas, esto a causa de la facilidad en cuanto a la construcción del molde, así como la del elemento en plástico.

La información obtenida en el estado del conocimiento de trabajos realizados anteriormente y los conocimientos adquiridos a través de la experiencia de diferentes empresas fueron de gran importancia, puesto que de esta manera se pudo tomar la decisión de las dosificaciones de plástico reciclado (HDPE, LDPE Y PET, para la elaboración del casetón.

Dado el comportamiento de las propiedades mecánicas del casetón con plástico reciclado de la dosificación uno: combinado (10% LDPE,10% PET Y 80% HDPE), se observa que este tiene una mayor resistencia con menor deformación, por lo que se presume un buen desempeño para el uso propuesto, respecto al casetón de madera.

Al realizar la comparación de los casetones de plástico con dosificación 1, 2 y 3 con el casetón de poliestireno expandido con una deformación del 10%, se puede deducir que los tres casetones según su dosificación tienen viabilidad técnica, ya que cumplen con las propiedades mecánicas de resistencia y el porcentaje de deformación.

Cuando se utiliza un desmoldante en el casetón de plástico reciclado para realizar el desencofrado del concreto no requiere gran esfuerzo al ser comparado con el que está sin antiadherente, sin embargo, en ninguno de los dos hay adherencia del concreto al casetón de plástico, por tanto, es una opción optima al realizar el aligeramiento de las losas.

Teniendo en cuenta la comparación de los casetones en plástico reciclado en las tres dosificaciones manejadas con los casetones de madera con lona y el de poliestireno expandido, se visualiza que el que presenta mejor comportamiento mecánico tanto en resistencia como en deformación es el de plástico combinado 10% LDPE - 10% PET – 80% HDPE.

Se realizó la elaboración de una pieza con dosificación 50% PET – 50% HDPE, de donde se deduce que al tener tanto porcentaje de plástico PET, genera una pieza frágil, esta queda porosa

y el PET lo cristaliza, razón por la que su uso no sería factible, debido a que con un golpe fuerte esta llega a la fractura por lo que no podría reutilizarse.

Con los resultados obtenidos se puede deducir que al emplear este tipo de casetones funcionaria de manera óptima en cuanto a la contribución positiva en el medio ambiente al darle un segundo manejo a aquellos plásticos de un solo uso que afectan a los diferentes hábitats y los seres vivos que en estos se encuentran.

15. Recomendaciones

Para futuras investigaciones se recomienda realizar el estudio de las propiedades mecánicas de los casetones de dosificaciones 1 y 2 cambiando el diseño para que el porcentaje de deformación en falla sea menor teniendo como referente los resultados del casetón de madera, para que de esta manera todas las dosificaciones puedan llegar a ser utilizadas y así aprovechar ese plástico de un solo uso que genera contaminación en los diferentes ecosistemas.

También realizar la evaluación de la necesidad o no del empleo de desmoldante para facilitar el desencoframiento del casetón de plástico reciclado con respecto a la placa de concreto aligerada, adicional averiguar qué tipo de desmoldante sería el mejor de emplear para realizar esta acción.

Realizar la evaluación de la vida útil del casetón en plástico reciclado, en condiciones de deformación y resistencia adecuadas, en función del número de usos que se le pueda dar como elemento de alivianamiento para las losas aligeradas, y de esta manera realizar el estudio de mercado y la viabilidad económica que podría tener el casetón en estos materiales.

16. Anexos

16.1. Registro fotográfico

16.1.1. Molde diseño nº 1

16.1.2. Molde diseño Nº 2

16.1.3. Laboratorio

16.1.3.1. Casetón de madera.

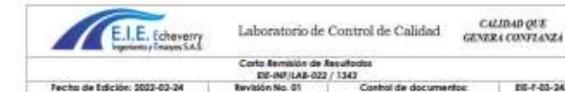
16.1.3.2. Casetón 10% LDPE – 90% HDPE.

16.1.3.3. Casetón 10% PET – 90%HDPE.

16.1.3.4. Casetón 10% LDPE – 10% PET – 80%HDPE.

16.1.3.5. Falla a flexión.

16.1.3.6. Inspección visual de adherencia del concreto al casetón plástico.



16.2.Resultados de laboratorio

EIE-F-03-243

Sogotó D.C., octubre 21 de 2022

Ingeniero

MARIA FERNANDA MAYO ARGÜELLO

Dirección: Carrera 26A No. 20-55 Barrio Promoción Social

Otro: "Tesis Universitoria"

Cludad.

Estimada ingeniera:

Anexo a la presente hacemos entrega del informe con los resultados obtenidos del ensayo resistencia a la compresión efectuado sobre cuatro (4) muestras de casetones referenciados como se listo a continuación, enviados por usted a nuestro laboratorio.

- Casetón plástico combinado
- Casetón plástico LPDE
- Casetón plástico PET
- Casetán modera

Adicionalmente enviamos los resultados del ensaya de resistencia a la flexatracción efectuado sobre un modulo de los casetones, determinado por usted.

Los ensayos se efectuaron siguiendo el procedimiento particular establecido. En los formatos anexos se muestran los resultados obtenidos de las pruebas realizadas, los cuales corresponden a las muestros ensayadas.

NOTAS:

- Heria : EIE ECHEVERRY INGENIERIA Y ENSAYOS SAS, conservará muestras festigo de ensayos o conframuestras que lo permitan, por un periodo máximo de 30 días calendario, luego de la emisión del informe.
- Las solicitudes de corrección al Informe, deberán ser solicitadas por medio de un correo corporativo oficial, solo serán aceptadas solicitudes inferiores a un mes de emitido el informe y cuando estas no interfieran con los resultados emitidos.

Sin otro particular nos suscribimos de ustedes.

Cordigimente.

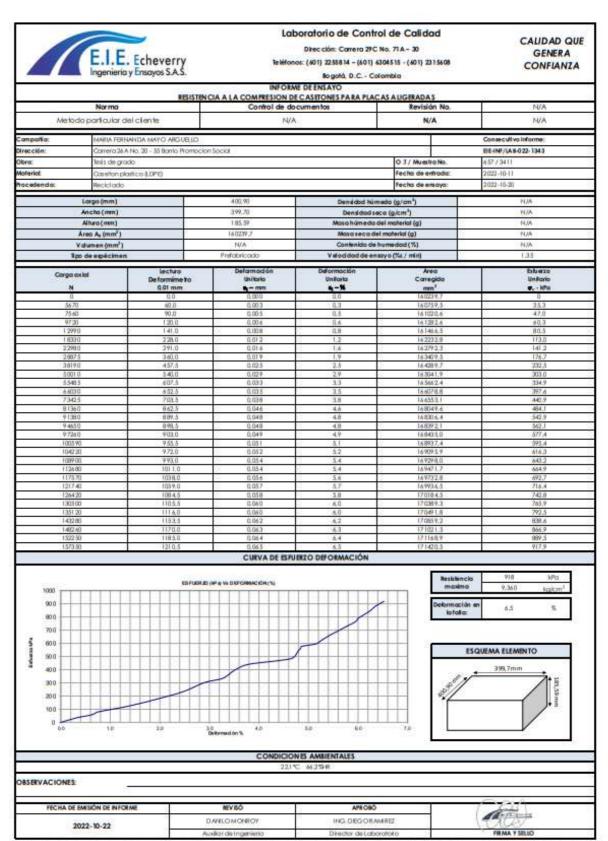
E.I.E. ECHEVERRY INGENIERIA Y ENSAYOS SAS.

ING. GERARDO BRAVO PLATA

GERENTE TÉCNICO

El informe DE mil-LAB-022 | Sell-consterne 25 Aprilla

Cro. 29°C No 71A-30 Regato D.C. E-mail infollectieveryingenieta.com Teléfonos: 4012 25 58 14 - 6016 30 45 15 6012 31 56 08

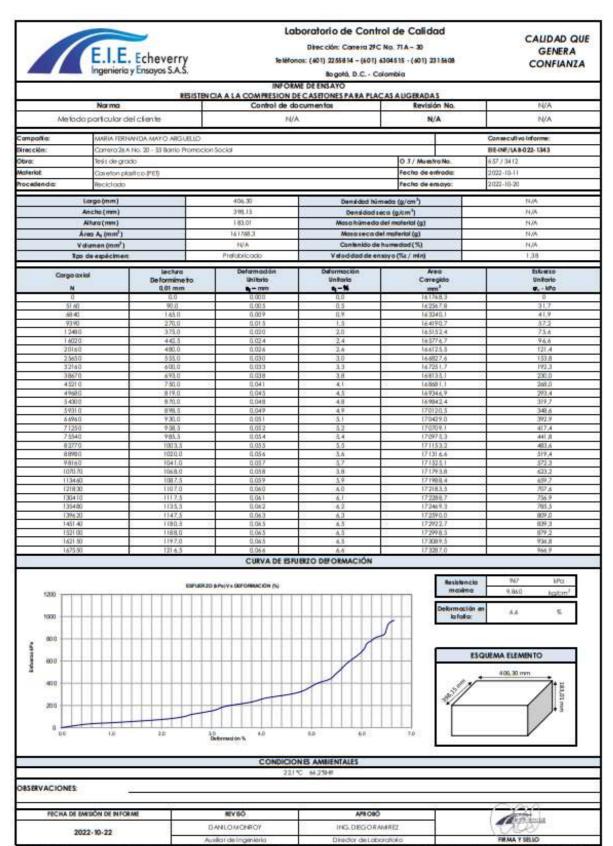

www.scheveryingenieria.com Paging 1 de 1

	E.I.E. Echeve Ingenieria y Ensayos S	rry .A.S.	Te léfano	oratorio de Contr Direc ción: Correra 29 C os: (401) 2255814 - (601) 4 Bo gotá, D.C Co	No. 71 A - 30 304515 - (601) 2315608	CAUDAD QUE GENERA CONFIANZA	
		RESISTENCIA		E DE ENSAYO C ASETONES PARA PLAC	AS A LIGERADAS		
	Norma		Control de do		Revisión No.	NA	
Meto	ado particular del cliente	8.5	N/A	33	N/A	N/A	
poño:	MARIA FERNANDA MAYO A	(BOUR IO			TV TV	Consecutive Informe:	
ción	Correro 26 A No. 20 - 35 Bor		in Social			BE-INF/IAB-022-1343	
E	Tesis de grado				O.T./ Muestra No.	657 / 3410	
riat	Countin plant co (Contin	ado)			Fecha de entrada:	2022-10-11	
edencia:	Reciclado	2.0			fecha de emayo:	2022-10-20	
	Lorgo (mm)		407,70	Dansidod hüm	redo (g/cm²)	11.75	
	Ancho (mm) Altura (mm)		405.30	Densidad se Masa himeda d		94,06	
	Áreo A (mm²)	- 5	186.20	Mara seca de	A STATE OF THE PARTY OF THE PAR	N,A N,B	
	Volumen (mm²)		N/A	Contenido de l	CONTRACTOR OF THE PARTY OF THE	FI,/A	
	Ipo de espéciment		Prifobricado:	V el oci dout de ens	sayo (R4 / min)	923	
Corgo		hira	Defamoción	Deformación	Area	tilvers	
N	Deform	mm eto	Uniforio • men	Unitoria - 16	Caregida mm²	Uniforio Ø, + kita	
.0	0	.0	0.000	0,0	165038.2	. 0	
921		.5	0.000	0.0	16510.4,7	42.3 55.7	
180	900 37	5	0.002	0.2 0.2	165371.2 165451.3	81,6	
2254		ia ia	0.003	0.3	165504.8	136.2	
25% 286		0.0	0.003	0.3	14.559 8.5 16.567 8.8	195,3 173,1	
3754	945 67	0.1	0.005	0.5	16.587 2,9	22s.A	
4219		0.5	0.005	0.5 0.5	16.586 0.0 16.593 3.8	254,4 355,3	
6792	20 10	6.5	0.006	0.6	16.598.7.6	409.2	
7516		4.0	0.006	0,a U.6	1640548 452.7 1640752 592.3		
1051	180 12	9,0	0.007	.007 0.7 166189.5		632.9	
1194		3.5 4.5	0.007	0.7	16 623 U.0 16 625 7.0	718.8 769.6	
1369		8.5	0.008	0.8	166365.0 166405.5	923.0 893.8	
1556		8.0	0.009	U.A.	16.6540.8	934.9	
1893		1.5	0.010	1,0	16 86 2,7	1002,4	
2041	50 21	7,5	0.012	1.2	164988.8	1222.5	
2176	180 23	3.5	0.013	1,3	1671522	13023	
			CURVA DE ESFU	BZO DEFORMACIÓN			
		ENUND	NY 4 VA DE FORBANSON (N)		Resistence maximum		
1400					Deformació la falla		
1400							
1200						100	
1200					-	ESQUEMA ELEMENTO	
1200						ESQUEMA ELEMENTO	
1200						407,20 mm	
1000						407,20 mm	
1200 1000 800 800 800						1 Maria and Maria	
1000	5.3 0.4	G.C. Oser	ormadon % 0.8	th th		407,20 mm	
1200 1000 800 800 800	0.4	Ü.E.	CONDICION	1D 12 IES AMBIENTALES 66.25FR	3/2	A07,20 mm	
1200 1000 800 800 800 200	+275 JFWA	G Control	CONDICION	IES AMBIENTALES	3/2	A07,20 mm	
1200 1000 800 800 0 200 0 20	+275 JFWA	GE ONE	CONDICION	IES AMBIENTALES		407,20 mm	

Auditor de tragamento Director de Laboratorio FR

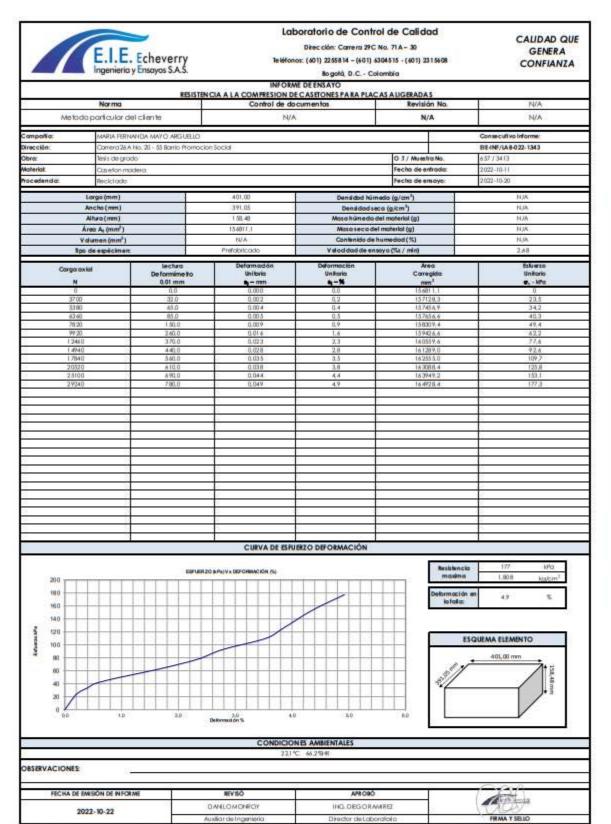
Nota II La elementación relacionaza en las casita; de procedencia, materia, fecha de maria, abita y especificación espatrada, usi que trateria con fine intervarivo. El no acumente par entre responsable repoducione paraciente más in la probación por españo de ELE Extremente programa y Encapa I.A.E.

Nota 2 Elemento es dificio o ondo fece el valo del istabutardo y a finar de quen opraede por extrementa y acumenta paraciente paracien



Nata E un información relacionada en las calibia de procedencia, material (fectual e fond, abla y especificación equatique, un nuministrada, por el cierte con fine informativa. De na que eningama responsabilida dude e in estable.

Initiatención distança el debetra en este primera en esta primera en esta primera.


Noto 2 Esta la filma distanti repoductina parcialme rie un israprostación paracetro de ELC Estreveny Egentela y Energica LA.S.

none 2 little speciments in selfdoc condo les est sello del lidurationo y la finno de quien appreha. La carcitation latternad occurrença mien a concentra participation. Fin del attorne

Nota it la información réligionad a en las coultas de ji accedencia, in ariella Linchas de toma, ab as y especificación equadad a son uniminatidad por el cliente con fines las recoción dad a por el planto en extre recesa

Refo 2 Ety. 66 orazistent yapatudin parcidento in tropotoción por maño de ELE talvery i garenta y Propos IA 1. Nefo 3 Ete abcamento e i dildoculo refo beveri sefo del bácantario y in finas de quien qui seloculo mos discha comendo come no autorone.

stral. List istormat color releccionad a en les copilica de princedercia, mintenia l'ectiva de france, abisa y especificación equatratis, con sienfrintratas piur esciente con fines internativos. El minuse e reinguente elaboración elaboración en indica de la configuración delaboración en indica delaboración en indica delaboración en indica delaboración en indica del configuración delaboración en indica delaboración en indica del configuración delaboración en indica del configuración en indica del configuración delaboración en indica del configuración del configuración delaboración en indica del configuración delaboración en indica del configuración del conf

NATO 2 EVE NA createbook republicate parcialmente on suspensional per each olde EVE Etherway ingerwills y this jos EA E.

Notal & Epis decuments als all files cultrate has a selection in the international or purpose and provide the international consequence of tens and in the international or provide the intern

for deteriores

Laboratorio de Control de Calidad

Dirección: Carrera 29C No. 71A – 30 Teléfonos: 2255814 – 6304515 - 2315608 Bogotá, D.C. - Colombia

CALIDAD QUE GENERA CONFIANZA

REGISTRO DE LABORATORIO RESISTENCIA A LA FLEXOTRACCIÓN EN ELEMENTO LATERAL DE CASETON MODULAR

	Norma	4	Control de documentos		Revisión No.		N/A	
Metodo particular del cliente		3.5	N/A	Fecha de edición:		N/A		
Compañía:	MARIA FERNANDA	MAYO ARGUELLO				E INE	AB 000 1242	
Dirección:	Carrera 26A No. 20) - 55 Barrio Promoc	cion Social	72		EIE-INF/LAB-022-134		
Obra:	Tesis de grado			O. T / Muestra N	lo. 657 /	657 / 3410		
Material:	Elemento <mark>la</mark> teral c	Elemento lateral caseton modular plastico (Combinado)		Fecha de entra	da: 2022	2022-10-11		
Procedencia:	Reciclada			Fecha de ensa	yo: 2022	-10-20	Ţ.	
	111	RESISTENCIA A LA	FLEXOTRACCIÓN - MÓDU	LO DE ROTURA				
Longitud del rectángulo inscrito (mm)		349,73		A second of the last term of the last te				
Ancho del rectángulo inscrito (mm)		77,93		and the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section section in the section section in the section section is a section section in the section section section is a section sec				
Ancho real del especimen (mm)		95,20						
THE PART OF STREET WAS A SAME	The Part of the Part of the Control	ALCOHOLD C					_	

Longitud del rectángulo inscrito (mm)	349,73	and the same of th		
Ancho del rectángulo inscrito (mm)	77,93	The same of the sa		
Ancho real del especímen (mm)	95,20			
Longitud real del especímen (mm)	386,50			
Espesor real del especímen (mm)	23,50	and the second s		
Carga (N)	1091	A THE R. P. LEWIS CO., LANSING, MICH. LANSING, SANS, S		
Módulo de Rotura (MPa)	11,3			
			PROMEDIO	

CONDICIONES AMBIENTALES

OBSERVACIONES:

FECHA DE EMISIÓN DE INFORME	REVISÓ APROBÓ		080
Secretary III Secretary	Danilo Monroy	Ing. Diego Ramírez	
2022-10-22	Auxiliar de Ingenieria	Director de Laboratorio	FIRMA Y SELLO

17. Referencias

- Acero Carranza, J y Gómez Barrera, L. (2018). Formaletas aligeradas para losas de entrepisos(casetónes)con un sistema de montaje plegable y modular. Trabajo de grado. Universidad La Gran Colombia. https://repository.ugc.edu.co/handle/11396/3338
- Alaluddin Mohammed, & MedCrave. (2018). Use of plastic waste in civil constructions and innovative decorative material (eco- friendly). https://bucketvirtualpro-private.s3.amazonaws.com/files-bv/20180301/20180301-028.pdf?X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAYKA7DVMDNQAJFXPY%2F20220926%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20220926T232843Z&X-Amz-SignedHeaders=host&X-Amz-Expires=1200&X-Amz-
- AM GROUP, (s.f). Identificación de los plásticos por sus códigos. https://www.aristegui.info/identificacion-de-los-plasticos-por-sus-codigos/

Signature=5a263d80db74cf192d15cf5e989407d69040f9dfc761a55e6e786bca0b4493a3

- Arapack. (2018). ¿Qué es el PET?. Arapack. https://www.arapack.com/faq/que-es-el-pet/
- BBVA.(2021).¿Como se recila el plástico y cuál es su objetivo?. https://www.bbva.com/es/sostenibilidad/como-se-recicla-el-plastico-y-cual-es-su-objetivo/
- Betancourt Justicia, F.(2018). estudio de nuevas tecnologías de la construcción con bloques de materiales plásticos reciclados. Trabajo final de Master. Universidad Politécnica de Valencia. https://riunet.upv.es/bitstream/handle/10251/135460/Betancourt%20-%20Estudio%20de%20nuevas%20tecnolog%c3%adas%20de%20la%20construcci%c3%b3 n%20con%20bloques%20de%20materiales%20pl%c3%a1sticos....pdf?sequence=1&isAllowed=y
- Botet Latre, A.(2018). Estudio de los plásticos como material reciclado para la obtención de material de construcción. Trabajo de grado. Universidad Politécnica de Valencia.

- https://riunet.upv.es/bitstream/handle/10251/115263/memoria_6290039.pdf?sequence=1&is Allowed=y
- Braskem,(2022). Polietileno lineal de baja densidad HF2007. https://xdoc.mx/preview/fichatecnica-5f5943f52937c
- Cany.(s.f). Casetón en lona.cany icopores boyaca S.A.S. https://canyboyaca.com/ casetón-en-lona/casetónes.(s.f). Casetón en guadua en Bogotá. casetónes JC.https://www.casetónesjuliocesarumba.com/newpageb1400fd4
- Cemposa.(s.f). Casetón de poliestireno: Todo lo que debes saber.cemposa ingeniería aplicada. https://blog.cemposa.mx/ casetón-poliestireno-todo-debes-saber
- Chávez, D y Londoño Ángel, D.(2021). proyecto de investigación diseño de casetónes y muros no estructurales con botellas pet para construcciones en obras civiles. Trabajo de Grado.

 Universidad Santo Tomás.

 https://repository.usta.edu.co/bitstream/handle/11634/32227/2021diegochavez.pdf?sequenc e=18&isAllowed=y
- editorial etecé. (2022). medio ambiente. https://concepto.de/medio-ambiente/#:~:text=el medio ambiente%3f-,;qué es el medio ambiente%3f,artificiales creados por el hombre.
- en los últimos 20 años, los países han actuado a nivel local y colectivo como comunidad internacional para asegurar que la conservación y el uso sostenible del medio ambiente conduzcan a un crecimiento sostenible, ayudando a sacar a la población de la pob. (2021). https://www.bancomundial.org/es/topic/environment/overview#1
- Envaselia.(s.f). qué es el polietileno de alta densidad HDPE Ó PEAD.envaselia. https://www.envaselia.com/blog/que-es-el-polietileno-de-alta-densidad-hdpe-o-pead-id18.htm
- Envaselia.(s.f). Qué es el polietileno de baja densidad LDPE Ó PEBD.envaselia. https://www.envaselia.com/blog/que-es-el-polietileno-de-baja-densidad-ldpe-o-pebd-id19.htm

- Esfuerzo y deformación.(2011).bgfisica2. https://sites.google.com/site/bgfisica2/unidad-2/esfuerzo-y-deformacion
- fabricación de casetón JAR,(s.f). casetón guadua. https://www.jar.com.co/ casetón-guadua
- Fabricade casetónpj, (s.f). Casetón en lona. http://www.fabricade casetónpj.com/ casetónlona.html
- FANOSA,(2021). Placa aligerante. https://blog.fanosa.com/soluciones-para-tener-losas-con-aislamiento-termico-integrado
- García De Los Santos Emmanuel, Martínez Mateo Melissa, Pérez Arleen Nina, Mejía Suero Ariesp, Olivo Núñez Alvin, Morantín Ventura Benito, . . . Latin American Caribbean Consortium of Engineering Institutions. (2018). Estudio de factibilidad de bloques de hormigón con agregado de residuo plástico ABS.
- Garrán, D. (2021). 10 curiosidades que (quizá) no sabías de lego. Los 40. https://los40.com/los40/2020/01/28/album/1580198583_431629.html#foto_gal_2
- Gómez Coronado,D y Saavedra Hurtado,J. (2018). estudio del uso de plástico reciclable en casetónes para placas de entrepiso aligeradas. Trabajo de grado. Universidad la gran Colombia.
 - https://repository.ugc.edu.co/bitstream/handle/11396/5311/estudio_pl%c3%a1sticoreciclable_casetónes_entrepiso.pdf?sequence=1
- Knaufindustries. (2020). casetónes: qué son y por qué utilizarlos en construcciones.knaufindustries. https://knauf-industries.es/ casetónes-que-son-y-por-que-utilizarnos-construccion/
- Manuchar colombia.(2014). FT-GC-033 polietileno de alta densidad-formolene HDPE 5502B, https://www.catalogodelempaque.com/documenta/contenido/107779/FT-GC-033-Polietileno-de-Alta-Densidad-Formolene-HDPE%205502B-V-0.pdf
- Martinez Trujillo, J.E; Cruz Montenegro, J.N. y Lemus Bedoya, N.E. (2020). Construcción de estructura para domo geodesico, a base de plástico PET reciclado, proyecto de investigación de grado, Universidad Colegio Mayor de Cundinamarca.

- https://repositorio.unicolmayor.edu.co/bitstream/handle/unicolmayor/3611/DOCUMENTO %20DOMO%20PET%20%20I-2021.pdf?sequence=2&isAllowed=y
- Medina, R. y Blanco, A. (2020).Manual de construcción para maestros de obra. https://www.acerosarequipa.com/manuales/pdf/manual-de-construccion-para-maestros-de-obra.pdf)
- Multimarc.(2020). PET-Tereftalato de polietileno. http://www.multimarc.com/storage/dataSheets/15898281300.pdf

Ondarse Álvarez, D. (2021). Plástico. Editorial Etecé. https://concepto.de/plastico/

Padilla Florez, L.A. y Trespalacios Cabrera, C.D.(2017). Implementación de un sistema de aligeramiento de losas de entrepiso de concreto con botellas (PET) y carton. Tesis de grado.

Universidad de Cartagena https://repositorio.unicartagena.edu.co/bitstream/handle/11227/6510/TRABAJO%20DE%2

OGRADO%20FINAL.pdf?sequence=1&isAllowed=y

Sánchez Soloaga Iris, Oshiro Ángel, Positieri María, & Pontificia Universidad Católica de Chile.

(2018). Uso del plástico reciclado en el hormigón, una alternativa para reducir la huella ecológica.

https://bucketvirtualpro-private.s3.amazonaws.com/files-

bv/20180301/20180301-032.pdf?X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-

Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-

Credential=AKIAYKA7DVMDNQAJFXPY%2F20220926%2Fus-east-

1%2Fs3%2Faws4_request&X-Amz-Date=20220926T233528Z&X-Amz-

SignedHeaders=host&X-Amz-Expires=1200&X-Amz-

Signature=82dacd3513ec3966298434dddeb00ddce908183c1b55aea5335c68f4e9a0b5c3

se requieren acciones urgentes para frenar la contaminación por plásticos, advierte la onu. (2021).

https://www.semana.com/sostenibilidad/articulo/se-requieren-acciones-urgentes-para-

frenar-la-contaminacion-por-plasticos-advierte-la-onu/202136/

Soza Caballero, E.A. (2020). Propuesta de Bloque Ecológico como Material de Construcción

- Sostenible a Base de Plástico Reciclado en Managua, 2019-2020. Tesis de grado. Universidad nacional autónoma de Nicaragua, Managua. https://repositorio.unan.edu.ni/17281/1/17281.pdf
- Valero, (s.f). casetónes aligeramiento y aislamiento extra para los edificios. https://www.grupovalero.com/productos/soluciones-constructivas/eps/ casetónes/
- Villacís Martínez,J.(2018). Análisis comparativo de factibilidad técnica y económica entre casetónes de telgopor de alta densidad y encofrados modulares semiesféricos de caucho reciclado usado como sistema de alivianamiento en losas.Trabajo de grado.Pontificia Universidad Católica del Ecuador. http://repositorio.puce.edu.ec/handle/22000/14616