Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.uan.edu.co/handle/123456789/1972
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Orjuela Vargas, Sergio Alejandro | - |
dc.contributor.advisor | Hernández Duarte, Andrés Ignacio | - |
dc.contributor.advisor | Gutiérrez Salamanca, Rafael María | - |
dc.creator | Vega Diaz, Jhon Jairo | - |
dc.date.accessioned | 2021-02-26T14:05:54Z | - |
dc.date.available | 2021-02-26T14:05:54Z | - |
dc.date.created | 2020-11-25 | - |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/1972 | - |
dc.description | Externa | es_ES |
dc.description.abstract | For ''Hass'' avocado exportation is required high quality standards, such as fruit maturity. However, the harvested fruit presents heterogeneity of ripeness, requiring a solution that allows identifying the optimal time of harvest. The optimal time is associated with the physiological maturity. And the dry matter (D.M.) content is used to measure the maturity. But, the nondestructive methods to predict its content are very expensive or are not operative. So, we present a solution to identify if a fruit has physiological maturity on the tree. The solution involves a method and a device with two use cases: classification and system parameterization. The classification use case use a support vector machine trained to classify a vector of texture descriptors calculated from an image of the fruit on the tree. The image is acquired in RGB format, without compression and with homogeneous spatial resolution. he image is pre-treated with a contrast limited adaptive histogram equalization and a conversion to an HSV color space. A segment of the HSV image is used to calculate an optimized vector of texture descriptors. The parameterization use case is to optimize the vector of texture descriptors. This vector is a set of textures descriptors with high efficient cross-validation classification and lower computational cost. The device implements the method and must perform the classification in real time, with portability and ruggedness. The main contributions of the process of research, development and innovation are: This research shows that the fruit has a heterogeneous maturity. For that we test all the fruits of a tree in a harvest season, presenting a variation among fruits upper to 20% of D.M. . we prove the viability of the method in a relevant environment, which a classification efficiency of 98.2% that supports the patent application of the proposed solution. And if a farmer implements the invention, he will have an increase of income in 91.4%. | es_ES |
dc.description.sponsorship | Otro | es_ES |
dc.description.tableofcontents | Para la exportación de aguacate ''Hass'' se requiere cumplir con altos estándares de calidad, entre los que se destaca la madurez de la fruta. Sin embargo, la fruta cosechada presenta heterogeneidad de maduración y se requiere una solución que permita identificar el momento óptimo de cosecha. El momento óptimo se caracteriza porque la fruta alcanza su madurez fisiológica. Para medir la madurez se usa como referente el contenido de materia seca (M.S.) y los métodos no destructivos parar su predicción son muy costosos o no son operativos. Por lo tanto, se presenta una solución que permite identificar si un fruto tiene madurez fisiológica en el árbol. La solución tiene un método y un dispositivo con dos casos de uso: clasificación y parametrización del sistema. La clasificación usa una máquina de soporte vectorial entrenada para clasificar un vector optimizado de descriptores de textura calculado de una imagen de la fruta en el árbol. La imagen es en formato RGB, sin compresión y con resolución espacial homogénea. La imagen tiene un pretratamiento con la ecualización de histograma adaptativo limitada por contraste y la conversión a un espacio de color HSV. De la imagen HSV se usa un segmento para calcular un vector optimizado de de descriptores de textura. El caso de uso de parametrización es para optimizar el vector de descriptores de textura. Este vector es el conjunto de descriptores que permiten mayor eficacia de clasificación en validación cruzada y un menor costo computacional. El dispositivo implementa el método y debe realizar la clasificación en tiempo real, con portabilidad y robusto. Los principales aportes del proceso de investigación, desarrollo en innovación son: Al evaluar destructivamente todos los frutos de un árbol en temporada de cosecha se demostró que la fruta presenta heterogeneidad de maduración, con una variación entre frutos superior a 20% de M.S.. Se demostró que el método en un ambiente relevante tiene una eficiencia de clasificación del 98.2%, lo cual soporta la solicitud de patente de la solución propuesta. Se proyecta que si un agricultor implementa la invención tendría un aumento de los ingresos en un 91.4%. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Antonio Nariño | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.subject | Aguacate | es_ES |
dc.subject | Índice de cosecha | es_ES |
dc.subject | Madurez fisiológica | es_ES |
dc.subject | Descriptores de textura | es_ES |
dc.subject | Máquina de soporte vectorial | es_ES |
dc.title | Innovación tecnológica para la reducción de la heterogeneidad del aguacate ''Hass'' cosechado para exportación | es_ES |
dc.publisher.program | Doctorado en Ciencia Aplicada | es_ES |
dc.rights.accesRights | restrictedAccess | es_ES |
dc.subject.keyword | Avocado | es_ES |
dc.subject.keyword | Harvest index | es_ES |
dc.subject.keyword | Physiological maturity | es_ES |
dc.subject.keyword | Texture descriptors | es_ES |
dc.subject.keyword | Support vector machine | es_ES |
dc.type.spa | Tesis y disertaciones (Maestría y/o Doctorado) | es_ES |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.source.bibliographicCitation | Addabbo, P., Angrisano, A., Bernardi, M. L., Gagliarde, G., Mennella, A., Nisi, M., y Ullo, S. (2017). A UAV infrared measurement approach for defect detection in photovoltaic plants. En 4th ieee international workshop on metrology for aerospace, metroaerospace 2017 - proceedings (pp. 345–350). doi: 10.1109/MetroAeroSpace.2017.7999594 | es_ES |
dc.source.bibliographicCitation | Alcaraz, M. L., Thorp, T. G., y Hormaza, J. I. (2013, dec). Phenological growth stages of avocado (Persea americana) according to the BBCH scale. Scientia Horticulturae, 164, 434–439. doi: 10.1016/j.scienta.2013.09.051 | es_ES |
dc.source.bibliographicCitation | Alcaraz Arco, M. L. (2009). Biología reproductiva del aguacate (Persea americana Mill.). Implicaciones para optimización del cuajado. (Tesis Doctoral, Universidad de Malaga). Descargado de http://www.avocadosource.com/international/spain_papers/AlcarazML2009b.pdf | es_ES |
dc.source.bibliographicCitation | Alfaro-Mejía, E., Loaiza-Correa, H., Franco-Mejía, E., y Hernández-Callejo, L. (2020). Segmentation of Thermography Image of Solar Cells and Panels. Communications in Computer and Information Science,1152 CCIS, 1–8. doi: 10.1007/978-3-030-38889-8_1 | es_ES |
dc.source.bibliographicCitation | Alkhatib, M., y Hafiane, A. (2019). Robust Adaptive Median Binary Pattern for Noisy Texture Classification and Retrieval. IEEE Transactions on Image Processing, 28(11), 5407–5418. doi: 10.1109/TIP.2019.2916742 | es_ES |
dc.source.bibliographicCitation | Al-Saedi, B., Alsaidi, Jaffer Sadiq Al-khafaji, B., Abed, S., y Wahab, A. (2019). Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm. Engineering, Technology and Applied Science Research, 9, 3892–3895. | es_ES |
dc.source.bibliographicCitation | Alsafasfeh, M., Abdel-Qader, I., y Bazuin, B. (2017). Fault detection in photovoltaic system using SLIC and thermal images. En Icit 2017 - 8th international conference on information technology, proceedings (pp. 672–676). doi: 10.1109/ICITECH.2017.8079925 | es_ES |
dc.source.bibliographicCitation | Alsafasfeh, M., Abdel-Qader, I., Bazuin, B., Alsafasfeh, Q., y Su, W. (2018). Unsupervised fault detection and analysis for large photovoltaic systems using drones and machine vision. Energies, 11(9). doi: 10.3390/en11092252 | es_ES |
dc.source.bibliographicCitation | Al-Shamasneh, A. R., Jalab, H. A., Palaiahnakote, S., Obaidellah, U. H., Ibrahim, R. W., y El-Melegy, M. T. (2018). A new Local Fractional Entropy-Based model for kidney MRI image enhancement. Entropy, 20(5). doi: 10.3390/e20050344 | es_ES |
dc.source.bibliographicCitation | Alvarez bravo, A., y Salazar-Garcia, S. (2017). Las condiciones ambientales determinan la rugosidad de la piel del fruto de aguacate ‘Hass’. Revista Mexicana de Ciencias Agricolas, 8, 4063. doi: 10.29312/remexca.v0i19.673 | es_ES |
dc.source.bibliographicCitation | Amigo, J. M. (2020). Hyperspectral and multispectral imaging: setting the scene. Data Handling in Science and Technology, 32, 3–16. doi: 10.1016/B978-0-444-63977-6.00001-8 | es_ES |
dc.source.bibliographicCitation | Park, J., y Lee, D. (2019). Precise Inspection Method of Solar Photovoltaic Panel Using Optical and Thermal Infrared Sensor Image Taken by Drones. En Iop conference series: Materials science and engineering (Vol. 611). doi: 10.1088/1757-899X/611/1/012089 | es_ES |
dc.source.bibliographicCitation | Paul, S., y Bovik, A. C. (2019). Image Statistic Models CharacterizeWell Log Image Quality. IEEE Geoscience and Remote Sensing Letters, 16(7), 1130–1134. doi: 10.1109/LGRS.2019.2893363 | es_ES |
dc.source.bibliographicCitation | Pedreschi, R., Munoz, P., Robledo, P., Becerra, C., Defilippi, B., van Eekelen, H.,. De Vos, R. (2014a). Metabolomics analysis of postharvest ripening heterogeneity of ’Hass’ avocadoes. Postharvest Biology and Technology, 92. doi: 10.1016/j.postharvbio.2014.01.024 | es_ES |
dc.source.bibliographicCitation | Pedreschi, R., Munoz, P., Robledo, P., Becerra, C., Defilippi, B. G. B., van Eekelen, H., . De Vos, R. C. R. (2014b, jun). Metabolomics analysis of postharvest ripening heterogeneity of ”Hass” avocadoes. Postharvest Biology and Technology, 92, 172–179. doi: 10.1016/j.postharvbio.2014.01.024 | es_ES |
dc.source.bibliographicCitation | Phoolwani, U. K., Sharma, T., Singh, A., y Gawre, S. K. (2020). IoT Based Solar Panel Analysis using Thermal Imaging. En 2020 ieee international students’ conference on electrical, electronics and computer science, sceecs 2020. doi: 10.1109/SCEECS48394.2020.114 | es_ES |
dc.source.bibliographicCitation | Pineda Tobon, D. M. (2017). Diseno, construccion y evaluacion de un fluorimetro y una camara multiespectral para uso en agricultura y biologia (Maestria thesis, Universidad Nacional de Colombia - Sede Medellin.) Descargado de http://bdigital.unal.edu.co/59275/1/1041148752.2017.pdf | es_ES |
dc.source.bibliographicCitation | Plutino, A., Lanaro, M. P., Liberini, S., y Rizzi, A. (2019). Work memories in Super 8: Searching a frame quality metric for movie restoration assessment. Journal of Cultural Heritage. doi: 10.1016/j.culher.2019.06.008 | es_ES |
dc.source.bibliographicCitation | Pu, Y.-Y., Feng, Y.-Z., y Sun, D.-W. (2015). Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 14(2), 176–188. doi: 10.1111/1541-4337.12123 | es_ES |
dc.source.bibliographicCitation | Rahman, M. M., Rahman, S., Kamal, M., Abdullah-Al-Wadud, M., Dey, E. K., y Shoyaib, M. (2016). Noise adaptive binary pattern for face image analysis. En 2015 18th international conference on computer and information technology, iccit 2015 (pp. 390–395). doi: 10.1109/ICCITechn.2015.7488102 | es_ES |
dc.source.bibliographicCitation | Ravikanth, L., Jayas, D. S., White, N. D. G., Fields, P. G., y Sun, D.-W. (2017). Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food and Bioprocess Technology, 10(1). doi: 10.1007/s11947-016-1817-8 | es_ES |
dc.source.bibliographicCitation | Cokelaer, T., y Hasch, J. (2017). ’Spectrum’: Spectral Analysis in Python. Journal of Open Source Software, 2(18), 348. doi: 10.21105/joss.00348 | es_ES |
dc.source.bibliographicCitation | Arendse, E., Fawole, O. A., Magwaza, L. S., y Opara, U. L. (2018). Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. Journal of Food Engineering, 217, 11–23. doi: 10.1016/j.jfoodeng.2017.08.009 | es_ES |
dc.source.bibliographicCitation | Rehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., y Shin, J. (2019). Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture, 156, 585–605. doi: 10.1016/j.compag.2018.12.006 | es_ES |
dc.source.bibliographicCitation | Resonon. (2019). SpectrononPro Manual 5.3. Resonon Inc. Descargado de http://docs.resonon.com/spectronon/pika_manual/html/index.html | es_ES |
dc.source.bibliographicCitation | Resonon. (2020). Resonon, Pika XC2. Descargado 2020-02-16, de https://resonon.com/Pika-XC2 | es_ES |
dc.source.bibliographicCitation | Richardson, A. D., Duigan, S. P., y Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185–194. doi: 10.1046/j.0028-646X.2001.00289.x | es_ES |
dc.source.bibliographicCitation | Rodriguez, A., Vargas, S. A. O., y Philips, W. (2013). Robust video feature extraction invariant to natural lighting by using LBP techniques with adaptive thresholding. En Symposium of signals, images and artificial vision - 2013, stsiva 2013. doi: 10.1109/STSIVA.2013.6644942 | es_ES |
dc.source.bibliographicCitation | Rodriguez, P., Henao, J. C., Correa, G., y Aristizabal, A. (2018). Identification of harvest maturity indicators for ‘hass’ avocado adaptable to field conditions. HortTechnology, 28(6), 815–821. doi: 10.21273/HORTTECH04025-18 | es_ES |
dc.source.bibliographicCitation | Sandilya, M., y Nirmala, S. R. (2018). Determination of reconstruction parameters in Compressed Sensing MRI using BRISQUE score. En 2018 international conference on information, communication, engineering and technology, icicet 2018. doi: 10.1109/ICICET.2018.8533865 | es_ES |
dc.source.bibliographicCitation | Sanson, F., y Frueh, C. (2019). Noise estimation and probability of detection in non-resolved images: Application to space object observation. Advances in Space Research, 64(7), 1432–1444. doi: 10.1016/j.asr.2019.07.003 | es_ES |
dc.source.bibliographicCitation | Santana, I., Castelo-Branco, V. N., Guimaraes, B. M., Silva, L. D. O., Peixoto, V., Cabral, L. M. C.,.Torres, A. G. (2019). Hass avocado (Persea americana Mill.) oil enriched in phenolic compounds and tocopherols by expeller-pressing the unpeeled microwave dried fruit. Food Chemistry, 286, 354–361. doi: 10.1016/j.foodchem.2019.02.014 | es_ES |
dc.source.bibliographicCitation | Cowan, A. K., Taylor, N. J., y van Staden, J. (2005, jan). Hormone homeostasis and induction of the small-fruit phenotype in ”Hass” avocado. Plant Growth Regulation, 45(1), 11–19. doi: 10.1007/s10725-004-7173-0 | es_ES |
dc.source.bibliographicCitation | Schroeder, C. A. (1985). In: Physiological Gradient in Avocado Fruit. Avocado Society Yearbook, 562, 175–179. Descargado de https://pdfs.semanticscholar.org/305a/d15c478bf4e812cc3d782cc606972b0372b5.pdf | es_ES |
dc.source.bibliographicCitation | Arpaia, M. L., Mitchell, F. G., Katz, P. M., y Mayer, G. (1987). Susceptibility of avocado fruit to mechanical damage as influenced by variety, maturity and stage of ripeness. South African Avocado Growers Association Yearbook, 10, 149–151. | es_ES |
dc.source.bibliographicCitation | Simon, P., y Uma, V. (2018). Review of texture descriptors for texture classification. En Advances in intelligent systems and computing (Vol. 542, pp. 159–176). doi: 10.1007/978-981-10-3223-3{_}15 | es_ES |
dc.source.bibliographicCitation | Singh, R., Kushwaha, A. K. S., y Srivastava, R. (2019). Multi-view recognition system for human activity based on multiple features for video surveillance system. Multimedia Tools and Applications, 78(12), 17165–17196. doi: 10.1007/s11042-018-7108-9 | es_ES |
dc.source.bibliographicCitation | Subedi, P. P., y Walsh, K. B. (2020). Assessment of avocado fruit dry matter content using portable near infrared spectroscopy: Method and instrumentation optimisation. Postharvest Biology and Technology, 161. doi: 10.1016/j.postharvbio.2019.111078 | es_ES |
dc.source.bibliographicCitation | Sulas-Kern, D. B., Johnston, S., y Meydbray, J. (2019). Fill Factor Loss in Fielded Photovoltaic Modules Due to Metallization Failures, Characterized by Luminescence and Thermal Imaging. En Conference record of the ieee photovoltaic specialists conference (pp. 2008–2012). doi: 10.1109/PVSC40753.2019.8980840 | es_ES |
dc.source.bibliographicCitation | Sun, W., y Du, Q. (2019). Hyperspectral band selection: A review. IEEE Geoscience and Remote Sensing Magazine, 7(2), 118–139. doi: 10.1109/MGRS.2019.2911100 | es_ES |
dc.source.bibliographicCitation | Tabatabaei, S. M., y Chalechale, A. (2019). Noise-tolerant texture feature extraction through directional thresholded local binary pattern. Visual Computer. doi: 10.1007/s00371-019-01704-8 | es_ES |
dc.source.bibliographicCitation | Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. doi: https://doi.org/10.1016/j.aci.2018.08.003 | es_ES |
dc.source.bibliographicCitation | Torres, I., y Amigo, J. M. (2020). An overview of regression methods in hyperspectral and multispectral imaging. Data Handling in Science and Technology, 32, 205–230. doi: 10.1016/B978-0-444-63977-6.00010-9 | es_ES |
dc.source.bibliographicCitation | Cristobal-Huerta, A., Poot, D. H. J., Vogel, M. W., Krestin, G. P., y Hernandez-Tamames, J. A. (2019). Compressed Sensing 3D-GRASE for faster High-Resolution MRI. Magnetic Resonance in Medicine, 82(3), 984–999. doi: 10.1002/mrm.27789 | es_ES |
dc.source.bibliographicCitation | Uma, J., Muniraj, C., y Sathya, N. (2019). Diagnosis of photovoltaic (PV) panel defects based on testing and evaluation of thermal image. Journal of Testing and Evaluation, 47(6). doi: 10.1520/JTE20170653 | es_ES |
dc.source.bibliographicCitation | Van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., . . . Aerts, H. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer Research, 77(21), e104–e107. doi: 10.1158/0008-5472.CAN-17-0339 | es_ES |
dc.source.bibliographicCitation | Arzate-Vazquez, I., Chanona-Perez, J. J., de Perea-Flores, M. J., Calderon-Dominguez, G., Moreno-Armendariz, M. A., Calvo, H., . . . Gutierrez-Lopez, G. (2011). Image Processing Applied to Classification of Avocado Variety Hass (Persea americana Mill.) During the Ripening Process. Food and Bioprocess Technology, 4(7). doi: 10.1007/s11947-011-0595-6 | es_ES |
dc.source.bibliographicCitation | Vega Diaz, J. J., Sandoval Aldana, A. P., y Reina Zuluaga, D. V. (2020). Prediction of dry matter content of recently harvested ‘Hass’ avocado fruits using hyperspectral imaging. Journal of the Science of Food and Agriculture, n/a(n/a). Descargado de https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.10697 doi: 10.1002/jsfa.10697 | es_ES |
dc.source.bibliographicCitation | Venkatanath, N., Praneeth, D., Maruthi Chandrasekhar, B. H., Channappayya, S. S., y Medasani, S. S. (2015). Blind image quality evaluation using perception based features. En 2015 21st national conference on communications, ncc 2015. doi: 10.1109/NCC.2015.7084843 | es_ES |
dc.source.bibliographicCitation | Walsh, K. B., Golic, M., y Greensill, C. V. (2004). Sorting of fruit using near infrared spectroscopy: Application to a range of fruit and vegetables for soluble solids and dry matter content. Journal of Near Infrared Spectroscopy, 12(3), 141–148. doi: 10.1255/jnirs.419 | es_ES |
dc.source.bibliographicCitation | Walsh, K. B., McGlone, V. A., y Han, D. H. (2020). The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biology and Technology, 163. doi: 10.1016/j.postharvbio.2020.111139 | es_ES |
dc.source.bibliographicCitation | Wang, S., Zhang, Y., Nie, M., Zhao, Y., Yang, Z., Zhu, S., y Zhao, Y. (2019). Content-based image retrieval based on improved rotation invariant LBP descriptor. En Proceedings - 2019 ieee international congress on cybermatics: 12th ieee international conference on internet of things, 15th ieee international conference on green computing and communications, 12th ieee international conference on cyber, physical and so (pp. 1211–1216). doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00203 | es_ES |
dc.source.bibliographicCitation | Wang, Y. L., Sun, J., y Xu, H. W. (2014). Research on solar panels online defect detecting method. Applied Mechanics and Materials, 635-637, 938–941. doi: 10.4028/www.scientific.net/AMM.635-637.938 | es_ES |
dc.source.bibliographicCitation | Wedding, B., Wright, C., Grauf, S., White, R. D., Gadek, P. A., Wrightd, C., . . . Gadek, P. A. (2011). Near infrared spectroscopy as a rapid non-invasive tool for agricultural and industrial process management with special reference to avocado and sandalwood industries. Desalination and Water Treatment, 32(1-3), 365–372. doi: 10.5004/dwt.2011.2723 | es_ES |
dc.source.bibliographicCitation | Dane. (2020). Sistema de Informacion de Precios SIPSA. Descargado de https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-de-informacion/sipsa | es_ES |
dc.source.bibliographicCitation | Wedding, B., Wright, C., Grauf, S., White, R. D., Tilse, B., y Gadek, P. (2013). Effects of seasonal variability on FT-NIR prediction of dry matter content for whole Hass avocado fruit. Postharvest Biology and Technology, 75. doi: 10.1016/j.postharvbio.2012.04.016 | es_ES |
dc.source.bibliographicCitation | Westad, F., y Marini, F. (2015). Validation of chemometric models – A tutorial. Analytica Chimica Acta, 893, 14–24. doi: https://doi.org/10.1016/j.aca.2015.06.056 | es_ES |
dc.source.bibliographicCitation | Wiki. (2020). Canon Hack Development Kit (CHDK). Descargado de https://chdk.fandom.com/wiki/CHDK | es_ES |
dc.source.bibliographicCitation | Astudillo-Ordonez, C. E., y Rodriguez, P. (2018). Parametros fisicoquimicos del aguacate Persea americana Mill. cv. Hass (Lauraceae) producido en Antioquia (Colombia) para exportacion. Corpoica Ciencia y Tecnologia Agropecuaria, 19, 383–392. | es_ES |
dc.source.bibliographicCitation | Woolf, A., Clark, C., Terander, E., Phetsomphou, V., Hofshi, R., Arpaia, L., . . . White, A. (2003). Measuring avocado maturity ; ongoing developments. Orchard, 76(May), 40–45. Descargado de http://209.143.153.251/Journals/%5CnOrchardist/WoolfAllan2003b.pdf. | es_ES |
dc.source.bibliographicCitation | Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., y Girshick, R. (2019). Detectron2. Descargado de https://github.com/facebookresearch/detectron2 | es_ES |
dc.source.bibliographicCitation | Yang, L., Yang, Y., y Ma, Y. (2018). A novel no-reference video quality assessment algorithm. En Proceedings of 2018 ieee 4th information technology and mechatronics engineering conference, itoec 2018 (pp. 181–187). doi: 10.1109/ITOEC.2018.8740719 | es_ES |
dc.source.bibliographicCitation | Yang, Y., Cai, X., Zhang, M., y Xiao, X. (2019). Reversible data hiding with different embedding capacity based on optimal embedding strategy selection and image quality assessment criteria. Journal of Information Hiding and Multimedia Signal Processing, 10(2), 392–407. | es_ES |
dc.source.bibliographicCitation | Zheng, L., Shen, L., Chen, J., An, P., y Luo, J. (2019). No-Reference Quality Assessment for Screen Content Images Based on Hybrid Region Features Fusion. IEEE Transactions on Multimedia, 21(8), 2057–2070. doi: 10.1109/TMM.2019.2894939 | es_ES |
dc.source.bibliographicCitation | Zhu, L., Zhao, J., Fu, Y., Zhang, J., Shen, H., y Zhang, S. (2019). Deep learning algorithm for the segmentation of the interested region of an infrared thermal image. Xi’an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 46(4), 107–114 and 121. doi: 10.19665/j.issn1001-2400.2019.04.015 | es_ES |
dc.source.bibliographicCitation | Davila-Sacoto, M., Hernandez-Callejo, L., Alonso-Gomez, V., Gallardo-Saavedra, S., y Gonzalez, L. G. (2020). Detecting Hot Spots in Photovoltaic Panels Using Low-Cost Thermal Cameras. Communications in Computer and Information Science, 1152 CCIS, 38–53. doi: 10.1007/978-3-030-38889-8_4 | es_ES |
dc.source.bibliographicCitation | Zou, K. H., Tuncali, K., y Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227(3), 617–622. doi: 10.1148/radiol.2273011499 | es_ES |
dc.source.bibliographicCitation | Bernal, J., Diaz, C., Osorio, C., Tamayo, A., y Osorio, W. (2014). Actualizacion tecnologica y buenas practicas agricolas (BPA) en el cultivo de aguacate. Medellin: Corporacion Colombiana de Investigación Agropecuaria. | es_ES |
dc.source.bibliographicCitation | Bhargava, A., y Bansal, A. (2018). Fruits and vegetables quality evaluation using computer vision: A review. Journal of King Saud University - Computer and Information Sciences. doi: 10.1016/j.jksuci.2018.06.002 | es_ES |
dc.source.bibliographicCitation | Blakey, R. J. (2016). Evaluation of avocado fruit maturity with a portable near-infrared spectrometer. Postharvest Biology and Technology, 121, 101–105. doi: 10.1016/j.postharvbio.2016.06.016 | es_ES |
dc.source.bibliographicCitation | Brereton, R. G., y Lloyd, G. R. (2010). Support Vector Machines for classification and regression. Analyst, 135(2), 230–267. doi: 10.1039/b918972f | es_ES |
dc.source.bibliographicCitation | Burdon, J., Lallu, N., Haynes, G., Francis, K., Patel, M., Laurie, T., y Hardy, J. (2015). Relationship between dry matter and ripening time in ”hass” avocado. En Acta horticulturae (Vol. 1091, pp. 291–296). | es_ES |
dc.source.bibliographicCitation | Burghouts, G. J., y Geusebroek, J.-M. (2009). Material-specific adaptation of color invariant features. Pattern Recognition Letters, 30(3), 306–313. doi: 10.1016/j.patrec.2008.10.005 | es_ES |
dc.source.bibliographicCitation | Carvalho, C., Velasquez, M., y Van Rooyen, Z. (2014). Determination of the minimum dry matter index for the optimum harvest of ”Hass” avocado fruits in Colombia | Determinacion del indice minimo de materia seca para la optima cosecha del aguacate ”Hass” en Colombia. Agronomia Colombiana, 32(3). doi: 10.15446/agron.colomb.v32n3.46031 | es_ES |
dc.source.bibliographicCitation | Carvalho, C. P., y Velasquez, M. A. (2015). Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage | Contenido de acidos grasos del aguacate (Persea americana Mill. cv. Hass) en relacion a la altitud del cultivo y el estado de madur. Agronomia Colombiana, 33(2). doi: 10.15446/agron.colomb.v33n2.49902 | es_ES |
dc.source.bibliographicCitation | Cerdas Araya, M., Montero Calderon, M., y Somarribas Jones, O. (2014). Verificacion del contenido de materia seca como indicador de cosecha para aguacate (Persea americana) Cultivar Hass en zona intermedia de produccion de Los Santos, Costa Rica. Agronomia Costarricense, 38(1), 207–214. Descargado de https://revistas.ucr.ac.cr/index.php/agrocost/article/view/15205 | es_ES |
dc.source.bibliographicCitation | Denis Girod, M., Landry, J.-A., Doyon, G., y Osuna Garcia, J. A. (2008). Predicting Maturity of Hass Avocado Using Hyperspectral Imagery. Caribbean Food Crops Society, 44 (2), 27. Descargado de http://www.ars-grin.gov/may/documents/CFCS%7B_%7D2008.pdf | es_ES |
dc.source.bibliographicCitation | Chawla, R., Singal, P., y Garg, A. K. (2018). A Mamdani Fuzzy Logic System to Enhance Solar Cell Micro-Cracks Image Processing. 3D Research, 9(3). doi: 10.1007/s13319-018-0186-7 | es_ES |
dc.source.bibliographicCitation | Chen, J., Lin, C., y Liu, C. (2018). The efficiency and performance detection algorithm and system development for photovoltaic system through use of thermal image processing technology. En Aip conference proceedings (Vol. 1978). doi: 10.1063/1.5044158 | es_ES |
dc.source.bibliographicCitation | Chen, M.-J., y Bovik, A. C. (2011). No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing, 2011(1), 3. Descargado de https://doi.org/10.1186/1687-5281-2011-3 doi: 10.1186/1687-5281-2011-3 | es_ES |
dc.source.bibliographicCitation | Cheng, J.-H., Nicolai, B., y Sun, D.-W. (2017). Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Science, 123, 182–191. doi: 10.1016/j.meatsci.2016.09.017 | es_ES |
dc.source.bibliographicCitation | Chicco, D., y Jurman, G. (2020, jan). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1), 6. doi: 10.1186/s12864-019-6413-7 | es_ES |
dc.source.bibliographicCitation | Ciocca, G., Corchs, S., Gasparini, F., y Schettini, R. (2014). How to assess image quality within a workflow chain: an overview. International Journal on Digital Libraries, 15(1). doi: 10.1007/s00799-014-0124-0 | es_ES |
dc.source.bibliographicCitation | Clark, C. J., McGlone, V. A., Requejo, C., White, A., y Woolf, A. B. (2003). Dry matter determination in ”Hass” avocado by NIR spectroscopy. Postharvest Biology and Technology, 29(3). doi: 10.1016/S0925-5214(03)00046-2 | es_ES |
dc.source.bibliographicCitation | Dixon, J., Lamond, C. B., Smith, D. B., y Elmlsy, T. A. (2006). PATTERNS OF FRUIT GROWTH AND FRUIT DROP OF ”HASS” AVOCADO TREES IN THE WESTERN BAY OF PLENTY, NEW ZEALAND. New Zealand Avocado Growers’ Association Annual Research Report, 6, 47–54. Descargado de http://www.avocadosource.com/Journals/NZAGA/NZAGA_2006/NZAGA_2006_PG_47-54.pdf | es_ES |
dc.source.bibliographicCitation | Dji. (2020). Zenmuse XT specs. Descargado de https://www.dji.com/zenmuse-xt/specs | es_ES |
dc.source.bibliographicCitation | Donetti, M., y Terry, L. A. (2012). Investigation of skin colour changes as non-destructive parameter of fruit ripeness of imported ”hass” avocado fruit (Vol. 945). | es_ES |
dc.source.bibliographicCitation | Duda, R. O., Hart, P. E., y Stork, D. G. (2001). Pattern Classification (2.a ed.). New York: Wiley. Edgar Roa Guerrero, y Gustavo Meneses Benavides. (2014, jun). Automated system for classifying Hass avocados based on image processing techniques. En 2014 ieee colombian conference on communications and computing (colcom) (pp. 1–6). IEEE. doi: 10.1109/ColComCon.2014.6860414 | es_ES |
dc.source.bibliographicCitation | Mazhar, M., Joyce, D., Hofman, P., y Vu, N. (2018). Factors contributing to increased bruise expression in avocado (Persea americana M.) cv. ‘Hass’ fruit. Postharvest Biology and Technology, 143, 58–67. doi: 10.1016/j.postharvbio.2018.04.015 | es_ES |
dc.source.bibliographicCitation | Escobar, J. V., Rodriguez, P., Cortes, M., y Correa, G. (2019). Influence of dry matter as a harvest index and cold storage time on cv. Hass avocado quality produced in high tropic region. Informacion Tecnologica, 30(3), 199–210. doi: 10.4067/S0718-07642019000300199 | es_ES |
dc.source.bibliographicCitation | Espinosa-Velazquez, Dorantes-Alvarez, L., Gutierrez-Lopez, G. F., Garcia-Armenta, E., Sanchez-Segura, L., Perea-Flores, M. J., . . . Ortiz Moreno, A. (2016). Morpho-structural description of unripe and ripe avocado pericarp (Persea americana Mill var. drymifolia) | Descripcion morfo-estructural del pericarpio del aguacate ((Persea americana Mill var. drymifolia) inmaduro y maduro. Revista Mexicana de Ingeniera Quimica, 15(2). | es_ES |
dc.source.bibliographicCitation | Estrada, B., y Alonso, J. (2016). Estudios ecofisiologicos en aguacate cv. Hass en diferentes ambientes como alternativa productiva en Colombia (Tesis Doctoral, Universidad Nacional, Medellin). Descargado de http://www.bdigital.unal.edu.co/50844/ | es_ES |
dc.source.bibliographicCitation | Faostat, F. (2020). Statistical databases. Food and Agriculture Organization of the United Nations. Descargado de http://www.fao.org/faostat/es/#data/QC | es_ES |
dc.source.bibliographicCitation | Fernandez Lozano, C. (2014). Tecnicas basadas en kernel para el analisis de texturas en imagen biomédica (Tesis Doctoral, Universidade da Coruna). Descargado de https://dialnet.unirioja.es/servlet/tesis?codigo=41514 | es_ES |
dc.source.bibliographicCitation | Fleming, R. W. (2017). Material Perception. Annual Review of Vision Science, 3, 365–388. doi: 10.1146/annurev-vision-102016-061429 | es_ES |
dc.source.bibliographicCitation | Freitas, P. G., Da Eira, L. P., Santos, S. S., y De Farias, M. C. Q. (2018). On the application LBP texture descriptors and its variants for no-reference image quality assessment. Journal of Imaging, 4(10). doi: 10.3390/jimaging4100114 | es_ES |
dc.source.bibliographicCitation | Fuentealba, C., Pedreschi, R., Hernandez, I., y Jorge. (2016). A STATISTICAL APPROACH FOR ASSESSING THE HETEROGENEITY OF HASS AVOCADOS SUBJECTED TO DIFFERENT POSTHARVEST ABIOTIC STRESSES. Ciencia e investigacion agraria, 43(3), 2. doi: 10.4067/S0718-16202016000300002 | es_ES |
dc.source.bibliographicCitation | Ganesan, P., Xue, Z., Singh, S., Long, R., Ghoraani, B., y Antani, S. (2019). Performance Evaluation of a Generative Adversarial Network for Deblurring Mobile-phone Cervical Images. En 2019 41st annual international conference of the ieee engineering in medicine and biology society (embc) (pp. 4487–4490). doi: 10.1109/EMBC.2019.8857124 | es_ES |
dc.source.bibliographicCitation | Gao, X., Munson, E., Abousleman, G. P., y Si, J. (2015). Automatic solar panel recognition and defect detection using infrared imaging. En Automatic target recognition xxv (Vol. 9476, p. 94760O). doi: 10.1117/12.2179792 | es_ES |
dc.source.bibliographicCitation | Md. Taha, A. Q., y Ibrahim, H. (2020). Reduction of salt-and-pepper noise from digital grayscale image by using recursive switching adaptive median filter. Lecture Notes in Mechanical Engineering, 32–47. doi: 10.1007/978-981-13-9539-0_4 | es_ES |
dc.source.bibliographicCitation | Garrido, G., y Joshi, P. (2018). OpenCV 3.x with Python By Example - Second Edition: Make the Most of OpenCV and Python to Build Applications for Object Recognition and Augmented Reality (2nd ed.). Packt Publishing. | es_ES |
dc.source.bibliographicCitation | Girod, D. (2008). Determination de la maturiite des avocats Hass par imagerie hyperspectrale (Tesis Doctoral, UNIVERSITE DU QUEBEC). Descargado de http://espace.etsmtl.ca/137/1/GIROD_Denis.pdf | es_ES |
dc.source.bibliographicCitation | Goring, S., Rao, R. R. R., y Raake, A. (2019). Nofu - A lightweight no-reference pixel based video quality model for gaming content. En 2019 11th international conference on quality of multimedia experience, qomex 2019. doi: 10.1109/QoMEX.2019.8743262 | es_ES |
dc.source.bibliographicCitation | Greco, A., Pironti, C., Saggese, A., Vento, M., y Vigilante, V. (2020). A deep learning based approach for detecting panels in photovoltaic plants. En Acm international conference proceeding series. doi: 10.1145/3378184.3378185 | es_ES |
dc.source.bibliographicCitation | Gupta, M., Rajagopalan, V., y Rao, B. (2019). Glioma grade classification using wavelet transform-local binary pattern based statistical texture features and geometric measures extracted from MRI. Journal of Experimental and Theoretical Artificial Intelligence, 31(1), 57–76. doi: 10.1080/0952813X.2018.1518997 | es_ES |
dc.source.bibliographicCitation | Guyon, I., y Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. J. Mach. Learn. Res., 3, 1157–1182. Descargado de http://dl.acm.org/citation.cfm?id=944919.944968 | es_ES |
dc.source.bibliographicCitation | Haider, M., Doegar, A., y Verma, R. K. (2019). Fault identification in electrical equipment using thermal image processing. En 2018 international conference on computing, power and communication technologies, gucon 2018 (pp. 853–858). doi: 10.1109/GUCON.2018.8675108 | es_ES |
dc.source.bibliographicCitation | Henry, C., Poudel, S., Lee, S.-W., y Jeong, H. (2020). Automatic detection system of deteriorated PV modules using drone with thermal camera. Applied Sciences (Switzerland), 10(11). doi: 10.3390/app10113802 | es_ES |
dc.source.bibliographicCitation | Hernandez, I., Fuentealba, C., Olaeta, J. A., Lurie, S., Defilippi, B. G., Campos-Vargas, R., y Pedreschi, R. (2016). Factors associated with postharvest ripening heterogeneity of ”Hass” avocados ( Persea americana Mill). Fruits, 71(5), 259–268. Descargado de http://www.pubhort.org/fruits/2016/5/fruits160045.htm doi: 10.1051/fruits/2016016 | es_ES |
dc.source.bibliographicCitation | Herrera-Gonzalez, J. A., Salazar-Garcia, S., Martinez-Flores, H. E., y Ruiz-Garcia, J. E. (2017). Preliminary signs of physiological maturity and postharvest performance of mendez avocado fruit | Indicadores preliminaries de madurez fisiologica y comportamiento postcosecha del fruto de aguacate mendez. Revista Fitotecnia Mexicana, 40(1), 55–63. doi: 10.35196/rfm.2017.1.55-63 | es_ES |
dc.source.bibliographicCitation | Medina-Carrillo, R. E., Salazar-Garcia, S., Bonilla-Cardenas, J. A., Herrera-Gonzalez, J. A., Ibarra-Estrada, M. E., y Alvarez-Bravo, A. (2017). Secondary metabolites and lignin in ”hass” avocado fruit skin during fruit development in three producing regions. HortScience, 52(6), 852–858. doi: 10.21273/HORTSCI11882-17 | es_ES |
dc.source.bibliographicCitation | Hoffmann, F., Bertram, T., Mikut, R., Reischl, M., y Nelles, O. (2019). Benchmarking in classification and regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(5). doi: 10.1002/widm.1318 | es_ES |
dc.source.bibliographicCitation | Hofman, P. J., y Jobin-Decor, M. (1999). Effect of fruit sampling and handling procedures on the percentage dry matter, fruit mass, ripening and skin colour of ’Hass’ avocado. Journal of Horticultural Science and Biotechnology, 74(3), 277–282. doi: 10.1080/14620316.1999.11511108 | es_ES |
dc.source.bibliographicCitation | Hu, H., Huang, L., y Yu,W. (2019). Aircraft detection for hr sar images in non-homogeneous background using GGMD-based modeling. Chinese Journal of Electronics, 28(6), 1271–1280. doi: 10.1049/cje.2019.08.010 | es_ES |
dc.source.bibliographicCitation | Hu, X., Huang, Y., Gao, X., Luo, L., y Duan, Q. (2019). Squirrel-cage local binary pattern and its application in video anomaly detection. IEEE Transactions on Information Forensics and Security, 14(4), 1007–1022. doi: 10.1109/TIFS.2018.2868617 | es_ES |
dc.source.bibliographicCitation | Hunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., y Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103–112. doi: https://doi.org/10.1016/j.jag.2012.07.020 | es_ES |
dc.source.bibliographicCitation | ICONTEC. (2003). NTC 5209. Aguacate. Variedades Mejoradas. Especificaciones. Instituto Colombiano de Normas Tecnicas y Certificacion, 26. | es_ES |
dc.source.bibliographicCitation | InfoHASS. (2020). Exportacion a Estados Unidos. Descargado de http://www.infohass.net/ | es_ES |
dc.source.bibliographicCitation | Ismail, H., Chikte, R., Bandyopadhyay, A., y Al Jasmi, N. (2019). Autonomous detection of PV panels using a drone. En Asme international mechanical engineering congress and exposition, proceedings (imece) (Vol. 4). doi: 10.1115/IMECE2019-12080 | es_ES |
dc.source.bibliographicCitation | Jaffery, Z. A., Dubey, A. K., Irshad, y Haque, A. (2017). Scheme for predictive fault diagnosis in photovoltaic modules using thermal imaging. Infrared Physics and Technology, 83, 182–187. doi: 10.1016/j.infrared.2017.04.015 | es_ES |
dc.source.bibliographicCitation | Jia, B., Wang, W., Ni, X., Lawrence, K. C., Zhuang, H., Yoon, S.-C., y Gao, Z. (2020). Essential processing methods of hyperspectral images of agricultural and food products. Chemometrics and Intelligent Laboratory Systems, 198. doi: 10.1016/j.chemolab.2020.103936 | es_ES |
dc.source.bibliographicCitation | Menendez, O., Guaman, R., Perez, M., y Cheein, F. A. (2018). Photovoltaic modules diagnosis using artificial vision techniques for artifact minimization. Energies, 11(7). doi: 10.3390/en11071688 | es_ES |
dc.source.bibliographicCitation | Jiao, Y., Ijurra, O. M., Zhang, L., Shen, D., y Wang, Q. (2020). Curadiomics: A GPU-based radiomics feature extraction toolkit. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11991 LNCS, 44–52. doi: 10.1007/978-3-030-40124-5_5 | es_ES |
dc.source.bibliographicCitation | Kader, A. A. (1999, mar). FRUIT MATURITY, RIPENING, AND QUALITY RELATIONSHIPS. Acta Horticulturae(485), 203–208. Descargado de https://www.actahort.org/books/485/485_27.htm doi: 10.17660/ActaHortic.1999.485.27 | es_ES |
dc.source.bibliographicCitation | Kandavalli, M. A., y Abraham Lincon, S. (2019). Design and implementation of colour texture-based multiple object detection using morphological gradient approach. Concurrency Computation, 31(14). doi: 10.1002/cpe.4980 | es_ES |
dc.source.bibliographicCitation | Kas, M., El Merabet, Y., Ruichek, Y., y Messoussi, R. (2019). Survey on local binary pattern descriptors for face recognition. En Acm international conference proceeding series. Association for Computing Machinery. doi: 10.1145/3314074.3314079 | es_ES |
dc.source.bibliographicCitation | Krupinski, R. (2018). Modeling quantized coefficients with generalized gaussian distribution with exponent 1/m, m=2,3,. Advances in Intelligent Systems and Computing, 659, 228–237. doi: 10.1007/978-3-319-67792-7_23 | es_ES |
dc.source.bibliographicCitation | Lee, D., y Park, J. (2019). Development of Solar-Panel Monitoring Method Using Unmanned Aerial Vehicle and Thermal Infrared Sensor. En Iop conference series: Materials science and engineering (Vol. 611). doi: 10.1088/1757-899X/611/1/012085 | es_ES |
dc.source.bibliographicCitation | Lee, D. H., y Park, J. H. (2019). Developing inspection methodology of solar energy plants by thermal infrared sensor on board unmanned aerial vehicles. Energies, 12(15). doi: 10.3390/en12152928 | es_ES |
dc.source.bibliographicCitation | Lee, H. C., Kang, B. J., Lee, E. C., y Park, K. R. (2010, jul). Finger vein recognition using weighted local binary pattern code based on a support vector machine. Journal of Zhejiang University SCIENCE C, 11(7), 514–524. Descargado de https://doi.org/10.1631/jzus.C0910550 doi: 10.1631/jzus.C0910550 | es_ES |
dc.source.bibliographicCitation | Lee, S., An, K. E., Jeon, B. D., Cho, K. Y., Lee, S. J., y Seo, D. (2018). Detecting faulty solar panels based on thermal image processing. En 2018 ieee international conference on consumer electronics, icce 2018 (Vol. 2018-Janua, pp. 1–2). doi: 10.1109/ICCE.2018.8326228 | es_ES |
dc.source.bibliographicCitation | Lee, S. K., y Young, R. E. (1983). Growth Measurement as an Indication of Avocado Maturity (Vol. 108; Inf. Tec. n.o 3). Descargado de http://www.avocadosource.com/Journals/ASHS/ASHS_1983_108_PG_395-397.pdf | es_ES |
dc.source.bibliographicCitation | Ministerio de Agricultura y Desarrollo Rural. (2016). ESTRATEGIA COLOMBIA SIEMBRA. Descargado de https://www.minagricultura.gov.co/planeacion-control-gestion/Gestin/ESTRATEGIACOLOMBIASIEMBRAV1.pdf | es_ES |
dc.source.bibliographicCitation | Lee Filters. (2020). Technical Filters. 251 Quarter White Diffusion. Descargado 2020-02-16, de http://www.leefilters.com/lighting/colour-details.html#251 | es_ES |
dc.source.bibliographicCitation | Li, B., Lecourt, J., y Bishop, G. (2018, jan). Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction - A Review. Plants, 7(1), 3. Descargado de http://www.mdpi.com/2223-7747/7/1/3 doi: 10.3390/plants7010003 | es_ES |
dc.source.bibliographicCitation | Li, H., Hu, W., y Xu, Z.-N. (2016). Automatic no-reference image quality assessment. SpringerPlus, 5(1). doi: 10.1186/s40064-016-2768-2 | es_ES |
dc.source.bibliographicCitation | Liao, K. C., y Lu, J. H. (2020). Using Matlab real-time image analysis for solar panel fault detection with UAV. En Journal of physics: Conference series (Vol. 1509). doi: 10.1088/1742-6596/1509/1/012010 | es_ES |
dc.source.bibliographicCitation | Liu, L., Fieguth, P., Guo, Y.,Wang, X., y Pietik´’ainen, M. (2017). Local binary features for texture classification: Taxonomy and experimental study. Pattern Recognition, 62, 135–160. doi: 10.1016/j.patcog.2016.08.032 | es_ES |
dc.source.bibliographicCitation | Liu, L., Zhao, L.-J., Guo, C.-Y., Wang, L., y Tang, J. (2018). Texture Classification: State-of-the-art Methods and Prospects. Zidonghua Xuebao/Acta Automatica Sinica, 44(4), 584–607. doi: 10.16383/j.aas.2018.c160452 | es_ES |
dc.source.bibliographicCitation | Liu, Z.-T., Li, S.-H., Cao, W.-H., Li, D.-Y., Hao, M., y Zhang, R. (2019). Combining 2D Gabor and local binary pattern for facial expression recognition using extreme learning machine. Journal of Advanced Computational Intelligence and Intelligent Informatics, 23(3), 444–455. doi: 10.20965/jaciii.2019.p0444 | es_ES |
dc.source.bibliographicCitation | Lopez-Fernandez, L., Lag´’uela, S., Fernandez, J., y Gonzalez-Aguilera, D. (2017). Automatic evaluation of photovoltaic power stations from high-density RGB-T 3D point clouds. Remote Sensing, 9(6). doi: 10.3390/rs9060631 | es_ES |
dc.source.bibliographicCitation | Ma, C., Lv, X., y Ao, J. (2019). Difference based median filter for removal of random value impulse noise in images. Multimedia Tools and Applications, 78(1), 1131–1148. doi: 10.1007/s11042-018-6442-2 | es_ES |
dc.source.bibliographicCitation | Ma, J., Sun, D.-W., Pu, H., Cheng, J.-H., y Wei, Q. (2019). Advanced techniques for hyperspectral imaging in the food industry: principles and recent applications. Annual Review of Food Science and Technology, 10, 197–220. doi: 10.1146/annurev-food-032818-121155 | es_ES |
dc.source.bibliographicCitation | Ministerio de Agricultura y Desarrollo Rural. (2020). Agronet. Estadisticas Agropecuarias. Descargado de http://www.agronet.gov.co/estadistica/Paginas/default.aspx | es_ES |
dc.source.bibliographicCitation | Magwaza, L. S., y Tesfay, S. Z. (2015). A Review of Destructive and Non-destructive Methods for Determining Avocado Fruit Maturity. Food and Bioprocess Technology, 8(10). doi: 10.1007/s11947-015-1568-y | es_ES |
dc.source.bibliographicCitation | Maier, A., y Rodriguez-Salas, D. (2017). Fast and robust selection of highly-correlated features in regression problems. En Proceedings of the 15th iapr international conference on machine vision applications, mva 2017 (pp. 482–485). doi: 10.23919/MVA.2017.7986905 | es_ES |
dc.source.bibliographicCitation | Mandalapu, H., Ramachandra, R., y Busch, C. (2018). Image Quality and Texture-Based Features for Reliable Textured Contact Lens Detection. En Proceedings - 14th international conference on signal image technology and internet based systems, sitis 2018 (pp. 587–594). doi: 10.1109/SITIS.2018.00095 | es_ES |
dc.source.bibliographicCitation | Marcante, N., de Mello Prado, R., Camacho, M., Rosset, J., Ecco, M., y Savan, P. (2010). Determination of dry matter and macronutrient content in leaves of fruit trees using different drying methods | Determinacao da materia seca e teores de macronutrientes em folhas de frutiferas usando diferentes metodos de secagem. Ciencia Rural, 40(11), 2398–2401. | es_ES |
dc.source.bibliographicCitation | Markman, A., O’Connor, T., Hotaka, H., Ohsuka, S., y Javidi, B. (2019). Three-dimensional integral imaging in photon-starved environments with high-sensitivity image sensors. Optics Express, 27(19), 26355–26368. doi: 10.1364/OE.27.026355 | es_ES |
dc.source.bibliographicCitation | MATLAB. (2019a). MATLAB and Image Processing Toolbox Release 2019b. Descargado de https://la.mathworks.com/help/pdf_doc/images/rn.pdf | es_ES |
dc.source.bibliographicCitation | MATLAB. (2019b). Programming Fundamentals. Descargado de https://la.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf | es_ES |
dc.source.bibliographicCitation | Mittal, A., Soundararajan, R., y Bovik, A. C. (2013). Making a ’completely blind’ image quality analyzer. IEEE Signal Processing Letters, 20(3), 209–212. doi: 10.1109/LSP.2012.2227726 | es_ES |
dc.source.bibliographicCitation | Mohana, y Ravish Aradhya, H. V. (2019). Simulation of object detection algorithms for video surveillance applications. En Proceedings of the international conference on i-smac (iot in social, mobile, analytics and cloud), i-smac 2018 (pp. 651–655). Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/I-SMAC.2018.8653665 | es_ES |
dc.source.bibliographicCitation | Murthy, A. V., y Karam, L. J. (2010). A MATLAB-based framework for image and video quality evaluation. En 2010 2nd international workshop on quality of multimedia experience, qomex 2010 - proceedings (pp. 242–247). doi: 10.1109/QOMEX.2010.5516091 | es_ES |
dc.source.bibliographicCitation | Nacereddine, N., Goumeidane, A. B., y Ziou, D. (2019). Unsupervised weld defect classification in radiographic images using multivariate generalized Gaussian mixture model with exact computation of mean and shape parameters. Computers in Industry, 108, 132–149. doi: 10.1016/j.compind.2019.02.010 | es_ES |
dc.source.bibliographicCitation | Amigo, J. M., y Santos, C. (2020). Preprocessing of hyperspectral and multispectral images. Data Handling in Science and Technology, 32, 37–53. doi: 10.1016/B978-0-444-63977-6.00003-1 | es_ES |
dc.source.bibliographicCitation | Nalepa, J., y Kawulok, M. (2019). Selecting training sets for support vector machines: a review. Artificial Intelligence Review, 52(2), 857–900. doi: 10.1007/s10462-017-9611-1 | es_ES |
dc.source.bibliographicCitation | Ncama, K., Magwaza, L. S., Poblete-Echeverria, C. A., Nieuwoudt, H. H., Tesfay, S. Z., y Mditshwa, A. (2018). On-tree indexing of ‘Hass’ avocado fruit by non-destructive assessment of pulp dry matter and oil content. Biosystems Engineering, 174, 41–49. doi: 10.1016/j.biosystemseng.2018.06.011 | es_ES |
dc.source.bibliographicCitation | New Zealand Avocados. (2018). Regional Maturity Monitoring, Hass Avocados. Descargado de http://industry.nzavocado.co.nz/industry/regional_maturity_monitoring.csn | es_ES |
dc.source.bibliographicCitation | Ojala, T., Pietik´’ainen, M., y Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. doi: https://doi.org/10.1016/0031-3203(95)00067-4 | es_ES |
dc.source.bibliographicCitation | Olarewaju, O. O., Bertling, I., y Magwaza, L. S. (2016). Non-destructive evaluation of avocado fruit maturity using near infrared spectroscopy and PLS regression models. Scientia Horticulturae, 199, 229–236. doi: 10.1016/j.scienta.2015.12.047 | es_ES |
dc.source.bibliographicCitation | Orjuela, S. A., Quinones, R. A., Ortiz-Jaramillo, B., Rooms, F., De Keyser, R., y Philips, W. (2011). Optimizing feature extraction in image analysis using experimented designs, a case study evaluating texture algorithms for describing appearance retention in carpets. En Proceedings of spie - the international society for optical engineering (Vol. 8136, p. 15). doi: 10.1117/12.893102 | es_ES |
dc.source.bibliographicCitation | Orjuela Vargas, S. A. (2013). Texture analysis for the evaluation of appearance changes in textile surfaces (Tesis Doctoral no publicada). Ghent University. | es_ES |
dc.source.bibliographicCitation | Orjuela Vargas, S. A., Yanez, J. P., y Philips, W. (2014). The Geometric Local Textural Patterns (GLTP) technique. En S. Brahnam, L. C. Jain, L. Nanni, y A. Lumini (Eds.), Local binary patterns : new variants and new applications (Vol. 506, pp. 30–70). Springer. Descargado de http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-39288-7 | es_ES |
dc.source.bibliographicCitation | Orjuela-Vargas, S. A., Triana-Martinez, J., Yanez, J. P., y Philips, W. (2014). Real time algorithm invariant to natural lighting with LBP techniques through an adaptive thresholding implemented in GPU processors. En Proceedings of spie - the international society for optical engineering (Vol. 9023). doi: 10.1117/12.2042619 | es_ES |
dc.source.bibliographicCitation | Osuna-Garcia, J. J. A. J., Doyon, G., Salazar-Garcia, S., Goenaga, R., y Gonzalez-Duran, I. J. L. I. J. L. (2011, jan). Relationship between skin color and some fruit quality characteristics of ”Hass” avocado. Journal of Agriculture of the University of Puerto Rico, 95(1-2), 15–23. | es_ES |
dc.source.bibliographicCitation | AOAC International., P., y Cunniff, P. (1995). Official methods of analysis of AOAC international (16th ed. ed.). Washington DC: The Association. Descargado de https://www.worldcat.org/title/official-methods-of-analysis-of-aoac-international/oclc/421897987 | es_ES |
dc.description.degreename | Doctor(a) en Ciencia Aplicada | es_ES |
dc.description.degreelevel | Doctorado | es_ES |
dc.publisher.faculty | Facultad de Ciencias | es_ES |
dc.description.funder | Beca convocatoria 755 colciencias, Gobernación del Tolima, con aval del grupo CEDAGRITOL. | es_ES |
dc.description.notes | Presencial | es_ES |
dc.creator.orcid | https://orcid.org/0000-0002-2165-8536 | es_ES |
dc.creator.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000627968 | es_ES |
dc.creator.googlescholar | https://scholar.google.com/citations?user=OmCMdXAAAAAJ&hl=es&oi=ao | es_ES |
dc.creator.cedula | 93413866 | es_ES |
dc.publisher.campus | Bogotá - Circunvalar | - |
Aparece en las colecciones: | Doctorado en Ciencia aplicada |
Ficheros en este ítem:
Fichero | Tamaño | |
---|---|---|
2020JhonJairoVegaDiaz.pdf | 68.16 MB | Visualizar/Abrir |
2020AutorizacióndeAutores.pdf Restricted Access | 789.53 kB | Visualizar/Abrir Request a copy |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons