Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/1972
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOrjuela Vargas, Sergio Alejandro-
dc.contributor.advisorHernández Duarte, Andrés Ignacio-
dc.contributor.advisorGutiérrez Salamanca, Rafael María-
dc.creatorVega Diaz, Jhon Jairo-
dc.date.accessioned2021-02-26T14:05:54Z-
dc.date.available2021-02-26T14:05:54Z-
dc.date.created2020-11-25-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1972-
dc.descriptionExternaes_ES
dc.description.abstractFor ''Hass'' avocado exportation is required high quality standards, such as fruit maturity. However, the harvested fruit presents heterogeneity of ripeness, requiring a solution that allows identifying the optimal time of harvest. The optimal time is associated with the physiological maturity. And the dry matter (D.M.) content is used to measure the maturity. But, the nondestructive methods to predict its content are very expensive or are not operative. So, we present a solution to identify if a fruit has physiological maturity on the tree. The solution involves a method and a device with two use cases: classification and system parameterization. The classification use case use a support vector machine trained to classify a vector of texture descriptors calculated from an image of the fruit on the tree. The image is acquired in RGB format, without compression and with homogeneous spatial resolution. he image is pre-treated with a contrast limited adaptive histogram equalization and a conversion to an HSV color space. A segment of the HSV image is used to calculate an optimized vector of texture descriptors. The parameterization use case is to optimize the vector of texture descriptors. This vector is a set of textures descriptors with high efficient cross-validation classification and lower computational cost. The device implements the method and must perform the classification in real time, with portability and ruggedness. The main contributions of the process of research, development and innovation are: This research shows that the fruit has a heterogeneous maturity. For that we test all the fruits of a tree in a harvest season, presenting a variation among fruits upper to 20% of D.M. . we prove the viability of the method in a relevant environment, which a classification efficiency of 98.2% that supports the patent application of the proposed solution. And if a farmer implements the invention, he will have an increase of income in 91.4%.es_ES
dc.description.sponsorshipOtroes_ES
dc.description.tableofcontentsPara la exportación de aguacate ''Hass'' se requiere cumplir con altos estándares de calidad, entre los que se destaca la madurez de la fruta. Sin embargo, la fruta cosechada presenta heterogeneidad de maduración y se requiere una solución que permita identificar el momento óptimo de cosecha. El momento óptimo se caracteriza porque la fruta alcanza su madurez fisiológica. Para medir la madurez se usa como referente el contenido de materia seca (M.S.) y los métodos no destructivos parar su predicción son muy costosos o no son operativos. Por lo tanto, se presenta una solución que permite identificar si un fruto tiene madurez fisiológica en el árbol. La solución tiene un método y un dispositivo con dos casos de uso: clasificación y parametrización del sistema. La clasificación usa una máquina de soporte vectorial entrenada para clasificar un vector optimizado de descriptores de textura calculado de una imagen de la fruta en el árbol. La imagen es en formato RGB, sin compresión y con resolución espacial homogénea. La imagen tiene un pretratamiento con la ecualización de histograma adaptativo limitada por contraste y la conversión a un espacio de color HSV. De la imagen HSV se usa un segmento para calcular un vector optimizado de de descriptores de textura. El caso de uso de parametrización es para optimizar el vector de descriptores de textura. Este vector es el conjunto de descriptores que permiten mayor eficacia de clasificación en validación cruzada y un menor costo computacional. El dispositivo implementa el método y debe realizar la clasificación en tiempo real, con portabilidad y robusto. Los principales aportes del proceso de investigación, desarrollo en innovación son: Al evaluar destructivamente todos los frutos de un árbol en temporada de cosecha se demostró que la fruta presenta heterogeneidad de maduración, con una variación entre frutos superior a 20% de M.S.. Se demostró que el método en un ambiente relevante tiene una eficiencia de clasificación del 98.2%, lo cual soporta la solicitud de patente de la solución propuesta. Se proyecta que si un agricultor implementa la invención tendría un aumento de los ingresos en un 91.4%.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectAguacatees_ES
dc.subjectÍndice de cosechaes_ES
dc.subjectMadurez fisiológicaes_ES
dc.subjectDescriptores de texturaes_ES
dc.subjectMáquina de soporte vectoriales_ES
dc.titleInnovación tecnológica para la reducción de la heterogeneidad del aguacate ''Hass'' cosechado para exportaciónes_ES
dc.publisher.programDoctorado en Ciencia Aplicadaes_ES
dc.rights.accesRightsrestrictedAccesses_ES
dc.subject.keywordAvocadoes_ES
dc.subject.keywordHarvest indexes_ES
dc.subject.keywordPhysiological maturityes_ES
dc.subject.keywordTexture descriptorses_ES
dc.subject.keywordSupport vector machinees_ES
dc.type.spaTesis y disertaciones (Maestría y/o Doctorado)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAddabbo, P., Angrisano, A., Bernardi, M. L., Gagliarde, G., Mennella, A., Nisi, M., y Ullo, S. (2017). A UAV infrared measurement approach for defect detection in photovoltaic plants. En 4th ieee international workshop on metrology for aerospace, metroaerospace 2017 - proceedings (pp. 345–350). doi: 10.1109/MetroAeroSpace.2017.7999594es_ES
dc.source.bibliographicCitationAlcaraz, M. L., Thorp, T. G., y Hormaza, J. I. (2013, dec). Phenological growth stages of avocado (Persea americana) according to the BBCH scale. Scientia Horticulturae, 164, 434–439. doi: 10.1016/j.scienta.2013.09.051es_ES
dc.source.bibliographicCitationAlcaraz Arco, M. L. (2009). Biología reproductiva del aguacate (Persea americana Mill.). Implicaciones para optimización del cuajado. (Tesis Doctoral, Universidad de Malaga). Descargado de http://www.avocadosource.com/international/spain_papers/AlcarazML2009b.pdfes_ES
dc.source.bibliographicCitationAlfaro-Mejía, E., Loaiza-Correa, H., Franco-Mejía, E., y Hernández-Callejo, L. (2020). Segmentation of Thermography Image of Solar Cells and Panels. Communications in Computer and Information Science,1152 CCIS, 1–8. doi: 10.1007/978-3-030-38889-8_1es_ES
dc.source.bibliographicCitationAlkhatib, M., y Hafiane, A. (2019). Robust Adaptive Median Binary Pattern for Noisy Texture Classification and Retrieval. IEEE Transactions on Image Processing, 28(11), 5407–5418. doi: 10.1109/TIP.2019.2916742es_ES
dc.source.bibliographicCitationAl-Saedi, B., Alsaidi, Jaffer Sadiq Al-khafaji, B., Abed, S., y Wahab, A. (2019). Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm. Engineering, Technology and Applied Science Research, 9, 3892–3895.es_ES
dc.source.bibliographicCitationAlsafasfeh, M., Abdel-Qader, I., y Bazuin, B. (2017). Fault detection in photovoltaic system using SLIC and thermal images. En Icit 2017 - 8th international conference on information technology, proceedings (pp. 672–676). doi: 10.1109/ICITECH.2017.8079925es_ES
dc.source.bibliographicCitationAlsafasfeh, M., Abdel-Qader, I., Bazuin, B., Alsafasfeh, Q., y Su, W. (2018). Unsupervised fault detection and analysis for large photovoltaic systems using drones and machine vision. Energies, 11(9). doi: 10.3390/en11092252es_ES
dc.source.bibliographicCitationAl-Shamasneh, A. R., Jalab, H. A., Palaiahnakote, S., Obaidellah, U. H., Ibrahim, R. W., y El-Melegy, M. T. (2018). A new Local Fractional Entropy-Based model for kidney MRI image enhancement. Entropy, 20(5). doi: 10.3390/e20050344es_ES
dc.source.bibliographicCitationAlvarez bravo, A., y Salazar-Garcia, S. (2017). Las condiciones ambientales determinan la rugosidad de la piel del fruto de aguacate ‘Hass’. Revista Mexicana de Ciencias Agricolas, 8, 4063. doi: 10.29312/remexca.v0i19.673es_ES
dc.source.bibliographicCitationAmigo, J. M. (2020). Hyperspectral and multispectral imaging: setting the scene. Data Handling in Science and Technology, 32, 3–16. doi: 10.1016/B978-0-444-63977-6.00001-8es_ES
dc.source.bibliographicCitationPark, J., y Lee, D. (2019). Precise Inspection Method of Solar Photovoltaic Panel Using Optical and Thermal Infrared Sensor Image Taken by Drones. En Iop conference series: Materials science and engineering (Vol. 611). doi: 10.1088/1757-899X/611/1/012089es_ES
dc.source.bibliographicCitationPaul, S., y Bovik, A. C. (2019). Image Statistic Models CharacterizeWell Log Image Quality. IEEE Geoscience and Remote Sensing Letters, 16(7), 1130–1134. doi: 10.1109/LGRS.2019.2893363es_ES
dc.source.bibliographicCitationPedreschi, R., Munoz, P., Robledo, P., Becerra, C., Defilippi, B., van Eekelen, H.,. De Vos, R. (2014a). Metabolomics analysis of postharvest ripening heterogeneity of ’Hass’ avocadoes. Postharvest Biology and Technology, 92. doi: 10.1016/j.postharvbio.2014.01.024es_ES
dc.source.bibliographicCitationPedreschi, R., Munoz, P., Robledo, P., Becerra, C., Defilippi, B. G. B., van Eekelen, H., . De Vos, R. C. R. (2014b, jun). Metabolomics analysis of postharvest ripening heterogeneity of ”Hass” avocadoes. Postharvest Biology and Technology, 92, 172–179. doi: 10.1016/j.postharvbio.2014.01.024es_ES
dc.source.bibliographicCitationPhoolwani, U. K., Sharma, T., Singh, A., y Gawre, S. K. (2020). IoT Based Solar Panel Analysis using Thermal Imaging. En 2020 ieee international students’ conference on electrical, electronics and computer science, sceecs 2020. doi: 10.1109/SCEECS48394.2020.114es_ES
dc.source.bibliographicCitationPineda Tobon, D. M. (2017). Diseno, construccion y evaluacion de un fluorimetro y una camara multiespectral para uso en agricultura y biologia (Maestria thesis, Universidad Nacional de Colombia - Sede Medellin.) Descargado de http://bdigital.unal.edu.co/59275/1/1041148752.2017.pdfes_ES
dc.source.bibliographicCitationPlutino, A., Lanaro, M. P., Liberini, S., y Rizzi, A. (2019). Work memories in Super 8: Searching a frame quality metric for movie restoration assessment. Journal of Cultural Heritage. doi: 10.1016/j.culher.2019.06.008es_ES
dc.source.bibliographicCitationPu, Y.-Y., Feng, Y.-Z., y Sun, D.-W. (2015). Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 14(2), 176–188. doi: 10.1111/1541-4337.12123es_ES
dc.source.bibliographicCitationRahman, M. M., Rahman, S., Kamal, M., Abdullah-Al-Wadud, M., Dey, E. K., y Shoyaib, M. (2016). Noise adaptive binary pattern for face image analysis. En 2015 18th international conference on computer and information technology, iccit 2015 (pp. 390–395). doi: 10.1109/ICCITechn.2015.7488102es_ES
dc.source.bibliographicCitationRavikanth, L., Jayas, D. S., White, N. D. G., Fields, P. G., y Sun, D.-W. (2017). Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food and Bioprocess Technology, 10(1). doi: 10.1007/s11947-016-1817-8es_ES
dc.source.bibliographicCitationCokelaer, T., y Hasch, J. (2017). ’Spectrum’: Spectral Analysis in Python. Journal of Open Source Software, 2(18), 348. doi: 10.21105/joss.00348es_ES
dc.source.bibliographicCitationArendse, E., Fawole, O. A., Magwaza, L. S., y Opara, U. L. (2018). Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. Journal of Food Engineering, 217, 11–23. doi: 10.1016/j.jfoodeng.2017.08.009es_ES
dc.source.bibliographicCitationRehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., y Shin, J. (2019). Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture, 156, 585–605. doi: 10.1016/j.compag.2018.12.006es_ES
dc.source.bibliographicCitationResonon. (2019). SpectrononPro Manual 5.3. Resonon Inc. Descargado de http://docs.resonon.com/spectronon/pika_manual/html/index.htmles_ES
dc.source.bibliographicCitationResonon. (2020). Resonon, Pika XC2. Descargado 2020-02-16, de https://resonon.com/Pika-XC2es_ES
dc.source.bibliographicCitationRichardson, A. D., Duigan, S. P., y Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185–194. doi: 10.1046/j.0028-646X.2001.00289.xes_ES
dc.source.bibliographicCitationRodriguez, A., Vargas, S. A. O., y Philips, W. (2013). Robust video feature extraction invariant to natural lighting by using LBP techniques with adaptive thresholding. En Symposium of signals, images and artificial vision - 2013, stsiva 2013. doi: 10.1109/STSIVA.2013.6644942es_ES
dc.source.bibliographicCitationRodriguez, P., Henao, J. C., Correa, G., y Aristizabal, A. (2018). Identification of harvest maturity indicators for ‘hass’ avocado adaptable to field conditions. HortTechnology, 28(6), 815–821. doi: 10.21273/HORTTECH04025-18es_ES
dc.source.bibliographicCitationSandilya, M., y Nirmala, S. R. (2018). Determination of reconstruction parameters in Compressed Sensing MRI using BRISQUE score. En 2018 international conference on information, communication, engineering and technology, icicet 2018. doi: 10.1109/ICICET.2018.8533865es_ES
dc.source.bibliographicCitationSanson, F., y Frueh, C. (2019). Noise estimation and probability of detection in non-resolved images: Application to space object observation. Advances in Space Research, 64(7), 1432–1444. doi: 10.1016/j.asr.2019.07.003es_ES
dc.source.bibliographicCitationSantana, I., Castelo-Branco, V. N., Guimaraes, B. M., Silva, L. D. O., Peixoto, V., Cabral, L. M. C.,.Torres, A. G. (2019). Hass avocado (Persea americana Mill.) oil enriched in phenolic compounds and tocopherols by expeller-pressing the unpeeled microwave dried fruit. Food Chemistry, 286, 354–361. doi: 10.1016/j.foodchem.2019.02.014es_ES
dc.source.bibliographicCitationCowan, A. K., Taylor, N. J., y van Staden, J. (2005, jan). Hormone homeostasis and induction of the small-fruit phenotype in ”Hass” avocado. Plant Growth Regulation, 45(1), 11–19. doi: 10.1007/s10725-004-7173-0es_ES
dc.source.bibliographicCitationSchroeder, C. A. (1985). In: Physiological Gradient in Avocado Fruit. Avocado Society Yearbook, 562, 175–179. Descargado de https://pdfs.semanticscholar.org/305a/d15c478bf4e812cc3d782cc606972b0372b5.pdfes_ES
dc.source.bibliographicCitationArpaia, M. L., Mitchell, F. G., Katz, P. M., y Mayer, G. (1987). Susceptibility of avocado fruit to mechanical damage as influenced by variety, maturity and stage of ripeness. South African Avocado Growers Association Yearbook, 10, 149–151.es_ES
dc.source.bibliographicCitationSimon, P., y Uma, V. (2018). Review of texture descriptors for texture classification. En Advances in intelligent systems and computing (Vol. 542, pp. 159–176). doi: 10.1007/978-981-10-3223-3{_}15es_ES
dc.source.bibliographicCitationSingh, R., Kushwaha, A. K. S., y Srivastava, R. (2019). Multi-view recognition system for human activity based on multiple features for video surveillance system. Multimedia Tools and Applications, 78(12), 17165–17196. doi: 10.1007/s11042-018-7108-9es_ES
dc.source.bibliographicCitationSubedi, P. P., y Walsh, K. B. (2020). Assessment of avocado fruit dry matter content using portable near infrared spectroscopy: Method and instrumentation optimisation. Postharvest Biology and Technology, 161. doi: 10.1016/j.postharvbio.2019.111078es_ES
dc.source.bibliographicCitationSulas-Kern, D. B., Johnston, S., y Meydbray, J. (2019). Fill Factor Loss in Fielded Photovoltaic Modules Due to Metallization Failures, Characterized by Luminescence and Thermal Imaging. En Conference record of the ieee photovoltaic specialists conference (pp. 2008–2012). doi: 10.1109/PVSC40753.2019.8980840es_ES
dc.source.bibliographicCitationSun, W., y Du, Q. (2019). Hyperspectral band selection: A review. IEEE Geoscience and Remote Sensing Magazine, 7(2), 118–139. doi: 10.1109/MGRS.2019.2911100es_ES
dc.source.bibliographicCitationTabatabaei, S. M., y Chalechale, A. (2019). Noise-tolerant texture feature extraction through directional thresholded local binary pattern. Visual Computer. doi: 10.1007/s00371-019-01704-8es_ES
dc.source.bibliographicCitationTharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. doi: https://doi.org/10.1016/j.aci.2018.08.003es_ES
dc.source.bibliographicCitationTorres, I., y Amigo, J. M. (2020). An overview of regression methods in hyperspectral and multispectral imaging. Data Handling in Science and Technology, 32, 205–230. doi: 10.1016/B978-0-444-63977-6.00010-9es_ES
dc.source.bibliographicCitationCristobal-Huerta, A., Poot, D. H. J., Vogel, M. W., Krestin, G. P., y Hernandez-Tamames, J. A. (2019). Compressed Sensing 3D-GRASE for faster High-Resolution MRI. Magnetic Resonance in Medicine, 82(3), 984–999. doi: 10.1002/mrm.27789es_ES
dc.source.bibliographicCitationUma, J., Muniraj, C., y Sathya, N. (2019). Diagnosis of photovoltaic (PV) panel defects based on testing and evaluation of thermal image. Journal of Testing and Evaluation, 47(6). doi: 10.1520/JTE20170653es_ES
dc.source.bibliographicCitationVan Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., . . . Aerts, H. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer Research, 77(21), e104–e107. doi: 10.1158/0008-5472.CAN-17-0339es_ES
dc.source.bibliographicCitationArzate-Vazquez, I., Chanona-Perez, J. J., de Perea-Flores, M. J., Calderon-Dominguez, G., Moreno-Armendariz, M. A., Calvo, H., . . . Gutierrez-Lopez, G. (2011). Image Processing Applied to Classification of Avocado Variety Hass (Persea americana Mill.) During the Ripening Process. Food and Bioprocess Technology, 4(7). doi: 10.1007/s11947-011-0595-6es_ES
dc.source.bibliographicCitationVega Diaz, J. J., Sandoval Aldana, A. P., y Reina Zuluaga, D. V. (2020). Prediction of dry matter content of recently harvested ‘Hass’ avocado fruits using hyperspectral imaging. Journal of the Science of Food and Agriculture, n/a(n/a). Descargado de https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.10697 doi: 10.1002/jsfa.10697es_ES
dc.source.bibliographicCitationVenkatanath, N., Praneeth, D., Maruthi Chandrasekhar, B. H., Channappayya, S. S., y Medasani, S. S. (2015). Blind image quality evaluation using perception based features. En 2015 21st national conference on communications, ncc 2015. doi: 10.1109/NCC.2015.7084843es_ES
dc.source.bibliographicCitationWalsh, K. B., Golic, M., y Greensill, C. V. (2004). Sorting of fruit using near infrared spectroscopy: Application to a range of fruit and vegetables for soluble solids and dry matter content. Journal of Near Infrared Spectroscopy, 12(3), 141–148. doi: 10.1255/jnirs.419es_ES
dc.source.bibliographicCitationWalsh, K. B., McGlone, V. A., y Han, D. H. (2020). The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biology and Technology, 163. doi: 10.1016/j.postharvbio.2020.111139es_ES
dc.source.bibliographicCitationWang, S., Zhang, Y., Nie, M., Zhao, Y., Yang, Z., Zhu, S., y Zhao, Y. (2019). Content-based image retrieval based on improved rotation invariant LBP descriptor. En Proceedings - 2019 ieee international congress on cybermatics: 12th ieee international conference on internet of things, 15th ieee international conference on green computing and communications, 12th ieee international conference on cyber, physical and so (pp. 1211–1216). doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00203es_ES
dc.source.bibliographicCitationWang, Y. L., Sun, J., y Xu, H. W. (2014). Research on solar panels online defect detecting method. Applied Mechanics and Materials, 635-637, 938–941. doi: 10.4028/www.scientific.net/AMM.635-637.938es_ES
dc.source.bibliographicCitationWedding, B., Wright, C., Grauf, S., White, R. D., Gadek, P. A., Wrightd, C., . . . Gadek, P. A. (2011). Near infrared spectroscopy as a rapid non-invasive tool for agricultural and industrial process management with special reference to avocado and sandalwood industries. Desalination and Water Treatment, 32(1-3), 365–372. doi: 10.5004/dwt.2011.2723es_ES
dc.source.bibliographicCitationDane. (2020). Sistema de Informacion de Precios SIPSA. Descargado de https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-de-informacion/sipsaes_ES
dc.source.bibliographicCitationWedding, B., Wright, C., Grauf, S., White, R. D., Tilse, B., y Gadek, P. (2013). Effects of seasonal variability on FT-NIR prediction of dry matter content for whole Hass avocado fruit. Postharvest Biology and Technology, 75. doi: 10.1016/j.postharvbio.2012.04.016es_ES
dc.source.bibliographicCitationWestad, F., y Marini, F. (2015). Validation of chemometric models – A tutorial. Analytica Chimica Acta, 893, 14–24. doi: https://doi.org/10.1016/j.aca.2015.06.056es_ES
dc.source.bibliographicCitationWiki. (2020). Canon Hack Development Kit (CHDK). Descargado de https://chdk.fandom.com/wiki/CHDKes_ES
dc.source.bibliographicCitationAstudillo-Ordonez, C. E., y Rodriguez, P. (2018). Parametros fisicoquimicos del aguacate Persea americana Mill. cv. Hass (Lauraceae) producido en Antioquia (Colombia) para exportacion. Corpoica Ciencia y Tecnologia Agropecuaria, 19, 383–392.es_ES
dc.source.bibliographicCitationWoolf, A., Clark, C., Terander, E., Phetsomphou, V., Hofshi, R., Arpaia, L., . . . White, A. (2003). Measuring avocado maturity ; ongoing developments. Orchard, 76(May), 40–45. Descargado de http://209.143.153.251/Journals/%5CnOrchardist/WoolfAllan2003b.pdf.es_ES
dc.source.bibliographicCitationWu, Y., Kirillov, A., Massa, F., Lo, W.-Y., y Girshick, R. (2019). Detectron2. Descargado de https://github.com/facebookresearch/detectron2es_ES
dc.source.bibliographicCitationYang, L., Yang, Y., y Ma, Y. (2018). A novel no-reference video quality assessment algorithm. En Proceedings of 2018 ieee 4th information technology and mechatronics engineering conference, itoec 2018 (pp. 181–187). doi: 10.1109/ITOEC.2018.8740719es_ES
dc.source.bibliographicCitationYang, Y., Cai, X., Zhang, M., y Xiao, X. (2019). Reversible data hiding with different embedding capacity based on optimal embedding strategy selection and image quality assessment criteria. Journal of Information Hiding and Multimedia Signal Processing, 10(2), 392–407.es_ES
dc.source.bibliographicCitationZheng, L., Shen, L., Chen, J., An, P., y Luo, J. (2019). No-Reference Quality Assessment for Screen Content Images Based on Hybrid Region Features Fusion. IEEE Transactions on Multimedia, 21(8), 2057–2070. doi: 10.1109/TMM.2019.2894939es_ES
dc.source.bibliographicCitationZhu, L., Zhao, J., Fu, Y., Zhang, J., Shen, H., y Zhang, S. (2019). Deep learning algorithm for the segmentation of the interested region of an infrared thermal image. Xi’an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 46(4), 107–114 and 121. doi: 10.19665/j.issn1001-2400.2019.04.015es_ES
dc.source.bibliographicCitationDavila-Sacoto, M., Hernandez-Callejo, L., Alonso-Gomez, V., Gallardo-Saavedra, S., y Gonzalez, L. G. (2020). Detecting Hot Spots in Photovoltaic Panels Using Low-Cost Thermal Cameras. Communications in Computer and Information Science, 1152 CCIS, 38–53. doi: 10.1007/978-3-030-38889-8_4es_ES
dc.source.bibliographicCitationZou, K. H., Tuncali, K., y Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227(3), 617–622. doi: 10.1148/radiol.2273011499es_ES
dc.source.bibliographicCitationBernal, J., Diaz, C., Osorio, C., Tamayo, A., y Osorio, W. (2014). Actualizacion tecnologica y buenas practicas agricolas (BPA) en el cultivo de aguacate. Medellin: Corporacion Colombiana de Investigación Agropecuaria.es_ES
dc.source.bibliographicCitationBhargava, A., y Bansal, A. (2018). Fruits and vegetables quality evaluation using computer vision: A review. Journal of King Saud University - Computer and Information Sciences. doi: 10.1016/j.jksuci.2018.06.002es_ES
dc.source.bibliographicCitationBlakey, R. J. (2016). Evaluation of avocado fruit maturity with a portable near-infrared spectrometer. Postharvest Biology and Technology, 121, 101–105. doi: 10.1016/j.postharvbio.2016.06.016es_ES
dc.source.bibliographicCitationBrereton, R. G., y Lloyd, G. R. (2010). Support Vector Machines for classification and regression. Analyst, 135(2), 230–267. doi: 10.1039/b918972fes_ES
dc.source.bibliographicCitationBurdon, J., Lallu, N., Haynes, G., Francis, K., Patel, M., Laurie, T., y Hardy, J. (2015). Relationship between dry matter and ripening time in ”hass” avocado. En Acta horticulturae (Vol. 1091, pp. 291–296).es_ES
dc.source.bibliographicCitationBurghouts, G. J., y Geusebroek, J.-M. (2009). Material-specific adaptation of color invariant features. Pattern Recognition Letters, 30(3), 306–313. doi: 10.1016/j.patrec.2008.10.005es_ES
dc.source.bibliographicCitationCarvalho, C., Velasquez, M., y Van Rooyen, Z. (2014). Determination of the minimum dry matter index for the optimum harvest of ”Hass” avocado fruits in Colombia | Determinacion del indice minimo de materia seca para la optima cosecha del aguacate ”Hass” en Colombia. Agronomia Colombiana, 32(3). doi: 10.15446/agron.colomb.v32n3.46031es_ES
dc.source.bibliographicCitationCarvalho, C. P., y Velasquez, M. A. (2015). Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage | Contenido de acidos grasos del aguacate (Persea americana Mill. cv. Hass) en relacion a la altitud del cultivo y el estado de madur. Agronomia Colombiana, 33(2). doi: 10.15446/agron.colomb.v33n2.49902es_ES
dc.source.bibliographicCitationCerdas Araya, M., Montero Calderon, M., y Somarribas Jones, O. (2014). Verificacion del contenido de materia seca como indicador de cosecha para aguacate (Persea americana) Cultivar Hass en zona intermedia de produccion de Los Santos, Costa Rica. Agronomia Costarricense, 38(1), 207–214. Descargado de https://revistas.ucr.ac.cr/index.php/agrocost/article/view/15205es_ES
dc.source.bibliographicCitationDenis Girod, M., Landry, J.-A., Doyon, G., y Osuna Garcia, J. A. (2008). Predicting Maturity of Hass Avocado Using Hyperspectral Imagery. Caribbean Food Crops Society, 44 (2), 27. Descargado de http://www.ars-grin.gov/may/documents/CFCS%7B_%7D2008.pdfes_ES
dc.source.bibliographicCitationChawla, R., Singal, P., y Garg, A. K. (2018). A Mamdani Fuzzy Logic System to Enhance Solar Cell Micro-Cracks Image Processing. 3D Research, 9(3). doi: 10.1007/s13319-018-0186-7es_ES
dc.source.bibliographicCitationChen, J., Lin, C., y Liu, C. (2018). The efficiency and performance detection algorithm and system development for photovoltaic system through use of thermal image processing technology. En Aip conference proceedings (Vol. 1978). doi: 10.1063/1.5044158es_ES
dc.source.bibliographicCitationChen, M.-J., y Bovik, A. C. (2011). No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing, 2011(1), 3. Descargado de https://doi.org/10.1186/1687-5281-2011-3 doi: 10.1186/1687-5281-2011-3es_ES
dc.source.bibliographicCitationCheng, J.-H., Nicolai, B., y Sun, D.-W. (2017). Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Science, 123, 182–191. doi: 10.1016/j.meatsci.2016.09.017es_ES
dc.source.bibliographicCitationChicco, D., y Jurman, G. (2020, jan). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1), 6. doi: 10.1186/s12864-019-6413-7es_ES
dc.source.bibliographicCitationCiocca, G., Corchs, S., Gasparini, F., y Schettini, R. (2014). How to assess image quality within a workflow chain: an overview. International Journal on Digital Libraries, 15(1). doi: 10.1007/s00799-014-0124-0es_ES
dc.source.bibliographicCitationClark, C. J., McGlone, V. A., Requejo, C., White, A., y Woolf, A. B. (2003). Dry matter determination in ”Hass” avocado by NIR spectroscopy. Postharvest Biology and Technology, 29(3). doi: 10.1016/S0925-5214(03)00046-2es_ES
dc.source.bibliographicCitationDixon, J., Lamond, C. B., Smith, D. B., y Elmlsy, T. A. (2006). PATTERNS OF FRUIT GROWTH AND FRUIT DROP OF ”HASS” AVOCADO TREES IN THE WESTERN BAY OF PLENTY, NEW ZEALAND. New Zealand Avocado Growers’ Association Annual Research Report, 6, 47–54. Descargado de http://www.avocadosource.com/Journals/NZAGA/NZAGA_2006/NZAGA_2006_PG_47-54.pdfes_ES
dc.source.bibliographicCitationDji. (2020). Zenmuse XT specs. Descargado de https://www.dji.com/zenmuse-xt/specses_ES
dc.source.bibliographicCitationDonetti, M., y Terry, L. A. (2012). Investigation of skin colour changes as non-destructive parameter of fruit ripeness of imported ”hass” avocado fruit (Vol. 945).es_ES
dc.source.bibliographicCitationDuda, R. O., Hart, P. E., y Stork, D. G. (2001). Pattern Classification (2.a ed.). New York: Wiley. Edgar Roa Guerrero, y Gustavo Meneses Benavides. (2014, jun). Automated system for classifying Hass avocados based on image processing techniques. En 2014 ieee colombian conference on communications and computing (colcom) (pp. 1–6). IEEE. doi: 10.1109/ColComCon.2014.6860414es_ES
dc.source.bibliographicCitationMazhar, M., Joyce, D., Hofman, P., y Vu, N. (2018). Factors contributing to increased bruise expression in avocado (Persea americana M.) cv. ‘Hass’ fruit. Postharvest Biology and Technology, 143, 58–67. doi: 10.1016/j.postharvbio.2018.04.015es_ES
dc.source.bibliographicCitationEscobar, J. V., Rodriguez, P., Cortes, M., y Correa, G. (2019). Influence of dry matter as a harvest index and cold storage time on cv. Hass avocado quality produced in high tropic region. Informacion Tecnologica, 30(3), 199–210. doi: 10.4067/S0718-07642019000300199es_ES
dc.source.bibliographicCitationEspinosa-Velazquez, Dorantes-Alvarez, L., Gutierrez-Lopez, G. F., Garcia-Armenta, E., Sanchez-Segura, L., Perea-Flores, M. J., . . . Ortiz Moreno, A. (2016). Morpho-structural description of unripe and ripe avocado pericarp (Persea americana Mill var. drymifolia) | Descripcion morfo-estructural del pericarpio del aguacate ((Persea americana Mill var. drymifolia) inmaduro y maduro. Revista Mexicana de Ingeniera Quimica, 15(2).es_ES
dc.source.bibliographicCitationEstrada, B., y Alonso, J. (2016). Estudios ecofisiologicos en aguacate cv. Hass en diferentes ambientes como alternativa productiva en Colombia (Tesis Doctoral, Universidad Nacional, Medellin). Descargado de http://www.bdigital.unal.edu.co/50844/es_ES
dc.source.bibliographicCitationFaostat, F. (2020). Statistical databases. Food and Agriculture Organization of the United Nations. Descargado de http://www.fao.org/faostat/es/#data/QCes_ES
dc.source.bibliographicCitationFernandez Lozano, C. (2014). Tecnicas basadas en kernel para el analisis de texturas en imagen biomédica (Tesis Doctoral, Universidade da Coruna). Descargado de https://dialnet.unirioja.es/servlet/tesis?codigo=41514es_ES
dc.source.bibliographicCitationFleming, R. W. (2017). Material Perception. Annual Review of Vision Science, 3, 365–388. doi: 10.1146/annurev-vision-102016-061429es_ES
dc.source.bibliographicCitationFreitas, P. G., Da Eira, L. P., Santos, S. S., y De Farias, M. C. Q. (2018). On the application LBP texture descriptors and its variants for no-reference image quality assessment. Journal of Imaging, 4(10). doi: 10.3390/jimaging4100114es_ES
dc.source.bibliographicCitationFuentealba, C., Pedreschi, R., Hernandez, I., y Jorge. (2016). A STATISTICAL APPROACH FOR ASSESSING THE HETEROGENEITY OF HASS AVOCADOS SUBJECTED TO DIFFERENT POSTHARVEST ABIOTIC STRESSES. Ciencia e investigacion agraria, 43(3), 2. doi: 10.4067/S0718-16202016000300002es_ES
dc.source.bibliographicCitationGanesan, P., Xue, Z., Singh, S., Long, R., Ghoraani, B., y Antani, S. (2019). Performance Evaluation of a Generative Adversarial Network for Deblurring Mobile-phone Cervical Images. En 2019 41st annual international conference of the ieee engineering in medicine and biology society (embc) (pp. 4487–4490). doi: 10.1109/EMBC.2019.8857124es_ES
dc.source.bibliographicCitationGao, X., Munson, E., Abousleman, G. P., y Si, J. (2015). Automatic solar panel recognition and defect detection using infrared imaging. En Automatic target recognition xxv (Vol. 9476, p. 94760O). doi: 10.1117/12.2179792es_ES
dc.source.bibliographicCitationMd. Taha, A. Q., y Ibrahim, H. (2020). Reduction of salt-and-pepper noise from digital grayscale image by using recursive switching adaptive median filter. Lecture Notes in Mechanical Engineering, 32–47. doi: 10.1007/978-981-13-9539-0_4es_ES
dc.source.bibliographicCitationGarrido, G., y Joshi, P. (2018). OpenCV 3.x with Python By Example - Second Edition: Make the Most of OpenCV and Python to Build Applications for Object Recognition and Augmented Reality (2nd ed.). Packt Publishing.es_ES
dc.source.bibliographicCitationGirod, D. (2008). Determination de la maturiite des avocats Hass par imagerie hyperspectrale (Tesis Doctoral, UNIVERSITE DU QUEBEC). Descargado de http://espace.etsmtl.ca/137/1/GIROD_Denis.pdfes_ES
dc.source.bibliographicCitationGoring, S., Rao, R. R. R., y Raake, A. (2019). Nofu - A lightweight no-reference pixel based video quality model for gaming content. En 2019 11th international conference on quality of multimedia experience, qomex 2019. doi: 10.1109/QoMEX.2019.8743262es_ES
dc.source.bibliographicCitationGreco, A., Pironti, C., Saggese, A., Vento, M., y Vigilante, V. (2020). A deep learning based approach for detecting panels in photovoltaic plants. En Acm international conference proceeding series. doi: 10.1145/3378184.3378185es_ES
dc.source.bibliographicCitationGupta, M., Rajagopalan, V., y Rao, B. (2019). Glioma grade classification using wavelet transform-local binary pattern based statistical texture features and geometric measures extracted from MRI. Journal of Experimental and Theoretical Artificial Intelligence, 31(1), 57–76. doi: 10.1080/0952813X.2018.1518997es_ES
dc.source.bibliographicCitationGuyon, I., y Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. J. Mach. Learn. Res., 3, 1157–1182. Descargado de http://dl.acm.org/citation.cfm?id=944919.944968es_ES
dc.source.bibliographicCitationHaider, M., Doegar, A., y Verma, R. K. (2019). Fault identification in electrical equipment using thermal image processing. En 2018 international conference on computing, power and communication technologies, gucon 2018 (pp. 853–858). doi: 10.1109/GUCON.2018.8675108es_ES
dc.source.bibliographicCitationHenry, C., Poudel, S., Lee, S.-W., y Jeong, H. (2020). Automatic detection system of deteriorated PV modules using drone with thermal camera. Applied Sciences (Switzerland), 10(11). doi: 10.3390/app10113802es_ES
dc.source.bibliographicCitationHernandez, I., Fuentealba, C., Olaeta, J. A., Lurie, S., Defilippi, B. G., Campos-Vargas, R., y Pedreschi, R. (2016). Factors associated with postharvest ripening heterogeneity of ”Hass” avocados ( Persea americana Mill). Fruits, 71(5), 259–268. Descargado de http://www.pubhort.org/fruits/2016/5/fruits160045.htm doi: 10.1051/fruits/2016016es_ES
dc.source.bibliographicCitationHerrera-Gonzalez, J. A., Salazar-Garcia, S., Martinez-Flores, H. E., y Ruiz-Garcia, J. E. (2017). Preliminary signs of physiological maturity and postharvest performance of mendez avocado fruit | Indicadores preliminaries de madurez fisiologica y comportamiento postcosecha del fruto de aguacate mendez. Revista Fitotecnia Mexicana, 40(1), 55–63. doi: 10.35196/rfm.2017.1.55-63es_ES
dc.source.bibliographicCitationMedina-Carrillo, R. E., Salazar-Garcia, S., Bonilla-Cardenas, J. A., Herrera-Gonzalez, J. A., Ibarra-Estrada, M. E., y Alvarez-Bravo, A. (2017). Secondary metabolites and lignin in ”hass” avocado fruit skin during fruit development in three producing regions. HortScience, 52(6), 852–858. doi: 10.21273/HORTSCI11882-17es_ES
dc.source.bibliographicCitationHoffmann, F., Bertram, T., Mikut, R., Reischl, M., y Nelles, O. (2019). Benchmarking in classification and regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(5). doi: 10.1002/widm.1318es_ES
dc.source.bibliographicCitationHofman, P. J., y Jobin-Decor, M. (1999). Effect of fruit sampling and handling procedures on the percentage dry matter, fruit mass, ripening and skin colour of ’Hass’ avocado. Journal of Horticultural Science and Biotechnology, 74(3), 277–282. doi: 10.1080/14620316.1999.11511108es_ES
dc.source.bibliographicCitationHu, H., Huang, L., y Yu,W. (2019). Aircraft detection for hr sar images in non-homogeneous background using GGMD-based modeling. Chinese Journal of Electronics, 28(6), 1271–1280. doi: 10.1049/cje.2019.08.010es_ES
dc.source.bibliographicCitationHu, X., Huang, Y., Gao, X., Luo, L., y Duan, Q. (2019). Squirrel-cage local binary pattern and its application in video anomaly detection. IEEE Transactions on Information Forensics and Security, 14(4), 1007–1022. doi: 10.1109/TIFS.2018.2868617es_ES
dc.source.bibliographicCitationHunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., y Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103–112. doi: https://doi.org/10.1016/j.jag.2012.07.020es_ES
dc.source.bibliographicCitationICONTEC. (2003). NTC 5209. Aguacate. Variedades Mejoradas. Especificaciones. Instituto Colombiano de Normas Tecnicas y Certificacion, 26.es_ES
dc.source.bibliographicCitationInfoHASS. (2020). Exportacion a Estados Unidos. Descargado de http://www.infohass.net/es_ES
dc.source.bibliographicCitationIsmail, H., Chikte, R., Bandyopadhyay, A., y Al Jasmi, N. (2019). Autonomous detection of PV panels using a drone. En Asme international mechanical engineering congress and exposition, proceedings (imece) (Vol. 4). doi: 10.1115/IMECE2019-12080es_ES
dc.source.bibliographicCitationJaffery, Z. A., Dubey, A. K., Irshad, y Haque, A. (2017). Scheme for predictive fault diagnosis in photovoltaic modules using thermal imaging. Infrared Physics and Technology, 83, 182–187. doi: 10.1016/j.infrared.2017.04.015es_ES
dc.source.bibliographicCitationJia, B., Wang, W., Ni, X., Lawrence, K. C., Zhuang, H., Yoon, S.-C., y Gao, Z. (2020). Essential processing methods of hyperspectral images of agricultural and food products. Chemometrics and Intelligent Laboratory Systems, 198. doi: 10.1016/j.chemolab.2020.103936es_ES
dc.source.bibliographicCitationMenendez, O., Guaman, R., Perez, M., y Cheein, F. A. (2018). Photovoltaic modules diagnosis using artificial vision techniques for artifact minimization. Energies, 11(7). doi: 10.3390/en11071688es_ES
dc.source.bibliographicCitationJiao, Y., Ijurra, O. M., Zhang, L., Shen, D., y Wang, Q. (2020). Curadiomics: A GPU-based radiomics feature extraction toolkit. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11991 LNCS, 44–52. doi: 10.1007/978-3-030-40124-5_5es_ES
dc.source.bibliographicCitationKader, A. A. (1999, mar). FRUIT MATURITY, RIPENING, AND QUALITY RELATIONSHIPS. Acta Horticulturae(485), 203–208. Descargado de https://www.actahort.org/books/485/485_27.htm doi: 10.17660/ActaHortic.1999.485.27es_ES
dc.source.bibliographicCitationKandavalli, M. A., y Abraham Lincon, S. (2019). Design and implementation of colour texture-based multiple object detection using morphological gradient approach. Concurrency Computation, 31(14). doi: 10.1002/cpe.4980es_ES
dc.source.bibliographicCitationKas, M., El Merabet, Y., Ruichek, Y., y Messoussi, R. (2019). Survey on local binary pattern descriptors for face recognition. En Acm international conference proceeding series. Association for Computing Machinery. doi: 10.1145/3314074.3314079es_ES
dc.source.bibliographicCitationKrupinski, R. (2018). Modeling quantized coefficients with generalized gaussian distribution with exponent 1/m, m=2,3,. Advances in Intelligent Systems and Computing, 659, 228–237. doi: 10.1007/978-3-319-67792-7_23es_ES
dc.source.bibliographicCitationLee, D., y Park, J. (2019). Development of Solar-Panel Monitoring Method Using Unmanned Aerial Vehicle and Thermal Infrared Sensor. En Iop conference series: Materials science and engineering (Vol. 611). doi: 10.1088/1757-899X/611/1/012085es_ES
dc.source.bibliographicCitationLee, D. H., y Park, J. H. (2019). Developing inspection methodology of solar energy plants by thermal infrared sensor on board unmanned aerial vehicles. Energies, 12(15). doi: 10.3390/en12152928es_ES
dc.source.bibliographicCitationLee, H. C., Kang, B. J., Lee, E. C., y Park, K. R. (2010, jul). Finger vein recognition using weighted local binary pattern code based on a support vector machine. Journal of Zhejiang University SCIENCE C, 11(7), 514–524. Descargado de https://doi.org/10.1631/jzus.C0910550 doi: 10.1631/jzus.C0910550es_ES
dc.source.bibliographicCitationLee, S., An, K. E., Jeon, B. D., Cho, K. Y., Lee, S. J., y Seo, D. (2018). Detecting faulty solar panels based on thermal image processing. En 2018 ieee international conference on consumer electronics, icce 2018 (Vol. 2018-Janua, pp. 1–2). doi: 10.1109/ICCE.2018.8326228es_ES
dc.source.bibliographicCitationLee, S. K., y Young, R. E. (1983). Growth Measurement as an Indication of Avocado Maturity (Vol. 108; Inf. Tec. n.o 3). Descargado de http://www.avocadosource.com/Journals/ASHS/ASHS_1983_108_PG_395-397.pdfes_ES
dc.source.bibliographicCitationMinisterio de Agricultura y Desarrollo Rural. (2016). ESTRATEGIA COLOMBIA SIEMBRA. Descargado de https://www.minagricultura.gov.co/planeacion-control-gestion/Gestin/ESTRATEGIACOLOMBIASIEMBRAV1.pdfes_ES
dc.source.bibliographicCitationLee Filters. (2020). Technical Filters. 251 Quarter White Diffusion. Descargado 2020-02-16, de http://www.leefilters.com/lighting/colour-details.html#251es_ES
dc.source.bibliographicCitationLi, B., Lecourt, J., y Bishop, G. (2018, jan). Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction - A Review. Plants, 7(1), 3. Descargado de http://www.mdpi.com/2223-7747/7/1/3 doi: 10.3390/plants7010003es_ES
dc.source.bibliographicCitationLi, H., Hu, W., y Xu, Z.-N. (2016). Automatic no-reference image quality assessment. SpringerPlus, 5(1). doi: 10.1186/s40064-016-2768-2es_ES
dc.source.bibliographicCitationLiao, K. C., y Lu, J. H. (2020). Using Matlab real-time image analysis for solar panel fault detection with UAV. En Journal of physics: Conference series (Vol. 1509). doi: 10.1088/1742-6596/1509/1/012010es_ES
dc.source.bibliographicCitationLiu, L., Fieguth, P., Guo, Y.,Wang, X., y Pietik´’ainen, M. (2017). Local binary features for texture classification: Taxonomy and experimental study. Pattern Recognition, 62, 135–160. doi: 10.1016/j.patcog.2016.08.032es_ES
dc.source.bibliographicCitationLiu, L., Zhao, L.-J., Guo, C.-Y., Wang, L., y Tang, J. (2018). Texture Classification: State-of-the-art Methods and Prospects. Zidonghua Xuebao/Acta Automatica Sinica, 44(4), 584–607. doi: 10.16383/j.aas.2018.c160452es_ES
dc.source.bibliographicCitationLiu, Z.-T., Li, S.-H., Cao, W.-H., Li, D.-Y., Hao, M., y Zhang, R. (2019). Combining 2D Gabor and local binary pattern for facial expression recognition using extreme learning machine. Journal of Advanced Computational Intelligence and Intelligent Informatics, 23(3), 444–455. doi: 10.20965/jaciii.2019.p0444es_ES
dc.source.bibliographicCitationLopez-Fernandez, L., Lag´’uela, S., Fernandez, J., y Gonzalez-Aguilera, D. (2017). Automatic evaluation of photovoltaic power stations from high-density RGB-T 3D point clouds. Remote Sensing, 9(6). doi: 10.3390/rs9060631es_ES
dc.source.bibliographicCitationMa, C., Lv, X., y Ao, J. (2019). Difference based median filter for removal of random value impulse noise in images. Multimedia Tools and Applications, 78(1), 1131–1148. doi: 10.1007/s11042-018-6442-2es_ES
dc.source.bibliographicCitationMa, J., Sun, D.-W., Pu, H., Cheng, J.-H., y Wei, Q. (2019). Advanced techniques for hyperspectral imaging in the food industry: principles and recent applications. Annual Review of Food Science and Technology, 10, 197–220. doi: 10.1146/annurev-food-032818-121155es_ES
dc.source.bibliographicCitationMinisterio de Agricultura y Desarrollo Rural. (2020). Agronet. Estadisticas Agropecuarias. Descargado de http://www.agronet.gov.co/estadistica/Paginas/default.aspxes_ES
dc.source.bibliographicCitationMagwaza, L. S., y Tesfay, S. Z. (2015). A Review of Destructive and Non-destructive Methods for Determining Avocado Fruit Maturity. Food and Bioprocess Technology, 8(10). doi: 10.1007/s11947-015-1568-yes_ES
dc.source.bibliographicCitationMaier, A., y Rodriguez-Salas, D. (2017). Fast and robust selection of highly-correlated features in regression problems. En Proceedings of the 15th iapr international conference on machine vision applications, mva 2017 (pp. 482–485). doi: 10.23919/MVA.2017.7986905es_ES
dc.source.bibliographicCitationMandalapu, H., Ramachandra, R., y Busch, C. (2018). Image Quality and Texture-Based Features for Reliable Textured Contact Lens Detection. En Proceedings - 14th international conference on signal image technology and internet based systems, sitis 2018 (pp. 587–594). doi: 10.1109/SITIS.2018.00095es_ES
dc.source.bibliographicCitationMarcante, N., de Mello Prado, R., Camacho, M., Rosset, J., Ecco, M., y Savan, P. (2010). Determination of dry matter and macronutrient content in leaves of fruit trees using different drying methods | Determinacao da materia seca e teores de macronutrientes em folhas de frutiferas usando diferentes metodos de secagem. Ciencia Rural, 40(11), 2398–2401.es_ES
dc.source.bibliographicCitationMarkman, A., O’Connor, T., Hotaka, H., Ohsuka, S., y Javidi, B. (2019). Three-dimensional integral imaging in photon-starved environments with high-sensitivity image sensors. Optics Express, 27(19), 26355–26368. doi: 10.1364/OE.27.026355es_ES
dc.source.bibliographicCitationMATLAB. (2019a). MATLAB and Image Processing Toolbox Release 2019b. Descargado de https://la.mathworks.com/help/pdf_doc/images/rn.pdfes_ES
dc.source.bibliographicCitationMATLAB. (2019b). Programming Fundamentals. Descargado de https://la.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdfes_ES
dc.source.bibliographicCitationMittal, A., Soundararajan, R., y Bovik, A. C. (2013). Making a ’completely blind’ image quality analyzer. IEEE Signal Processing Letters, 20(3), 209–212. doi: 10.1109/LSP.2012.2227726es_ES
dc.source.bibliographicCitationMohana, y Ravish Aradhya, H. V. (2019). Simulation of object detection algorithms for video surveillance applications. En Proceedings of the international conference on i-smac (iot in social, mobile, analytics and cloud), i-smac 2018 (pp. 651–655). Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/I-SMAC.2018.8653665es_ES
dc.source.bibliographicCitationMurthy, A. V., y Karam, L. J. (2010). A MATLAB-based framework for image and video quality evaluation. En 2010 2nd international workshop on quality of multimedia experience, qomex 2010 - proceedings (pp. 242–247). doi: 10.1109/QOMEX.2010.5516091es_ES
dc.source.bibliographicCitationNacereddine, N., Goumeidane, A. B., y Ziou, D. (2019). Unsupervised weld defect classification in radiographic images using multivariate generalized Gaussian mixture model with exact computation of mean and shape parameters. Computers in Industry, 108, 132–149. doi: 10.1016/j.compind.2019.02.010es_ES
dc.source.bibliographicCitationAmigo, J. M., y Santos, C. (2020). Preprocessing of hyperspectral and multispectral images. Data Handling in Science and Technology, 32, 37–53. doi: 10.1016/B978-0-444-63977-6.00003-1es_ES
dc.source.bibliographicCitationNalepa, J., y Kawulok, M. (2019). Selecting training sets for support vector machines: a review. Artificial Intelligence Review, 52(2), 857–900. doi: 10.1007/s10462-017-9611-1es_ES
dc.source.bibliographicCitationNcama, K., Magwaza, L. S., Poblete-Echeverria, C. A., Nieuwoudt, H. H., Tesfay, S. Z., y Mditshwa, A. (2018). On-tree indexing of ‘Hass’ avocado fruit by non-destructive assessment of pulp dry matter and oil content. Biosystems Engineering, 174, 41–49. doi: 10.1016/j.biosystemseng.2018.06.011es_ES
dc.source.bibliographicCitationNew Zealand Avocados. (2018). Regional Maturity Monitoring, Hass Avocados. Descargado de http://industry.nzavocado.co.nz/industry/regional_maturity_monitoring.csnes_ES
dc.source.bibliographicCitationOjala, T., Pietik´’ainen, M., y Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. doi: https://doi.org/10.1016/0031-3203(95)00067-4es_ES
dc.source.bibliographicCitationOlarewaju, O. O., Bertling, I., y Magwaza, L. S. (2016). Non-destructive evaluation of avocado fruit maturity using near infrared spectroscopy and PLS regression models. Scientia Horticulturae, 199, 229–236. doi: 10.1016/j.scienta.2015.12.047es_ES
dc.source.bibliographicCitationOrjuela, S. A., Quinones, R. A., Ortiz-Jaramillo, B., Rooms, F., De Keyser, R., y Philips, W. (2011). Optimizing feature extraction in image analysis using experimented designs, a case study evaluating texture algorithms for describing appearance retention in carpets. En Proceedings of spie - the international society for optical engineering (Vol. 8136, p. 15). doi: 10.1117/12.893102es_ES
dc.source.bibliographicCitationOrjuela Vargas, S. A. (2013). Texture analysis for the evaluation of appearance changes in textile surfaces (Tesis Doctoral no publicada). Ghent University.es_ES
dc.source.bibliographicCitationOrjuela Vargas, S. A., Yanez, J. P., y Philips, W. (2014). The Geometric Local Textural Patterns (GLTP) technique. En S. Brahnam, L. C. Jain, L. Nanni, y A. Lumini (Eds.), Local binary patterns : new variants and new applications (Vol. 506, pp. 30–70). Springer. Descargado de http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-39288-7es_ES
dc.source.bibliographicCitationOrjuela-Vargas, S. A., Triana-Martinez, J., Yanez, J. P., y Philips, W. (2014). Real time algorithm invariant to natural lighting with LBP techniques through an adaptive thresholding implemented in GPU processors. En Proceedings of spie - the international society for optical engineering (Vol. 9023). doi: 10.1117/12.2042619es_ES
dc.source.bibliographicCitationOsuna-Garcia, J. J. A. J., Doyon, G., Salazar-Garcia, S., Goenaga, R., y Gonzalez-Duran, I. J. L. I. J. L. (2011, jan). Relationship between skin color and some fruit quality characteristics of ”Hass” avocado. Journal of Agriculture of the University of Puerto Rico, 95(1-2), 15–23.es_ES
dc.source.bibliographicCitationAOAC International., P., y Cunniff, P. (1995). Official methods of analysis of AOAC international (16th ed. ed.). Washington DC: The Association. Descargado de https://www.worldcat.org/title/official-methods-of-analysis-of-aoac-international/oclc/421897987es_ES
dc.description.degreenameDoctor(a) en Ciencia Aplicadaes_ES
dc.description.degreelevelDoctoradoes_ES
dc.publisher.facultyFacultad de Cienciases_ES
dc.description.funderBeca convocatoria 755 colciencias, Gobernación del Tolima, con aval del grupo CEDAGRITOL.es_ES
dc.description.notesPresenciales_ES
dc.creator.orcidhttps://orcid.org/0000-0002-2165-8536es_ES
dc.creator.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000627968es_ES
dc.creator.googlescholarhttps://scholar.google.com/citations?user=OmCMdXAAAAAJ&hl=es&oi=aoes_ES
dc.creator.cedula93413866es_ES
dc.publisher.campusBogotá - Circunvalar-
Aparece en las colecciones: Doctorado en Ciencia aplicada

Ficheros en este ítem:
Fichero Tamaño  
2020JhonJairoVegaDiaz.pdf68.16 MBVisualizar/Abrir
2020AutorizacióndeAutores.pdf
  Restricted Access
789.53 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons