Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/1599
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorGarcía Contreras, Germán Antonio-
dc.creatorSilva Yate, Edith Vanessa-
dc.date.accessioned2021-02-22T14:21:35Z-
dc.date.available2021-02-22T14:21:35Z-
dc.date.created2020-06-03-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1599-
dc.description.abstractCancer diagnostic methods are currently based on glycosylated biomarkers such as Tn antigen and can be detected by lectin-based technologies such as biosensors. However, there is a limitation due to the lack of commercial availability of lectins that recognize these structures, in addition to the fact that low stability may occur in biosensors due to the layers of proteins associated with them. In the present work we analyzed peanut lectin (Arachis Hypogaea), together with other lectins from legumes belonging to the Fabaceae family such as Glycine max (PDB 4D69), Wisteria Floribunda (PDB 5KXB), Psophocarpus Tetragonolobus (PDB 2D3S), and Isolectin B4 Vicia Villosa (1N47); where, based on their characteristics, peptides were designed and modeled and analyzed by means of molecular docking tests. Twelve candidate peptides were obtained for the library, eleven of which come from the structural segmentation of our protein of interest Arachis Hypogaea and one obtained from the comparisons and alignments of all the fabaceous proteins. The peptides analyzed by molecular docking were considered stable, of adequate length, with energy properties similar to peanut lectin when coupled with the antigen Tn, being considered excellent candidates to be later synthesized and analyzed for possible cancer diagnostic methods.es_ES
dc.description.tableofcontentsLos métodos de diagnóstico del cáncer actualmente se basan en biomarcadores que se encuentran glucosilados como lo es el antígeno Tn y pueden ser detectados por tecnologías basadas en lectinas como son los biosensores. Sin embargo, hay una limitación por la falta de disponibilidad comercial de lectinas que reconocen estas estructuras, además de que puede presentarse baja estabilidad en los biosensores por las capas de proteínas asociadas a este. En el presente se trabajo se analizó la lectina de maní (Arachis Hypogaea), en conjunto de otras lectinas de leguminosas pertenecientes la familia Fabaceae como Glycine max (PDB 4D69), Wisteria Floribunda (PDB 5KXB), Psophocarpus Tetragonolobus (PDB 2D3S), e Isolectina B4 Vicia Villosa (1N47); en donde basándose en sus características se diseñaron y modelaron péptidos los cuales fueron analizados por medio de pruebas de docking molecular. Se obtuvieron doce péptidos candidatos para la librería los cuales, once provienen de la segmentación estructural de nuestra proteína de interés Arachis Hypogaea y uno obtenido en las comparaciones y alineamientos de todas las proteínas fabáceas. Los péptidos analizados mediante docking molecular se consideraron estables, de longitud adecuada, con propiedades energéticas similares a la lectina de maní cuando se encuentra acoplado con el antígeno Tn, considerándose así unos excelentes candidatos para que posteriormente puedan ser sintetizados y analizados para ser posibles métodos de diagnóstico de cáncer.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAntígeno Tnes_ES
dc.subjectPNAes_ES
dc.subjectMucinases_ES
dc.subjectGlicosilaciónes_ES
dc.subjectCánceres_ES
dc.subjectAcetilgalactosaminaes_ES
dc.titleDiseño de secuencias peptídicas derivadas de la lectina de arachis hypogaea para el reconocimiento del antígeno Tnes_ES
dc.publisher.programBioquímicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordTn antigenes_ES
dc.subject.keywordPNAes_ES
dc.subject.keywordMucinses_ES
dc.subject.keywordGlycosylationes_ES
dc.subject.keywordCanceres_ES
dc.subject.keywordAcetylgalactosaminees_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationR. S. Singh, A. K. Tiwary, and J. F. Kennedy, “Lectins: Sources, activities, and applications,” Crit. Rev. Biotechnol., vol. 19, no. 2, pp. 145–178, 1999.es_ES
dc.source.bibliographicCitationR. Hamid, A. Masood, I. H. Wani, and S. Rafiq, “Lectins: Proteins with diverse applications,” J. Appl. Pharm. Sci., vol. 3, no. 4SUPPL.1, 2013.es_ES
dc.source.bibliographicCitationA. S. W. Ang, R. C. F. Cheung, X. Dan, Y. S. Chan, W. Pan, and T. B. Ng, “Purification and characterization of a glucosamine-binding antifungal lectin from phaseolus vulgaris cv. Chinese Pinto Beans with antiproliferative activity towards nasopharyngeal carcinoma cells,” Appl. Biochem. Biotechnol., vol. 172, no. 2, pp. 672–686, 2014.es_ES
dc.source.bibliographicCitationI. Lagarda-Diaz, A. Guzman-Partida, and L. Vazquez-Moreno, “Legume Lectins: Proteins with Diverse Applications,” Int. J. Mol. Sci., vol. 18, no. 6, p. 1242, Jun. 2017.es_ES
dc.source.bibliographicCitationL. Da Silva and M. Correia, “Plant lectins and Toll-like receptors: implications for therapy of microbial infections,” Front. Microbiol., vol. 5, no. 1, 2014.es_ES
dc.source.bibliographicCitationE. Hamed El S, M. M. Ibrahim El A, and M. Mounir S, “Antimicrobial Activities of Lectins Extracted from Some Cultivars of Phaseolus vulgaris Seeds,” J. Microb. Biochem. Technol., vol. 09, no. 03, pp. 109–116, 2017.es_ES
dc.source.bibliographicCitationN. Lannoo and E. J. M. Van Damme, “Lectin domains at the frontiers of plant defense,” Front. Plant Sci., vol. 5, no. August, pp. 1–16, 2014.es_ES
dc.source.bibliographicCitationX. Dan, W. Liu, and T. B. Ng, “Development and Applications of Lectins as Biological Tools in Biomedical Research,” Med. Res. Rev., vol. 36, no. 2, pp. 221–247, Mar. 2016.es_ES
dc.source.bibliographicCitationR. Graham, R. Beatson, V. Tajadura-Ortega, J. Taylor-Papadimitriou, and J. M. Burchell, “O-linked mucin-type glycosylation in breast cancer,” Biochem. Soc. Trans., vol. 46, no. 4, pp. 779–788, 2018.es_ES
dc.source.bibliographicCitationS. S. Pinho and C. A. Reis, “Glycosylation in cancer: mechanisms and clinical implications : Nature Reviews Cancer : Nature Publishing Group,” Nat. Rev. Cancer, vol. 15, pp. 540–555, 2015.es_ES
dc.source.bibliographicCitationA. Medeiros, N. Berois, M. Incerti, S. Bay, L. Franco Fraguas, and E. Osinaga, “A Tn antigen binding lectin from Myrsine coriacea displays toxicity in human cancer cell lines,” J. Nat. Med., vol. 67, no. 2, pp. 247–254, 2013.es_ES
dc.source.bibliographicCitationG. Poiroux, A. Barre, E. van Damme, H. Benoist, and P. Rougé, “Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy,” Int. J. Mol. Sci., vol. 18, no. 6, p. 1232, Jun. 2017.es_ES
dc.source.bibliographicCitationK. Fosgerau and T. Hoffmann, “Peptide therapeutics: current status and future directions.,” Drug Discov. Today, vol. 20, no. 1, pp. 122–8, 2015.es_ES
dc.source.bibliographicCitationM. Erak, K. Bellmann-Sickert, S. Els-Heindl, and A. G. Beck-Sickinger, “Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics,” Bioorganic Med. Chem., vol. 26, no. 10, pp. 2759–2765, 2018.es_ES
dc.source.bibliographicCitationL. Ning, B. He, P. Zhou, R. Derda, and J. Huang, “Molecular Design of Peptide-Fc Fusion Drugs,” Curr. Drug Metab., vol. 20, no. 3, pp. 203–208, Aug. 2018.es_ES
dc.source.bibliographicCitationA. Tyagi, P. Kapoor, R. Kumar, K. Chaudhary, A. Gautam, and G. P. S. Raghava, “In Silico Models for Designing and Discovering Novel Anticancer Peptides,” Sci. Rep., vol. 3, p. 2984, Oct. 2013.es_ES
dc.source.bibliographicCitationK. Valko, G. Ivanova-Berndt, P. Beswick, M. Kindey, and D. Ko, “Application of biomimetic HPLC to estimate lipophilicity, protein and phospholipid binding of potential peptide therapeutics,” ADMET DMPK, vol. 6, no. 2, pp. 162–175, 2018.es_ES
dc.source.bibliographicCitationG. Guidotti, L. Brambilla, and D. Rossi, “Exploring Novel Molecular Targets for the Treatment of High-Grade Astrocytomas Using Peptide Therapeutics: An Overview.,” Cells, vol. 9, no. 2, 2020.es_ES
dc.source.bibliographicCitationJ. Sun, Q. L. Yang, J. Bi, C. S. Zhang, L. N. Yu, and F. Zhu, “Purification and Characterization of a Natural Lectin from the Seed of Peanut Arachis hypogaea,” Adv. Mater. Res., vol. 152–153, pp. 1499–1504, 2010.es_ES
dc.source.bibliographicCitationR. Banerjee, K. Das, R. Ravishankar, K. Suguna, A. Surolia, and M. Vijayan, “Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex,” J. Mol. Biol., vol. 259, no. 2, pp. 281–296, 1996.es_ES
dc.source.bibliographicCitationP. T. Campana, L. R. S. Barbosa, and R. Itri, “Conformational stability of peanut agglutinin using small angle X-ray scattering,” Int. J. Biol. Macromol., vol. 48, no. 3, pp. 398–402, 2011.es_ES
dc.source.bibliographicCitationA. Movafagh et al., “The structure Biology and Application of Phytohemagglutinin (PHA) in Phytomedicine: With special up-to-date references to lectins,” J. Paramed. Sci. Vol, vol. 4, no. Winter, pp. 2008–4978, 2013.es_ES
dc.source.bibliographicCitationY. Reisner, G. Gachelin, P. Dubois, J. F. Nicolas, N. Sharon, and F. Jacob, “Interaction of peanut agglutinin, a lectin specific for nonreducing terminal d-galactosyl residues, with embryonal carcinoma cells,” Dev. Biol., vol. 61, no. 1, pp. 20–27, 1977.es_ES
dc.source.bibliographicCitationH. Tateno et al., “Glycome diagnosis of human induced pluripotent stem cells using lectin microarray,” J. Biol. Chem., vol. 286, no. 23, pp. 20345–20353, 2011.es_ES
dc.source.bibliographicCitationP. M. Drake et al., “Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers,” J. Proteome Res., vol. 11, no. 4, pp. 2508–2520, 2012.es_ES
dc.source.bibliographicCitationS. Sakuma et al., “Detection of early colorectal cancer imaged with peanut agglutinin-immobilized fluorescent nanospheres having surface poly(N-vinylacetamide) chains,” Eur. J. Pharm. Biopharm., vol. 74, no. 3, pp. 451–460, 2010.es_ES
dc.source.bibliographicCitationR. Singh, L. Nawale, D. Sarkar, and C. G. Suresh, “Two chitotriose-specific lectins show anti-angiogenesis, induces caspase-9-mediated apoptosis and early arrest of pancreatic tumor cell cycle,” PLoS One, vol. 11, no. 1, pp. 1–18, 2016.es_ES
dc.source.bibliographicCitationT. Ju et al., “Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers,” Proteomics Clin. Appl., vol. 7, pp. 618–631, 2013.es_ES
dc.source.bibliographicCitationK. L. Bicker et al., “Synthetic lectin arrays for the detection and discrimination of cancer associated glycans and cell lines,” Chem. Sci., vol. 3, no. 4, pp. 1147–1156, 2012.es_ES
dc.source.bibliographicCitationH. A. Badr, A. I. Elsayed, H. Ahmed, M. V. Dwek, C. Z. Li, and L. B. Djansugurova, “Preferential lectin binding of cancer cells upon sialic acid treatment under nutrient deprivation,” Appl. Biochem. Biotechnol., vol. 171, no. 4, pp. 963–974, 2013.es_ES
dc.source.bibliographicCitationD. Zupančič, M. E. Kreft, and R. Romih, “Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models,” Protoplasma, vol. 251, no. 1, pp. 49–59, 2014.es_ES
dc.source.bibliographicCitationK. Nakajima et al., “Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis,” Cancer Med., vol. 4, no. 2, pp. 293–302, 2015.es_ES
dc.source.bibliographicCitationK. Ikemoto, K. Shimizu, K. Ohashi, Y. Takeuchi, M. Shimizu, and N. Oku, “Bauhinia purprea agglutinin-modified liposomes for human prostate cancer treatment,” Cancer Sci., vol. 107, no. 1, pp. 53–59, 2016.es_ES
dc.source.bibliographicCitationN. Vega and G. Pérez, “Isolation and characterisation of a Salvia bogotensis seed lectin specific for the Tn antigen,” Phytochemistry, vol. 67, no. 4, pp. 347–355, 2006.es_ES
dc.source.bibliographicCitationM. Kailemia, D. Park, and C. Lebrilla, “Glycans and Glycoproteins as specific biomarkers for Cncer,” Anal. Bioanal. Chem., pp. 395–410, 2017.es_ES
dc.source.bibliographicCitationM. L. S. Silva, Lectin biosensors in cancer glycan biomarker detection, 1st ed., vol. 93. Elsevier Inc., 2019.es_ES
dc.source.bibliographicCitationH. Yu, J. Shu, and Z. Li, “Lectin microarrays for glycoproteomics: an overview of their use and potential,” Expert Rev. Proteomics, vol. 17, no. 1, pp. 27–39, 2020es_ES
dc.source.bibliographicCitationD. Pihíková, P. Kasák, and J. Tkac, “Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors,” Open Chem., vol. 13, no. 1, pp. 636–655, 2015.es_ES
dc.source.bibliographicCitationH. A. Badr et al., “Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers,” Expert Rev. Proteomics, vol. 11, no. 2, pp. 227–236, 2014.es_ES
dc.source.bibliographicCitationR. Etzioni et al., “The case for early detection,” Nat. Rev. Cancer, vol. 3, no. 4, pp. 243–252, 2003.es_ES
dc.source.bibliographicCitation“Cáncer: Organizacion Mundial de la Salud.” [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancer. [Accessed: 26-Mar-2020].es_ES
dc.source.bibliographicCitationNational Cancer Intelligence Network., “Routes to diagnosis,” 2016. [Online]. Available: http://www.ncin.org.uk/publications/routes_to_diagnosis. [Accessed: 26-Apr-2020].es_ES
dc.source.bibliographicCitationA. Caporale et al., “Synthetic Peptide Libraries. From Random Mixtures to In Vivo Testing,” Curr. Med. Chem., vol. 25, Sep. 2018.es_ES
dc.source.bibliographicCitationD. A. Araripe et al., “Partial characterization and immobilization in CNBr-activated Sepharose of a native lectin from Platypodium elegans seeds (PELa) and comparative study of edematogenic effect with the recombinant form,” Int. J. Biol. Macromol., vol. 102, pp. 323–330, 2017.es_ES
dc.source.bibliographicCitation“El cáncer - Instituto Nacional del Cáncer.” [Online]. Available: https://www.cancer.gov/espanol/cancer. [Accessed: 26-Mar-2020].es_ES
dc.source.bibliographicCitation“Global Cancer Observatory.” [Online]. Available: https://gco.iarc.fr/. [Accessed: 26-Mar-2020].es_ES
dc.source.bibliographicCitationD. Armando and R. Frenchy, “Diseño , modelamiento y evaluación in silico de péptidos que reconocen antígeno Tn,” 2019.es_ES
dc.source.bibliographicCitationE. Gasteiger et al., “Protein Analysis Tools on the ExPASy Server 571 571 From: The Proteomics Protocols Handbook Protein Identification and Analysis Tools on the ExPASy Server,” 2005.es_ES
dc.description.degreenameBioquímico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Cienciases_ES
dc.description.notesPresenciales_ES
dc.publisher.campusBogotá - Circunvalar-
Aparece en las colecciones: Bioquímica

Ficheros en este ítem:
Fichero Tamaño  
2020EdithVanessaSilvaYate.pdf1.27 MBVisualizar/Abrir
2020AutorizacióndeAutores.pdf
  Restricted Access
403.52 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons