Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/1495
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorGarcía Contreras, German Antonio-
dc.creatorMendoza López, Angie Bibiana-
dc.date.accessioned2021-02-18T18:44:08Z-
dc.date.available2021-02-18T18:44:08Z-
dc.date.created2020-11-18-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1495-
dc.descriptionPropiaes_ES
dc.description.abstractProstate cancer is the malignant growth of the prostate gland; It occurs when the cells of the prostate mutate and multiply uncontrollably. Fibroblast growth factor 8b (FGF8b) is expressed in a large percentage of patients with prostate cancer and plays a key role in the appearance and development of this cancer. Various studies have shown that the synthetic peptide 8b-13, derived from the gN helix domain of FGF8b, blocks the interaction of FGF8b with the fibroblast growth factor receptor (FGFR), inhibiting the proliferation of prostate cancer cell lines . To identify the affinity towards the FGF8b/FGFR complex of peptides derived from 8b-13, a peptide library was proposed by making cuts at the amino and carboxyl termini of the 8b-13 sequence. The affinity towards the FGF8b/FGFR complex was evaluated and the key amino acids for the interaction were identified by means of molecular docking tests, using the algorithm of AutoDock Vina, Chimera and Discovery Studio. The results propose viable peptides to be candidates in experimental trials that could demonstrate the inhibition of cancer cell proliferation, developing tools for the possible treatment of prostate cancer.es_ES
dc.description.sponsorshipOtroes_ES
dc.description.tableofcontentsEl cáncer de próstata es el crecimiento maligno de la glándula prostática; se produce cuando las células de la próstata mutan y se multiplican descontroladamente. El factor de crecimiento de fibroblastos 8b (FGF8b) se encuentra expresado en un gran porcentaje de pacientes con cáncer de próstata y desempeña un papel clave en la aparición y desarrollo de este cáncer. Diversos estudios han demostrado que el péptido sintético denominado 8b13, procedente del dominio de hélice gN del FGF8b, bloquea la interacción del FGF8b con el receptor de factor de crecimiento de fibroblastos (FGFR), inhibiendo la proliferación de líneas celulares del cáncer de próstata. Para identificar la afinidad hacía el complejo FGF8b/FGFR de péptidos derivados del 8b 13, se propuso una librería peptídica realizando cortes en los extremos amino y carboxilo terminal de la secuencia del 8b-13. Se evaluó la afinidad hacía el complejo FGF8b/FGFR y se identificó los aminoácidos claves para la interacción por medio de pruebas de docking molecular, utilizando el algoritmo de AutoDock Vina, Chimera y Discovery Studio. Los resultados proponen péptidos viables para ser candidatos en ensayos experimentales que podrían demostrar la inhibición de la proliferación de células cancerígenas, desarrollando herramientas para el posible tratamiento del cáncer de próstata.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjectDiseño de péptidoses_ES
dc.subjectPéptidos sintéticoses_ES
dc.subjectFactor de crecimiento de fibroblastoses_ES
dc.subjectCáncer de próstataes_ES
dc.subjectDocking moleculares_ES
dc.titleEvaluación in silico de péptidos derivados de la secuencia peptídica 8b-13 hacia el complejo FGF8b/FGFRes_ES
dc.publisher.programBioquímicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordPeptide designes_ES
dc.subject.keywordSynthetic peptideses_ES
dc.subject.keywordFibroblast growth factores_ES
dc.subject.keywordProstate canceres_ES
dc.subject.keywordDocking moleculares_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationSiegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a cancer journal for clinicians, 69(1), 7-34.es_ES
dc.source.bibliographicCitationAcuña, L. (11 de Julio de 2019). Cuenta de Alto Costo. Obtenido de https://www.cuentadealtocosto.org/site/images/Reporte_Especial_Dia_mundial_del_cancer_de_prostata_2019.pdf.es_ES
dc.source.bibliographicCitationCoughlin, S. S. (2019). A Review of Social Determinants of Prostate Cancer Risk,Stage, and Survival. Prostate International.es_ES
dc.source.bibliographicCitationBidwell III, G. L., & Raucher, D. (2009). Therapeutic peptides for cancer therapy. Part I–peptide inhibitors of signal transduction cascades. Expert opinion on drug delivery,6(10), 1033-1047.es_ES
dc.source.bibliographicCitationLi, T., Luo, W., He, D., Wang, R., Huang, Y., Zeng, X., ... & Li, X. (2013). A short peptide derived from the gN helix domain of FGF8b suppresses the growth of human prostate cancer cells. Cancer letters, 339(2), 226-236.es_ES
dc.source.bibliographicCitationValta, M. P., Tuomela, J., Bjartell, A., Valve, E., Väänänen, H. K., & Härkönen, P.(2008). FGF‐8 is involved in bone metastasis of prostate cancer. International journal of cancer, 123(1), 22-31.es_ES
dc.source.bibliographicCitationGnanapragasam, V. J., Robinson, M. C., Marsh, C., Robson, C. N., Hamdy, F. C., & Leung, H. Y. (2003). FGF8 isoform b expression in human prostate cancer. British journal of cancer, 88(9), 1432-1438.es_ES
dc.source.bibliographicCitationDorkin, T. J., Robinson, M. C., Marsh, C., Bjartell, A., Neal, D. E., & Leung, H. Y. (1999). FGF8 over-expression in prostate cancer is associated with decreased patient survival and persists in androgen independent disease. Oncogene, 18(17),2755.es_ES
dc.source.bibliographicCitationDrake, J. M., Graham, N. A., Lee, J. K., Stoyanova, T., Faltermeier, C. M., Sud, S., ... & Witte, O. N. (2013). Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets.Proceedings of the National Academy of Sciences, 110(49), E4762-E4769.es_ES
dc.source.bibliographicCitationGdowski, A. S., Ranjan, A., & Vishwanatha, J. K. (2017). Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. Journal of Experimental & Clinical Cancer Research, 36(1), 108.es_ES
dc.source.bibliographicCitationLiu, H., Lin, X., Huang, T., Song, L., Zhu, C., Ma, H., ... & Huang, Y. (2018). A short peptide reverses the aggressive phenotype of prostate cancer cells. European journal of pharmacology, 838, 129-137.es_ES
dc.source.bibliographicCitationRentzsch, R., & Renard, B. Y. (2015). Docking small peptides remains a great challenge: an assessment using AutoDock Vina. Briefings in Bioinformatics, 16(6), 1045-1056.es_ES
dc.source.bibliographicCitationShen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction J. Chem. Theor. Comput. 2014; 10:4745-4758es_ES
dc.source.bibliographicCitationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), 2785-2791.es_ES
dc.source.bibliographicCitationO. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-46. DOI 10.1002/jcc.21334.es_ES
dc.source.bibliographicCitationSeeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of computer-aided molecular design, 24(5), 417-422.es_ES
dc.source.bibliographicCitationRaschka, S. (2014). Molecular docking, estimating free energies of binding, andAutoDock's semi‐empirical force field.es_ES
dc.source.bibliographicCitationBIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes, 2016.es_ES
dc.source.bibliographicCitationChang, K. Y., & Yang, J. R. (2013). Analysis and prediction of highly effective antiviral peptides based on random forests. PloS one, 8(8), e70166.es_ES
dc.description.degreenameBioquímico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Cienciases_ES
dc.description.funderNingunaes_ES
dc.description.notesPresenciales_ES
dc.creator.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001788012es_ES
dc.creator.cedula1022430108es_ES
dc.creator.cedula80228598es_ES
dc.publisher.campusBogotá - Circunvalar-
Aparece en las colecciones: Bioquímica

Ficheros en este ítem:
Fichero Tamaño  
2020AngieBibianaMendozaLopez.pdf1.72 MBVisualizar/Abrir
2020AutorizaciondeAutores.pdf
  Restricted Access
204.85 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons