Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/1493
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorRincón Ortiz, Rolando Javier-
dc.creatorCastiblanco Ramirez, Diego Andres-
dc.date.accessioned2021-02-18T17:57:14Z-
dc.date.available2021-02-18T17:57:14Z-
dc.date.created2020-11-19-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1493-
dc.descriptionPropiaes_ES
dc.description.abstractThe leather tanning sector is one of the most representative industrial activities in the Colombian economy, with a share of 2.17% in the manufacturing GDP, mostly grouped into SMEs through the export of wet-blue type leather generating revenue of $ 70 million a year. However, an undue exploitation of the activity, as well as manufacturing practices that are not very aware of the environmental impact generated mainly by hexavalent chromium, generates concern both for the environmental effects and for the harmful effects on the health of the population of Bogotaná. The present article establishes through a literature review the conventional and future treatments for the removal of heavy metals, taking hexavalent chromium as a model, proposing a nanomaterial that solves the problem in wastewater.es_ES
dc.description.sponsorshipOtroes_ES
dc.description.tableofcontentsEl sector de curtido de pieles es una de las actividades industriales más representativas en la economía colombiana, con una participación del 2,17% en el PIB manufacturero, agrupados en su mayoría en PYMES por medio de la exportación del cuero tipo wet-blue generando ingresos de 70 millones de dólares al año. Sin embargo, una explotación indebida de la actividad, así como prácticas manufactureras poco conscientes del impacto ambiental generado principalmente por el Cromo hexavalente, genera una preocupación tanto a los efectos ambientales como a los efectos nocivos para la salud de la población Bogotaná. El presente artículo establece mediante una revisión de literatura los tratamientos convencionales y futuros para la remoción de metales pesados tomando como modelo el cromo hexavalente, proponiendo un nanomaterial que solvente la problemática en las aguas residuales.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectTratamientoes_ES
dc.subjectNanomateriales_ES
dc.subjectCurtiembreses_ES
dc.subjectCromo Hexavalentees_ES
dc.titleAproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológicaes_ES
dc.publisher.programBioquímicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordTannerieses_ES
dc.subject.keywordhexavalent chromiumes_ES
dc.subject.keywordtreatmentes_ES
dc.subject.keywordnanomateriales_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAFIRM GROUP. (2019). Documento informativo sobre sustancias químicas: Cromo VI. https://echa.europa.eu/substances-restricted-under-es_ES
dc.source.bibliographicCitationAhamed, M. I. N., Rajeshkumar, S., Ragul, V., Anand, S., & Kaviyarasu, K. (2018). Chromium remediation and toxicity assessment of nano zerovalent iron against contaminated lake water sample (Puliyanthangal Lake, Tamilnadu, India). South African Journal of Chemical Engineering, 25, 128–132. https://doi.org/10.1016/j.sajce.2018.04.004es_ES
dc.source.bibliographicCitationAlcaldía de Bogotá. (2015). Guía de producción más limpia para el sector curtiembres de Bogotá Enfoque en vertimientos y residuos. http://www.ambientebogota.gov.co/web/sda/search?p_auth=cpOG8bqA&p_p_auth=y3HWCdzt&p_p_id=20&p_p_lifecycle=1&p_p_state=exclusive&p_p_mode=view&_20_struts_action=%2Fdocument_library%2Fget_file&_20_groupId=24732&_20_folderId=3987253&_20_name=21215es_ES
dc.source.bibliographicCitationAlmeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., & Pereira, E. (2019). Chromium removal from contaminated waters using nanomaterials – A review. TrAC - Trends in Analytical Chemistry, 118, 277–291. https://doi.org/10.1016/j.trac.2019.05.005es_ES
dc.source.bibliographicCitationAnastopoulos, I., Anagnostopoulos, V. A., Bhatnagar, A., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 33(6), 572–588. https://doi.org/10.1080/02757540.2017.1328503es_ES
dc.source.bibliographicCitationAnjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. In Arabian Journal of Chemistry (Vol. 12, Issue 8, pp. 4897–4919). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2016.10.004es_ES
dc.source.bibliographicCitationAnónimo. (2016). La contaminación del río Bogotá impide aprovechar su potencial. Revista Dinero. https://www.dinero.com/economia/articulo/la-contaminacion-del-rio-bogota-impide-aprovechar-su-potencial/226565es_ES
dc.source.bibliographicCitationAnónimo. (2020). Río Bogotá, un guerrero ancestral que espera su renacer. Revista Semana. https://sostenibilidad.semana.com/actualidad/articulo/rio-bogota-un-guerrero-ancestral-que-espera-su-renacer/49052es_ES
dc.source.bibliographicCitationApte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/j.jhazmat.2005.02.010es_ES
dc.source.bibliographicCitationArtunduaga Cuellar, O. F. (2015). Tratamientos para la remoción de Cromo (VI) presente en aguas residuales. Revista Nova, 1(1). https://doi.org/10.23850/25004476.187es_ES
dc.source.bibliographicCitationAzimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010es_ES
dc.source.bibliographicCitationRajput, S., Pittman, C. U., & Mohan, D. (2016b). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008es_ES
dc.source.bibliographicCitationRay, P. Z., & Shipley, H. J. (2015). Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 5(38), 29885–29907. https://doi.org/10.1039/c5ra02714des_ES
dc.source.bibliographicCitationReliga, P., Kowalik, A., & Gierycz, P. (2011). Application of nanofiltration for chromium concentration in the tannery wastewater. Journal of Hazardous Materials, 186(1), 288–292. https://doi.org/10.1016/j.jhazmat.2010.10.112es_ES
dc.source.bibliographicCitationSalgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. In Current Opinion in Environmental Science and Health (Vol. 2, pp. 64–74). Elsevier B.V. https://doi.org/10.1016/j.coesh.2018.03.005es_ES
dc.source.bibliographicCitationSalman, R. H., Hassan, H. A., Abed, K. M., Al-Alawy, A. F., Tuama, D. A., Hussein, K. M., & Jabir, H. A. (2020). Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes. AIP Conference Proceedings, 2213, 020186. https://doi.org/10.1063/5.0000201es_ES
dc.source.bibliographicCitationSamrot, A. V., Sahithya, C. S., Jenifer Selvarani, A., Pachiyappan, S., & Suresh Kumar, S. U. (2019). Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. International Journal of Nanomedicine, 14, 8105–8119. https://doi.org/10.2147/IJN.S214236es_ES
dc.source.bibliographicCitationSaxena, G., Chandra, R., & Bharagava, R. N. (2017). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In Reviews of Environmental Contamination and Toxicology (Vol. 240, pp. 31–69). Springer New York LLC. https://doi.org/10.1007/398_2015_5009es_ES
dc.source.bibliographicCitationSecretaría Distrital de Ambiente Alcaldía de Bogotá. (n.d.). GUÍA CONCEPTUAL SOBRE LA PTAR SALITRE . Retrieved June 2, 2020, from http://www.secretariadeambiente.gov.co/sda/libreria/pdf/riobogota/crono.pdfes_ES
dc.source.bibliographicCitationShahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. In Chemosphere (Vol. 178, pp. 513–533). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2017.03.074es_ES
dc.source.bibliographicCitationShi, D., Zhang, X., Wang, J., & Fan, J. (2018). Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants. Applied Catalysis B: Environmental, 221, 610–617. https://doi.org/10.1016/j.apcatb.2017.09.057es_ES
dc.source.bibliographicCitationSobhanardakani, S., & Zandipak, R. (2017). Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technologies and Environmental Policy, 19(7), 1913–1925. https://doi.org/10.1007/s10098-017-1374-5es_ES
dc.source.bibliographicCitationSierra Garcia, S. C. (2018). Environmental Effects Generated By The Discharges Of The Leather Tanning Industries: Implications In The High Basin Of The Bogotá River. https://repository.unimilitar.edu.co/bitstream/handle/10654/17868/SierraGarciaSoniaCarolina2018.pdf?sequence=2&isAllowed=yes_ES
dc.source.bibliographicCitationSimeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., & Andritsos, N. (2015). Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI). Science of the Total Environment, 535, 61–68. https://doi.org/10.1016/j.scitotenv.2015.04.033es_ES
dc.source.bibliographicCitationThanh Ho, V. T., Hong, N. V. H., Van Nguyen, A., Bach, L. G., & Dinh, T. P. (2018). Core–Shell Fe@SiO 2 Nanoparticles Synthesized via Modified Stober Method for High Activity in Cr(VI) Reduction . Journal of Nanoscience and Nanotechnology, 18(10), 6867–6872. https://doi.org/10.1166/jnn.2018.15721es_ES
dc.source.bibliographicCitationThekkudan, V. N., Vaidyanathan, V. K., Ponnusamy, S. K., Charles, C., Sundar, S. L., Vishnu, D., Anbalagan, S., Vaithyanathan, V. K., & Subramanian, S. (2017). Review on nanoadsorbents: A solution for heavy metal removal from wastewater. In IET Nanobiotechnology (Vol. 11, Issue 3, pp. 213–224). Institution of Engineering and Technology. https://doi.org/10.1049/iet-nbt.2015.0114es_ES
dc.source.bibliographicCitationVásquez Daza, L. (2012). Las curtiembres en el Barrio San Benito de Bogotá. Un análisis bioético en la perspectiva de Hans Jonas. https://repository.javeriana.edu.co/handle/10554/2144es_ES
dc.source.bibliographicCitationWang, F., Yang, W., Zheng, F., & Sun, Y. (2018). Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles. International Journal of Environmental Research and Public Health, 15(10), 2162. https://doi.org/10.3390/ijerph15102162es_ES
dc.source.bibliographicCitationWang, X., Liu, X., Xiao, C., Zhao, H., Zhang, M., Zheng, N., Kong, W., Zhang, L., Yuan, H., Zhang, L., & Lu, J. (2020). Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous and Mesoporous Materials, 297, 110041. https://doi.org/10.1016/j.micromeso.2020.110041es_ES
dc.source.bibliographicCitationWu, J., Yan, M., Lv, S., Yin, W., Bu, H., Liu, L., Li, P., Deng, H., & Zheng, X. (2021). Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. Chemosphere, 262, 127733. https://doi.org/10.1016/j.chemosphere.2020.127733es_ES
dc.source.bibliographicCitationYang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424. https://doi.org/10.3390/nano9030424es_ES
dc.source.bibliographicCitationYao, S., Yuan, X., Jiang, L., Xiong, T., & Zhang, J. (2020). Recent Progress on Fullerene-Based Materials :es_ES
dc.source.bibliographicCitationZeng, Q., Huang, Y., Huang, L., Hu, L., Xiong, D., Zhong, H., & He, Z. (2020). Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate. Chemical Engineering Journal, 383, 123209. https://doi.org/10.1016/j.cej.2019.123209es_ES
dc.source.bibliographicCitationBarros, J. (2020). ¿Por qué la cuenca media es la que más contamina al río Bogotá y cómo recuperla? Revista Semana. https://sostenibilidad.semana.com/medio-ambiente/articulo/por-que-la-cuenca-media-es-la-que-mas-contamina-al-rio-bogota-y-como-recuperla/49548es_ES
dc.source.bibliographicCitationZhao, Y., Kang, D., Chen, Z., Zhan, J., & Wu, X. (2018). Removal of Chromium Using Electrochemical Approaches: A Review. Int. J. Electrochem. Sci, 13, 1250–1259. https://doi.org/10.20964/2018.02.46es_ES
dc.source.bibliographicCitationZhou, L., Li, R., Zhang, G., Wang, D., Cai, D., & Wu, Z. (2018). Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chemical Engineering Journal, 339, 85–96. https://doi.org/10.1016/j.cej.2018.01.132es_ES
dc.source.bibliographicCitationBautista Franco, C. L., Moreno Vargas, C. C., & Socha Matiz, A. (2015). Estrategias de responsabilidad social ambiental de las curtiembres en la localidad de Tunjuelito [Universidad Cooperativa de Colombia]. https://repository.ucc.edu.co/bitstream/20.500.12494/10378/1/2015_estrategias_responsabilidad_social.pdfes_ES
dc.source.bibliographicCitationBelay, A. A. (2010). Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. Journal of Environmental Protection, 1, 53–58. https://doi.org/10.4236/jep.2010.11007es_ES
dc.source.bibliographicCitationBhushan, B. (2017). Introduction to nanotechnology. In Springer Handbooks (pp. 1–19). Springer. https://doi.org/10.1007/978-3-662-54357-3_1es_ES
dc.source.bibliographicCitationBralower, T., & Bice, D. (2019). Distribution of Water on the Earth’s Surface | EARTH 103: Earth in the Future. https://www.e-education.psu.edu/earth103/node/701es_ES
dc.source.bibliographicCitationBravo Gallardo, M. A. (2017). Coagulantes y floculantes naturales usados en la reducción de turbidez, solidos suspendidos, colorantes y metales pesados en aguas residuales. [Universidad Distrital Francisco José Caldas]. http://repository.udistrital.edu.co/bitstream/11349/5609/1/BravoGallardoMonicaAlejandra2017.pdfes_ES
dc.source.bibliographicCitationCampos, A. F. C., de Oliveira, H. A. L., da Silva, F. N., da Silva, F. G., Coppola, P., Aquino, R., Mezzi, A., & Depeyrot, J. (2019). Core-Shell Bimagnetic Nanoadsorbents for Hexavalent Chromium Removal from Aqueous Solutions. Journal of Hazardous Materials, 362(May 2018), 82–91. https://doi.org/10.1016/j.jhazmat.2018.09.008es_ES
dc.source.bibliographicCitationCAR. (2018). CAR | Río Bogotá. https://www.car.gov.co/rio_bogotaes_ES
dc.source.bibliographicCitationCardona Pérez, V. (2018). Plantas de tratamiento de aguas residuales del río Bogotá generan gases de efecto invernadero | Universidad Central. https://www.ucentral.edu.co/noticentral/plantas-tratamiento-aguas-residuales-del-rio-bogota-generan-gases-efecto-invernaderoes_ES
dc.source.bibliographicCitationCarreño Sayago, U. F., Perez, J. J., Cote Montañez, D., & Agatón, A. L. (2016). Modelación de un sistema de lodos activados en el sector de las curtiembres de San Benito Bogotá. Producción + Limpia, 11(2), 9–21. https://doi.org/10.22507/pml.v11n2a1es_ES
dc.source.bibliographicCitationChávez Andrade, J. K. (2018). Recuperación de cromo a partir de lodos residuales provenientes del proceso de curtido en la industria de la curtiembre [Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/bitstream/25000/17033/1/T-UCE-0017-IQU-019.pdfes_ES
dc.source.bibliographicCitationChen, G., Feng, J., Wang, W., Yin, Y., & Liu, H. (2017). Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Research, 108, 383–390. https://doi.org/10.1016/j.watres.2016.11.013es_ES
dc.source.bibliographicCitationChen, Q. Y., Murphy, A., Sun, H., & Costa, M. (2019). Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. In Toxicology and Applied Pharmacology (Vol. 377, p. 114636). Academic Press Inc. https://doi.org/10.1016/j.taap.2019.114636es_ES
dc.source.bibliographicCitationCristancho Montenegro, D. L., Pinto Hernández, L. M., & Tique Hilarión, J. S. (2019). Evaluación de la eficiencia de un sistema de electrocoagulación en los vertimientos de curtiembres en el sector de Villapinzón (Cundinamarca). MUTIS, 2, 34–48. https://doi.org/10.21789/22561498.1590es_ES
dc.source.bibliographicCitationDe Gisi, S., Casella, P., Cellamare, C. M., Ferraris, M., Petta, L., & Notarnicola, M. (2017). Wastewater Reuse. In Encyclopedia of Sustainable Technologies (pp. 53–68). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10528-7es_ES
dc.source.bibliographicCitationDing, G. K. C. (2017). Wastewater Treatment and Reuse-The Future Source of Water Supply. In Encyclopedia of Sustainable Technologies (pp. 43–52). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10170-8es_ES
dc.source.bibliographicCitationDocumentación IDEAM. (n.d.). Retrieved June 2, 2020, from http://documentacion.ideam.gov.co/openbiblio/bvirtual/021318/03TextoCompleto.pdfes_ES
dc.source.bibliographicCitationDubey, S., Banerjee, S., Upadhyay, S. N., & Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids, 240, 656–677. https://doi.org/10.1016/j.molliq.2017.05.107es_ES
dc.source.bibliographicCitationEalias, A. M., & P, S. M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application A review on the classification, characterisation, synthesis of nanoparticles and their application Related content Synthesis of Aluminium Nanoparticles in A. IOP Conference Series: Materials Science and Engineering, 263(3). https://doi.org/10.1088/1757-899X/263/3/032019es_ES
dc.source.bibliographicCitationEPA. (2016). Chromium Compounds. https://www.epa.gov/sites/production/files/2016-09/documents/chromium-compounds.pdfes_ES
dc.source.bibliographicCitationEPA. (2020). CLU-IN | Contaminants > Chromium VI > Chemistry and Behavior. https://clu-in.org/contaminantfocus/default.focus/sec/chromium_VI/cat/Chemistry_and_Behavior/es_ES
dc.source.bibliographicCitationEskin, M. (2016). Chromium: Is It Essential and Is It Safe? Vitam Miner, 5. https://doi.org/10.4172/2376-1318.1000e144es_ES
dc.source.bibliographicCitationEstupiñan, K. (2018). Curtiembres selladas en San Benito. Alcaldía de Bogotá. https://bogota.gov.co/mi-ciudad/ambiente/curtiembres-selladas-en-san-benitoes_ES
dc.source.bibliographicCitationEzzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. In Chemical Engineering Journal (Vol. 312, pp. 336–350). Elsevier B.V. https://doi.org/10.1016/j.cej.2016.11.154es_ES
dc.source.bibliographicCitationFerroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V., Bée, A., Medjram, M. S., & Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 136–137, 9–18. https://doi.org/10.1016/j.apcatb.2013.01.046es_ES
dc.source.bibliographicCitationFranco González, N. G., Clavijo Rios, C., Niño García, S. L., & Salazar Neira, J. C. (2017). Boletin del índice de calidad del agua en corrientes superficiales “ica” 2017 - ii. https://www.car.gov.co/uploads/files/5ada16a46c9f6.pdfes_ES
dc.source.bibliographicCitationFu, F., Ma, J., Xie, L., Tang, B., Han, W., & Lin, S. (2013). Chromium removal using resin supported nanoscale zero-valent iron. Journal of Environmental Management, 128, 822–827. https://doi.org/10.1016/j.jenvman.2013.06.044es_ES
dc.source.bibliographicCitationGarcía Muñoz, O. E., & Ramirez Rodriguez, L. N. (2019). Evaluación de una propuesta para el sistema de tratamiento de aguas residuales de curtiembre y marroquinería f.b [Fundación Universidad de America]. http://repository.uamerica.edu.co/bitstream/20.500.11839/7378/1/6132093-2019-1-IQ.pdfes_ES
dc.source.bibliographicCitationGómez, S. (2016). Características tecnológicas del cuero napa de ovino adulto, mediante los métodos de curtido wet- blue y wet. 132.es_ES
dc.source.bibliographicCitationGonzález Pachón, L. A. (2019). Gestión para mitigar los impactos ambientales generados por las curtiembres de bogotá con el fin de concientizar sobre el cambio climático [Universidad Militar Nueva Granada]. https://repository.unimilitar.edu.co/bitstream/handle/10654/21130/GonzalezPachonLuzAngelica2019.pdf?sequence=1&isAllowed=yes_ES
dc.source.bibliographicCitationGracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. S. (2019). A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. Journal of Cleaner Production, 228, 580–593. https://doi.org/10.1016/j.jclepro.2019.04.117es_ES
dc.source.bibliographicCitationHasan, S. (2015). A Review on Nanoparticles: Their Synthesis and Types. In Research Journal of Recent Sciences (Vol. 4). www.isca.mees_ES
dc.source.bibliographicCitationHernandez, E. (2018). Criterios de Implementación ISO 14001: 2015. Caso de estudio Sector Curtiembres. https://repository.unad.edu.co/bitstream/handle/10596/19108/80245223.pdf?sequence=1&isAllowed=yes_ES
dc.source.bibliographicCitationHossain, M., Hossain, M., Begum, M., Shahjahan, M., Islam, M., & Saha, B. (2018). Magnetite (Fe3O4) nanoparticles for chromium removal. Bangladesh Journal of Scientific and Industrial Research, 53(3), 219–224. https://doi.org/10.3329/bjsir.v53i3.3826es_ES
dc.source.bibliographicCitationIslam, J. B., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2019). Photocatalytic Reduction of Hexavalent Chromium with Nanosized TiO2 in Presence of Formic Acid. ChemEngineering, 3(2), 33. https://doi.org/10.3390/chemengineering3020033es_ES
dc.source.bibliographicCitationJin, W., Du, H., Zheng, S., & Zhang, Y. (2016). Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta, 191, 1044–1055. https://doi.org/10.1016/J.ELECTACTA.2016.01.130es_ES
dc.source.bibliographicCitationJustin, C., Philip, S. A., & Samrot, A. V. (2017). Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience (Switzerland), 7(7), 463–475. https://doi.org/10.1007/s13204-017-0583-xes_ES
dc.source.bibliographicCitationKahrizi, H., Bafkar, A., & Farasati, M. (2016). Effect of nanotechnology on heavy metal removal from aqueous solution. Journal of Central South University, 23(10), 2526–2535. https://doi.org/10.1007/s11771-016-3313-8es_ES
dc.source.bibliographicCitationKalidhasan, S., Santhana Krishna Kumar, A., Rajesh, V., & Rajesh, N. (2016). The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. In Coordination Chemistry Reviews (Vol. 317, pp. 157–166). Elsevier. https://doi.org/10.1016/j.ccr.2016.03.004es_ES
dc.source.bibliographicCitationKamegawa, T., Ishiguro, Y., Magatani, Y., & Yamashita, H. (2016). Spherical TiO2/Mesoporous SiO2 core/shell type photocatalyst for water purification. Journal of Nanoscience and Nanotechnology, 16(9), 9273–9277. https://doi.org/10.1166/jnn.2016.12894es_ES
dc.source.bibliographicCitationKan, C. C., Ibe, A. H., Rivera, K. K. P., Arazo, R. O., & de Luna, M. D. G. (2017). Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research, 27(4), 163–171. https://doi.org/10.1016/j.serj.2017.04.001es_ES
dc.source.bibliographicCitationKaushal, A., & Singh, S. K. (2017). Removal of heavy metals by nanoadsorbents: A review. Journal of Environment and Biotechnology Research. www.vinanie.com/jebres_ES
dc.source.bibliographicCitationKazemi, M., Jahanshahi, M., & Peyravi, M. (2018). Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate. Journal of Hazardous Materials, 344, 12–22. https://doi.org/10.1016/j.jhazmat.2017.09.059es_ES
dc.source.bibliographicCitationKhan, F. S. A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Mazari, S. A., Nizamuddin, S., & Karri, R. R. (2020). Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environmental Science and Pollution Research, 27(19), 24342–24356. https://doi.org/10.1007/s11356-020-08711-6es_ES
dc.source.bibliographicCitationKhan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. In Arabian Journal of Chemistry (Vol. 12, Issue 7, pp. 908–931). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2017.05.011es_ES
dc.source.bibliographicCitationKoei, N. (2011). Car alternativas para el manejo y disposicion de biosolidos Producto Final-Anexo No. 20 Alternativas para el Manejo y Disposición de Biosólidos de la PTAR Salitre.es_ES
dc.source.bibliographicCitationLakherwal, D. (2014). Adsorption of Heavy Metals: A Review. In International Journal of Environmental Research and Development (Vol. 4, Issue 1). http://www.ripublication.com/ijerd.htmes_ES
dc.source.bibliographicCitationLatorre Torres, D. F. (2014). Diagnóstico ambiental y programa de control y seguimiento al sector curtiembres del barrio San Benito de la ciudad de Bogotá [Universidad de La Salle]. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1010&context=maest_ingenieriaes_ES
dc.source.bibliographicCitationLim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry, 66, 29–44. https://doi.org/10.1016/J.JIEC.2018.05.028es_ES
dc.source.bibliographicCitationLisjak, D., & Mertelj, A. (2018). Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. In Progress in Materials Science (Vol. 95, pp. 286–328). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2018.03.003es_ES
dc.source.bibliographicCitationLiu, L., Luo, X.-B., Ding, L., & Luo, S.-L. (2019). Application of Nanotechnology in the Removal of Heavy Metal From Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814837-2.00004-4es_ES
dc.source.bibliographicCitationMaitlo, H. A., Kim, K. H., Kumar, V., Kim, S., & Park, J. W. (2019). Nanomaterials-based treatment options for chromium in aqueous environments. In Environment International (Vol. 130, p. 104748). Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.04.020es_ES
dc.source.bibliographicCitationMarín, J. (2019). RÍO BOGOTÁ: Donde nace, su historia, recorrido y más. https://conocelosrios.com/c-colombia/rio-bogota/es_ES
dc.source.bibliographicCitationMartinez Buitrago, S. Y., & Romero Coca, J. A. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista Facultad de Ciencias Económicas, 26(1), 113–124. https://doi.org/10.18359/rfce.2357es_ES
dc.source.bibliographicCitationMiguel Córdova Bravo, H., Vargas Parker, R., Téllez Monzón, L., Flor Cesare Coral, M., Becker, R., & Visitación Figueroa, L. (2013). Influencia del uso de acomplejantes en el baño de curtido sobre la calidad final del cuero. In Rev Soc Quím Perú (Vol. 79, Issue 4). www.tanquimica.com.br,es_ES
dc.source.bibliographicCitationMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 631 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=70346&dt=Ses_ES
dc.source.bibliographicCitationMitra, S., Sarkar, A., & Sen, S. (2017). Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnology for Environmental Engineering, 2(1), 1–14. https://doi.org/10.1007/s41204-017-0022-yes_ES
dc.source.bibliographicCitationMnif, A., Bejaoui, I., Mouelhi, M., & Hamrouni, B. (2017). Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. International Journal of Analytical Chemistry, 2017. https://doi.org/10.1155/2017/7415708es_ES
dc.source.bibliographicCitationNam, A., Choi, U. S., Yun, S. T., Choi, J. W., Park, J. A., & Lee, S. H. (2018). Evaluation of amine-functionalized acrylic ion exchange fiber for chromium(VI) removal using flow-through experiments modeling and real wastewater. Journal of Industrial and Engineering Chemistry, 66, 187–195. https://doi.org/10.1016/j.jiec.2018.05.029es_ES
dc.source.bibliographicCitationNawaz, T., Zulfiqar, S., Sarwar, M. I., & Iqbal, M. (2020). Synthesis of diglycolic acid functionalized core-shell silica coated Fe3O4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-67168-2es_ES
dc.source.bibliographicCitationNematollahzadeh, A., Seraj, S., & Mirzayi, B. (2015). Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical Engineering Journal, 277, 21–29. https://doi.org/10.1016/j.cej.2015.04.135es_ES
dc.source.bibliographicCitationNogueira, V., Lopes, I., Rocha-Santos, T., Gonçalves, F., & Pereira, R. (2015). Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquatic Toxicology, 165, 172–178. https://doi.org/10.1016/j.aquatox.2015.05.021es_ES
dc.source.bibliographicCitationOjemaye, M. O., Okoh, O. O., & Okoh, A. I. (2017). Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI) in Aqueous Solutions. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/5264910es_ES
dc.source.bibliographicCitationOkaiyeto, K., Nwodo, U. U., Okoli, S. A., Mabinya, L. V., & Okoh, A. I. (2016). Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. In MicrobiologyOpen (Vol. 5, Issue 2, pp. 177–211). Blackwell Publishing Ltd. https://doi.org/10.1002/mbo3.334es_ES
dc.source.bibliographicCitationOliveira, H. (2012). Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. Journal of Botany, 2012, 1–8. https://doi.org/10.1155/2012/375843es_ES
dc.source.bibliographicCitationOrtiz, N. E., & Carmona, J. C. (2015). Aprovechamiento De Cromo Eliminado En Aguas Residuales De Curtiembres (San Benito, Bogotá), Mediante Tratamiento Con Sulfato De Sodio. Revista Luna Azul, 40(Enero-Junio), 117–126. https://doi.org/10.17151/luaz.2015.40.9es_ES
dc.source.bibliographicCitationOrtiz Penagos, N. E. (2013). Recuperación Y Reutilización De Cromo De Las Aguas Residuales Del Proceso De Curtido De Curtiembres De San Benito (Bogotá), Mediante Un Proceso Sostenible Y Viable Tecnológicamente [Universidad De Manizales]. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/1076/Ortiz_Penagos_Nidia_Elena_2013.pdf?sequence=1es_ES
dc.source.bibliographicCitationPakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. In RSC Advances (Vol. 9, Issue 45, pp. 26142–26164). Royal Society of Chemistry. https://doi.org/10.1039/c9ra05188kes_ES
dc.source.bibliographicCitationPanda, H., Tiadi, N., Mohanty, M., & Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23, 132–138. https://doi.org/10.1016/j.sajce.2017.05.002es_ES
dc.source.bibliographicCitationPaul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015a). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-yes_ES
dc.source.bibliographicCitationPaul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015b). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-yes_ES
dc.source.bibliographicCitationPeng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. In Environmental Chemistry Letters (Vol. 1, p. 3). Springer. https://doi.org/10.1007/s10311-020-01058-xes_ES
dc.source.bibliographicCitationPeng, H., Guo, J., Li, B., Liu, Z., & Tao, C. (2018). High-efficient recovery of chromium (VI) with lead sulfate. Journal of the Taiwan Institute of Chemical Engineers, 85, 149–154. https://doi.org/10.1016/j.jtice.2018.01.028es_ES
dc.source.bibliographicCitationPeng, H., Leng, Y., & Guo, J. (2019). Electrochemical Removal of Chromium (VI) from Wastewater. Applied Sciences, 9(6), 1156. https://doi.org/10.3390/app9061156es_ES
dc.source.bibliographicCitationPinilla Arbeláez, D. E. (2014). Precipitación De Cromo Y Reutilización Del Agua De Vertimientos De Curtiembres De San Benito (Bogotá). Http://Repository.Usta.Edu.Co/Bitstream/Handle/11634/2647/2014danielpinilla.Pdf?Sequence=4&Isallowed=Yes_ES
dc.source.bibliographicCitationPredescu, A., Matei, E., Predescu, A., Berbecaru, A., Sohaciu, M., & Predescu, C. (2016). REMOVAL OF HEXAVALENT CHROMIUM FROM WATERS BY MEANS OF A TiO2-Fe3O4 NANOCOMPOSITE (Vol. 15, Issue 5). http://omicron.ch.tuiasi.ro/EEMJ/es_ES
dc.source.bibliographicCitationRajput, S., Pittman, C. U., & Mohan, D. (2016a). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008es_ES
dc.description.degreenameBioquímico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Cienciases_ES
dc.description.notesPresenciales_ES
dc.creator.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001665259es_ES
dc.creator.cedula1013663649es_ES
dc.publisher.campusBogotá - Circunvalar-
Aparece en las colecciones: Bioquímica

Ficheros en este ítem:
Fichero Tamaño  
2020AutorizacionesdeAutores.pdf
  Restricted Access
756.31 kBVisualizar/Abrir  Request a copy
2020DiegoAndresCastiblancoRamirez.pdf1.16 MBVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons