Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.uan.edu.co/handle/123456789/2134
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Osorio Bustamante, Edison | - |
dc.creator | Meneses Real, Hernán David | - |
dc.creator | Patarroyo Querales, Laura Alejandra | - |
dc.date.accessioned | 2021-03-01T21:36:46Z | - |
dc.date.available | 2021-03-01T21:36:46Z | - |
dc.date.created | 2020-07-05 | - |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/2134 | - |
dc.description | Propia | es_ES |
dc.description.abstract | Currently cities such as Bogotá and Neiva have had a vehicular growth due to population and industrial development, where the infrastructure of the bridges daily supports loads such as the weight of cars, buses, trucks, dump trucks, etc., in addition to natural phenomena such as heat And the water. Taking into account that heat is transferred through convection, conduction and radiation, a photographic record was made with the help of the camera ends Flir One Pro and a numerical balance with the equations of the heat transfer methods, to finally compare the upper and lower temperatures present in the plate of the bridges made by both methods, understanding the affectations suffered by the structure due to heat, wind and other factors present in the environment, these final results are compared with what is established in the standard CCP-14 to verify if the conditions presented by the bridges comply with the provisions of the standard. | es_ES |
dc.description.tableofcontents | Actualmente las ciudades como Bogotá y Neiva han tenido un crecimiento vehicular debido al desarrollo poblacional e industrial, donde la infraestructura de los puentes soporta diariamente cargas como el peso de los automóviles, buses, camiones, volquetas, etc., adicionalmente fenómenos naturales como el calor y el agua. Teniendo en cuenta que el calor se transfiere por medio de la convección, conducción y radiación, se realizó un registro fotográfico con ayuda de la cámara termina Flir One Pro y un balance numérico con las ecuaciones de los métodos de transferencia de calor, para así finalmente comparar las temperaturas superiores e inferiores presentes en la placa de los puentes realizados por ambos métodos, comprendiendo las afectaciones que sufre la estructura por el calor, el viento y otros factores presentes en el ambiente, estos resultados finales se comparan con lo establecido en la norma CCP-14 para verificar si las condiciones que presentan los puentes cumplen con lo establecido en la norma. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Antonio Nariño | es_ES |
dc.rights | Atribución-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights | Atribución-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/us/ | * |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.subject | Convección | es_ES |
dc.subject | Conducción | es_ES |
dc.subject | Radiación | es_ES |
dc.subject | Temperatura | es_ES |
dc.subject | Transferencia de calor | es_ES |
dc.subject | Modelación numérica | es_ES |
dc.subject | Puentes | es_ES |
dc.title | Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva) | es_ES |
dc.publisher.program | Ingeniería Civil | es_ES |
dc.rights.accesRights | openAccess | es_ES |
dc.subject.keyword | Convection | es_ES |
dc.subject.keyword | Conduction | es_ES |
dc.subject.keyword | Radiation | es_ES |
dc.subject.keyword | Temperature | es_ES |
dc.subject.keyword | Heat transfer | es_ES |
dc.subject.keyword | Numerical modeling | es_ES |
dc.subject.keyword | Bridge | es_ES |
dc.type.spa | Trabajo de grado (Pregrado y/o Especialización) | es_ES |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.source.bibliographicCitation | Apuntes de Geotecnia con Énfasis en Laderas: El Diseño Racional en la Ingeniería Geotécnica (I). (2012). http://geotecnia-sor.blogspot.com/2012/11/el-diseno-racional-en-la-ingenieria.html | es_ES |
dc.source.bibliographicCitation | Atlas Interactivo - Radiación IDEAM. (2019). http://atlas.ideam.gov.co/visorAtlasRadiacion.html | es_ES |
dc.source.bibliographicCitation | Bayane, I., Mankar, A., Brühwiler, E., & Sørensen, J. D. (2019). Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109357 | es_ES |
dc.source.bibliographicCitation | Bustamante, E. O. (2018). Avances en la regionalización de las cargas térmicas para el diseño de puentes en Colombia. | es_ES |
dc.source.bibliographicCitation | Castaño, J. C. (1999). Universidad Nacional de Colombia: Repositorio institucional UN. http://www.bdigital.unal.edu.co/23972/ | es_ES |
dc.source.bibliographicCitation | CCP-14, A. C. de I. S. (2014). SECCION 3: Cargas y Factores de Carga. Norma Colombiana de Diseño de Puentes, CCP 14, 140. | es_ES |
dc.source.bibliographicCitation | Cengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa : fundamentos y aplicaciones. McGraw-Hill Interamericana. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3214430 | es_ES |
dc.source.bibliographicCitation | Cheng, W., Wenchao, L., & Chen, Z. (2020). Calculation and Analysis of Box Girder Temperature Effect of Large Cantilever Bridge under the Solar Radiation. IOP Conference Series: Materials Science and Engineering, 780(2). https://doi.org/10.1088/1757-899X/780/2/022010 | es_ES |
dc.source.bibliographicCitation | Childs, D. (2020). Bridge Design| Temperature Effects in Bridge Decks. http://bridgedesign.org.uk/tutorial/temperature-effects.php | es_ES |
dc.source.bibliographicCitation | Colombia Weather History | Weather Underground. (2020). https://www.wunderground.com/history/monthly/co/neiva/SKNV/date/2019-12 | es_ES |
dc.source.bibliographicCitation | Eddyhrbs. (2010). INGENIERIA CIVIL: Puentes Cantiléver. https://www.ingenierocivilinfo.com/2011/01/puentes-cantilever.html | es_ES |
dc.source.bibliographicCitation | Feng, H., Liu, X., Wu, B., Wu, D., Zhang, X., & He, C. (2019). Temperature-insensitive cable tension monitoring during the construction of a cable-stayed bridge with a custom-developed pulse elasto-magnetic instrument. Structural Health Monitoring, 18(5–6), 1982–1994. https://doi.org/10.1177/1475921718814733 | es_ES |
dc.source.bibliographicCitation | Giovanni. (2020). https://giovanni.gsfc.nasa.gov/giovanni/ | es_ES |
dc.source.bibliographicCitation | Google Earth. (2020). https://earth.google.com/web/@0,0,0a,22251752.77375655d,35y,0h,0t,0r | es_ES |
dc.source.bibliographicCitation | Grishyn, I. V., Ivanov, G. P., & Kayumov, R. A. (2020). Durability of bridge asphaltic concrete pavements under temperature loads. IOP Conference Series: Materials Science and Engineering, 786(1). https://doi.org/10.1088/1757-899X/786/1/012032 | es_ES |
dc.source.bibliographicCitation | Guard, P. (2009). File:Gateway Bridge aerial3.JPG - Wikipedia. https://en.wikipedia.org/wiki/File:Gateway_Bridge_aerial3.JPG | es_ES |
dc.source.bibliographicCitation | Hossain, T., Segura, S., & Okeil, A. M. (2020). Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: analysis and field measurements. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2020.1713167 | es_ES |
dc.source.bibliographicCitation | Huang, W., Guo, W., & Wei, Y. (2019). Thermal Effect on Rheological Properties of Epoxy Asphalt Mixture and Stress Prediction for Bridge Deck Paving. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002861 | es_ES |
dc.source.bibliographicCitation | Infercal - Ingenieros Constructores. (2011). http://www.infercal.com/portal/ | es_ES |
dc.source.bibliographicCitation | Kennedybrücke - Bonn, NRW, Germany Image. (2017). https://www.waymarking.com/gallery/image.aspx?f=1&guid=1b009955-1e51-45ad-9606-65038213ca47&gid=3 | es_ES |
dc.source.bibliographicCitation | Kong, L. Y., Huang, L. H., Dai, L., & Yu, M. (2020). Coupling effect of temperature and roughness on the pull-out strength of concrete bridge deck inter-layer. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 40(2), 21–29. https://doi.org/10.19721/j.cnki.1671-8879.2020.02.003 Kuryłowicz-Cudowska, A., Wilde, K., & Chróścielewski, J. (2020). Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119224 | es_ES |
dc.source.bibliographicCitation | Lee, J., Loh, K. J., Choi, H. S., & An, H. (2019). Effect of Structural Change on Temperature Behavior of a Long-Span Suspension Bridge Pylon. International Journal of Steel Structures, 19(6), 2073–2089. https://doi.org/10.1007/s13296-019-00279-3 | es_ES |
dc.source.bibliographicCitation | Lei, X., Jiang, H., Wang, J., Zhang, D., & Jiang, R. (2020). Pavement Rut Depth Prediction for a Three-Span Suspension Steel Box Girder Bridge Based on Two-Year Temperature Monitoring Data. Journal of Transportation Engineering Part B: Pavements, 146(3). https://doi.org/10.1061/JPEODX.0000177 | es_ES |
dc.source.bibliographicCitation | Li, J., Hu, R., Yang, J., & Liu, Y. (2019). Effect of temperature gradient on competitive growth behavior of Si and YSi2 in a Si–Y eutectic alloy prepared by Bridgeman method. Ceramics International, 45(14), 16776–16783. https://doi.org/10.1016/j.ceramint.2019.05.213 | es_ES |
dc.source.bibliographicCitation | Lin, J., Briseghella, B., Xue, J., Tabatabai, H., Huang, F., & Chen, B. (2020). Temperature Monitoring and Response of Deck-Extension Side-by-Side Box Girder Bridges. Journal of Performance of Constructed Facilities, 34(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001399 | es_ES |
dc.source.bibliographicCitation | Liu, J., Liu, Y., Zhang, C., Zhao, Q., Lyu, Y., & Jiang, L. (2020). Temperature action and effect of concrete-filled steel tubular bridges: A review. In Journal of Traffic and Transportation Engineering (English Edition) (Vol. 7, Issue 2, pp. 174–191). Periodical Offices of Chang- an University. https://doi.org/10.1016/j.jtte.2020.03.001 | es_ES |
dc.source.bibliographicCitation | Liu, Y. J., & Liu, J. (2020). Review on temperature action and effect of steel-concrete composite girder bridge. In Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering (Vol. 20, Issue 1, pp. 42–59). Chang’an University. https://doi.org/10.19818/j.cnki.1671-1637.2020.01.003 | es_ES |
dc.source.bibliographicCitation | Monleón Cremades, S. (2017). Diseño estructural de puentes. Universidad Politécnica de Valencia. | es_ES |
dc.source.bibliographicCitation | Puente Britannia - Puente | RouteYou. (2006). https://www.routeyou.com/es-gb/location/view/48035182/puente-britannia | es_ES |
dc.source.bibliographicCitation | Puente de Forth - EcuRed. (2017). https://www.ecured.cu/Puente_de_Forth | es_ES |
dc.source.bibliographicCitation | Puente Verrazano-Narrows - Megaconstrucciones, Extreme Engineering. (2012). https://megaconstrucciones.net/?construccion=puente-verrazano-narrows | es_ES |
dc.source.bibliographicCitation | Repositorio Institucional IDU: Búsquedas. (2007). https://webidu.idu.gov.co/jspui/simple-search?query=Puente+avenida+de++las+amercias+con+boyaca+ | es_ES |
dc.source.bibliographicCitation | Salazar, P. (2012). CAPÍTULO IV APLICACIÓN DE LAS NORMAS AASHTO LRFD AL DISEÑO ESTRUCTURAL DE PUENTES 4.1.-INTRODUCCIÓN AL AASHTO LRFD. | es_ES |
dc.source.bibliographicCitation | Sheng, X. W., Zheng, W. Q., Zhu, Z. H., Yang, Y., & Li, S. (2019). Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 19(4), 24–34. | es_ES |
dc.source.bibliographicCitation | Shi, T., Zheng, J., Deng, N., Chen, Z., Guo, X., & Wang, S. (2020). Temperature Load Parameters and Thermal Effects of a Long-Span Concrete-Filled Steel Tube Arch Bridge in Tibet. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/9710613 | es_ES |
dc.source.bibliographicCitation | Somenson, H. M. (2017). Estudio y proyecto de puentes de hormigón armado. Díaz de Santos. | es_ES |
dc.source.bibliographicCitation | Stahlwerk Annahutte Max Aicher GmbH & Co.KG. (n.d.). Puente Gateway, Brisbane, Australia. Retrieved February 10, 2020, from https://www.annahuette.com/es/home/proyectos-de-referencia/sistemas-sas-proyectos/puente-gateway | es_ES |
dc.source.bibliographicCitation | Sumargo, & Harahap, A. H. S. (2019). Loading Test and Temperature Effect on Steel Arch Bridge. IOP Conference Series: Materials Science and Engineering, 650(1). https://doi.org/10.1088/1757-899X/650/1/012035 | es_ES |
dc.source.bibliographicCitation | VOSviewer. (2020). https://universoabierto.org/2020/02/18/vosviewer-es-una-herramienta-de-software-para-construir-y-visualizar-redes-bibliometricas/ | es_ES |
dc.source.bibliographicCitation | Wang, G. X., & Ding, Y. L. (2019). Long-term monitoring of temperature effect on horizontal rotation angle at beam ends of a railway steel truss bridge. Journal of Bridge Engineering, 24(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001484 | es_ES |
dc.source.bibliographicCitation | Wang, J. F., Zhang, J. T., Xu, R. Q., & Yang, Z. X. (2019). Evaluation of Thermal Effects on Cable Forces of a Long-Span Prestressed Concrete Cable-Stayed Bridge. Journal of Performance of Constructed Facilities, 33(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001348 | es_ES |
dc.source.bibliographicCitation | Wang, J. feng, Zhang, J. tao, Yang, Z. xuan, & Xu, R. qiao. (2020). Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges. Journal of Zhejiang University: Science A, 21(4), 255–267. https://doi.org/10.1631/jzus.A1900310 Wayne, D. J. (1999). The male analyst on the maternal erotic playground. In Gender & Psychoanalysis (Vol. 4, Issue 1). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=2000-03615-002 | es_ES |
dc.source.bibliographicCitation | Xia, Q., Xia, Y., Wan, H. P., Zhang, J., & Ren, W. X. (2020). Condition analysis of expansion joints of a long-span suspension bridge through metamodel-based model updating considering thermal effect. Structural Control and Health Monitoring, 27(5). https://doi.org/10.1002/stc.2521 | es_ES |
dc.source.bibliographicCitation | Xu, X., Ren, Y., Huang, Q., Zhao, D. Y., Tong, Z. J., & Chang, W. J. (2020). Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. Journal of Civil Structural Health Monitoring. https://doi.org/10.1007/s13349-020-00402-7 | es_ES |
dc.source.bibliographicCitation | Yang, J. N., He, X. J., Yang, J. H. L., Wang, Y. D., & Zhang, Z. (2020). Analysis of Temperature Effect on an S Cable-Stayed Bridge with Steel Box Girder During Asphalt Concrete Placement. Bridge Construction, 50(2), 37–42. | es_ES |
dc.source.bibliographicCitation | Yang, K., Ding, Y., Sun, P., Zhao, H., & Geng, F. (2019). Modeling of Temperature Time-Lag Effect for Concrete Box-Girder Bridges. Applied Sciences, 9(16), 3255. https://doi.org/10.3390/app9163255 | es_ES |
dc.source.bibliographicCitation | Yepes, V. (2017). Puente arco. https://victoryepes.blogs.upv.es/tag/puente-arco/ | es_ES |
dc.source.bibliographicCitation | Zhang, W. M., Tian, G. M., & Liu, Z. (2019). Analytical Study of Uniform Thermal Effects on Cable Configuration of a Suspension Bridge during Construction. Journal of Bridge Engineering, 24(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001493 | es_ES |
dc.source.bibliographicCitation | Zhang, W. M., Yang, C. Y., Tian, G. M., & Liu, Z. (2020). Analytical Assessment of Main Cable Shape for Three-Pylon Suspension Bridge with Unequal Main-Span Lengths: Thermal Effect Consideration. Journal of Bridge Engineering, 25(1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001522 | es_ES |
dc.source.bibliographicCitation | Zhou, L., Zhang, G., Yu, Z., Zhao, L., Wei, T., & Yang, L. (2020). Model Experiments of Ballastless Track-bridge Structure under Cyclic Temperature Load. Tiedao Xuebao/Journal of the China Railway Society, 42(1), 82–88. https://doi.org/10.3969/j.issn.1001-8360.2020.01.012 | es_ES |
dc.description.degreename | Ingeniero(a) Civil | es_ES |
dc.description.degreelevel | Pregrado | es_ES |
dc.publisher.faculty | Facultad de Ingeniería Civil | es_ES |
dc.description.notes | Presencial | es_ES |
dc.publisher.campus | Bogotá - Sur | - |
Aparece en las colecciones: | Ingeniería civil |
Ficheros en este ítem:
Fichero | Tamaño | |
---|---|---|
2020HernanDavidMenesesReal.pdf | 4.67 MB | Visualizar/Abrir |
2020AutorizacióndeAutores1.pdf Restricted Access | 1.06 MB | Visualizar/Abrir Request a copy |
2020AutorizacióndeAutores2.pdf Restricted Access | 831.86 kB | Visualizar/Abrir Request a copy |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons