Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.uan.edu.co/handle/123456789/1603
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Malagon, Edwin | - |
dc.creator | Paez Pedraza, Leidy Catherine | - |
dc.date.accessioned | 2021-02-22T15:25:06Z | - |
dc.date.available | 2021-02-22T15:25:06Z | - |
dc.date.created | 2020-07-01 | - |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/1603 | - |
dc.description.abstract | The chemical properties and molecular structure of Canavalia ensiformis urease have been extensively studied. Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea, allowing nitrogen to be available as a nutrient for plants. In agriculture, volatilization nitrogen losses and in medicine gastrointestinal diseases caused by pathogens have made the study of ureases important in several fields of application. The interaction of Jack Bean urease (JBU) with five soluble sulfonated resorcinarenes with different chemical structure was evaluated in terms of activity, interaction mechanism and simulation of molecular coupling. The results of UV-VIS spectroscopy experiments suggest conformational changes in structure that reflect the decrease in enzyme activity by more than 50%, with the strongest strong inhibitor being c-sulfonatoresorcin [4] arene (Na4ESRA), followed by c-propylsulfonaterosorcin [4] arene (Na4PrRA), c ethylsulfonatoresorcin [4] arene (Na4EtRA), c methylsulfonatoresorcin [4] arene (Na4MeRA) and the weakest inhibitor c-methylthioethylsulfonatoresorcin [4] arene (Na4SRA). Docking calculations suggest non-competitive inhibition and show that resorcinarenes bind through hydrophobic interactions to different enzyme domains and that they do not bind to the catalytic site | es_ES |
dc.description.tableofcontents | Las propiedades químicas y la estructura molecular de la ureasa de Canavalia ensiformis han sido estudiadas ampliamente. La ureasa es una metaloenzima dependiente de níquel que cataliza la hidrólisis de la urea, permitiendo que el nitrógeno esté disponible como nutriente para las plantas. En la agricultura, las pérdidas de nitrógeno por volatilización y en la medicina las enfermedades gastrointestinales causadas por patógenos han hecho que el estudio de las ureasas sea importante en varios campos de aplicación. La interacción de la ureasa de Jack Bean (JBU) con cinco resorcinarenos sulfonados solubles con diferente estructura química se evaluó en términos de actividad , mecanismo de interacción y simulación de acoplamiento molecular. Los resultados de los experimentos de espectroscopia UV-VIS sugieren cambios conformacionales en la estructura que reflejan la disminucion de la actividad de la enzima en más del 50%, siendo el inhibidor mas fuerte fuerte c-sulfonatoresorcin[4]areno (Na4ESRA), seguido por c-propilsulfonaterosorcin[4]areno (Na4PrRA), c-ethylsulfonatoresorcin[4]areno (Na4EtRA), c-methylsulfonatoresorcin[4]areno (Na4MeRA) y el inhibidor más débil c-metiltioetilsulfonatoresorcin[4]areno (Na4SRA). Los cálculos de acoplamiento sugieren una inhibicion no competitiva y muestran que los resorcinarenos se unen mediante interacciones hidrofóbicas a diferentes dominios de la enzima y que no se unen al sitio catalítico. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Antonio Nariño | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | ureasa | es_ES |
dc.subject | resorcinareno | es_ES |
dc.subject | inhibición | es_ES |
dc.subject | No competitiva | es_ES |
dc.subject | actividad | es_ES |
dc.subject | enzimática | es_ES |
dc.title | Efecto de una serie de resorcinarenos solubles en la actividad enzimática de ureasa de Jack Bean (canavalia ensiformis) | es_ES |
dc.publisher.program | Bioquímica | es_ES |
dc.rights.accesRights | restrictedAccess | es_ES |
dc.subject.keyword | Urease | es_ES |
dc.subject.keyword | resorcinarene | es_ES |
dc.subject.keyword | inhibition | es_ES |
dc.subject.keyword | non-competitive | es_ES |
dc.subject.keyword | enzimatic | es_ES |
dc.subject.keyword | activity | es_ES |
dc.type.spa | Trabajo de grado (Pregrado y/o Especialización) | es_ES |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.source.bibliographicCitation | Benini, S. R. (1999). A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 7(2), 205-216. | es_ES |
dc.source.bibliographicCitation | Karplus, P. A. (1997). 70 years of crystalline urease: what have we learned? Accounts of Chemical Research, 30(8), 330-337. | es_ES |
dc.source.bibliographicCitation | Zambelli, B. M. (2011). Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Accounts of chemical research, 44(7), 520-530. | es_ES |
dc.source.bibliographicCitation | Balasubramanian, A. &. (2010). Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. Journal of molecular biology, 400(3), 274-283. | es_ES |
dc.source.bibliographicCitation | Kutcherlapati, S. R. (2016). Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity. Journal of colloid and interface science, 463, 164-172 | es_ES |
dc.source.bibliographicCitation | Nabati, F. H.-R.-M. (2011). Dioxane enhanced immobilization of urease on alkyl modified nano-porous silica using reversible denaturation approach. Journal of Molecular Catalysis B: Enzymatic, 70(1-2), 17-22. | es_ES |
dc.source.bibliographicCitation | Marshall, B. J. (1990). Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology, 99(3), 697-702. | es_ES |
dc.source.bibliographicCitation | Kara, F. D. (2006). Immobilization of urease by using chitosan–alginate and poly (acrylamide-co-acrylic acid)/κ-carrageenan supports. Bioprocess and biosystems engineering, 29(3), 207-211. | es_ES |
dc.source.bibliographicCitation | Liese, A. &. (2013). Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 42(15), 6236-6249. | es_ES |
dc.source.bibliographicCitation | Sayin, S. Y. (2011). Improvement of catalytic properties of Candida Rugosa lipase by sol–gel encapsulation in the presence of magnetic calix [4] arene nanoparticles. Organic & biomolecular chemistry, 9(11), 4021-4024. | es_ES |
dc.source.bibliographicCitation | Matos, M. S.-L. (2012). Stabilization of glucose oxidase with cyclodextrin-branched carboxymethylcellulose. Biotechnología Aplicada, 29(1), 29-34. | es_ES |
dc.source.bibliographicCitation | Baldini, L. C. (2017). Biomacromolecule Recognition by Calixarene Macrocycles. Comprehensive Supramolecular Chemistry II, 371-408. | es_ES |
dc.source.bibliographicCitation | Jain, V. K. (2011). Chemistry of calix [4] resorcinarenes. Russian Chemical Reviews, 80(1), 75. | es_ES |
dc.source.bibliographicCitation | Stoikov, I. I. (2016). Systems Based on Calixarenes as the Basis for the Creation of Catalysts and Nanocontainers. In Organic Nanoreactors, (pp. 85-110). Academic Press. | es_ES |
dc.source.bibliographicCitation | Ozyilmaz, E. C. (2019). Encapsulation of lipase using magnetic fluorescent calix [4] arene derivatives; improvement of enzyme activity and stability. International journal of biological macromolecules, 133, 1042-1050. | es_ES |
dc.source.bibliographicCitation | Collazos, N. G. (2019). Binding interactions of a series of sulfonated water-soluble resorcinarenes with bovine liver catalase. nternational journal of biological macromolecules. 139, 75-84. | es_ES |
dc.source.bibliographicCitation | Xiao, Z. P. (2010). The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. European journal of medicinal chemistry, 45(11), 5064-5070. | es_ES |
dc.source.bibliographicCitation | Amin, M. A. (2013). Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules, 18(2), 2135-2149. | es_ES |
dc.source.bibliographicCitation | Taha, M. U. (2018). Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic & medicinal chemistry, 26(1), 152-160. | es_ES |
dc.source.bibliographicCitation | Mazzei, L. C. (2019). Insights into urease inhibition by N-(n-butyl) phosphoric triamide through an integrated structural and kinetic approach. Journal of agricultural and food chemistry, 67(8), 2127-2138. | es_ES |
dc.source.bibliographicCitation | Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9-21. | es_ES |
dc.source.bibliographicCitation | Zhao, J. Y. (2019). Spectroscopic and mechanistic analysis of the interaction between Jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly (ethylene glycol) and α-cyclodextrin. Colloids and Surfaces B: Biointerfaces, 176, 276-287. | es_ES |
dc.source.bibliographicCitation | Kazakova, E. K. (2000). Novel water-soluble tetrasulfonatomethylcalix [4] resorcinarenes. etrahedron Letters, 41(51), 10111-10115. | es_ES |
dc.source.bibliographicCitation | Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical chemistry, 39(8), 971-974. | es_ES |
dc.source.bibliographicCitation | Grosdidier, A. Z. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic acids research, 39(suppl_2), W270-W277. | es_ES |
dc.source.bibliographicCitation | Hanwell, M. D. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1), 17. | es_ES |
dc.source.bibliographicCitation | E.F. Pettersen, T. G. (2004). UCSF Chimera visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612. | es_ES |
dc.source.bibliographicCitation | Han, X. P. (2017). A resorcinarene for inhibition of Aβ fibrillation. Chemical science, 8(3), 2003-2009. | es_ES |
dc.source.bibliographicCitation | Moncrief, M. B. (1995). Urease activity in the crystalline state. Protein Science, 4(10), 2234-2236. | es_ES |
dc.source.bibliographicCitation | Zhou, J. T., Li, C. L., Tan, L. H., Xu, Y. F., Liu, Y. H., Mo, Z. Z., ... & Xie, J. H. (2017). Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS one, 12(1). | es_ES |
dc.source.bibliographicCitation | Mo, Z. Z. (2015). Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism. BMC complementary and alternative medicine, 15(1), 238. | es_ES |
dc.source.bibliographicCitation | Yu, X. D. (2015). Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. Journal of ethnopharmacology, 62, 69-78. | es_ES |
dc.description.degreename | Bioquímico(a) | es_ES |
dc.description.degreelevel | Pregrado | es_ES |
dc.publisher.faculty | Facultad de Ciencias | es_ES |
dc.description.notes | Presencial | es_ES |
dc.publisher.campus | Bogotá - Circunvalar | - |
Aparece en las colecciones: | Bioquímica |
Ficheros en este ítem:
Fichero | Tamaño | |
---|---|---|
2020Leidy Catherine Páez Pedraza.pdf | 1.35 MB | Visualizar/Abrir |
2020AutorizacióndeAutores.pdf Restricted Access | 534.15 kB | Visualizar/Abrir Request a copy |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons