Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/2134
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOsorio Bustamante, Edison-
dc.creatorMeneses Real, Hernán David-
dc.creatorPatarroyo Querales, Laura Alejandra-
dc.date.accessioned2021-03-01T21:36:46Z-
dc.date.available2021-03-01T21:36:46Z-
dc.date.created2020-07-05-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2134-
dc.descriptionPropiaes_ES
dc.description.abstractCurrently cities such as Bogotá and Neiva have had a vehicular growth due to population and industrial development, where the infrastructure of the bridges daily supports loads such as the weight of cars, buses, trucks, dump trucks, etc., in addition to natural phenomena such as heat And the water. Taking into account that heat is transferred through convection, conduction and radiation, a photographic record was made with the help of the camera ends Flir One Pro and a numerical balance with the equations of the heat transfer methods, to finally compare the upper and lower temperatures present in the plate of the bridges made by both methods, understanding the affectations suffered by the structure due to heat, wind and other factors present in the environment, these final results are compared with what is established in the standard CCP-14 to verify if the conditions presented by the bridges comply with the provisions of the standard.es_ES
dc.description.tableofcontentsActualmente las ciudades como Bogotá y Neiva han tenido un crecimiento vehicular debido al desarrollo poblacional e industrial, donde la infraestructura de los puentes soporta diariamente cargas como el peso de los automóviles, buses, camiones, volquetas, etc., adicionalmente fenómenos naturales como el calor y el agua. Teniendo en cuenta que el calor se transfiere por medio de la convección, conducción y radiación, se realizó un registro fotográfico con ayuda de la cámara termina Flir One Pro y un balance numérico con las ecuaciones de los métodos de transferencia de calor, para así finalmente comparar las temperaturas superiores e inferiores presentes en la placa de los puentes realizados por ambos métodos, comprendiendo las afectaciones que sufre la estructura por el calor, el viento y otros factores presentes en el ambiente, estos resultados finales se comparan con lo establecido en la norma CCP-14 para verificar si las condiciones que presentan los puentes cumplen con lo establecido en la norma.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-SinDerivadas 3.0 Estados Unidos de América*
dc.rightsAtribución-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectConvecciónes_ES
dc.subjectConducciónes_ES
dc.subjectRadiaciónes_ES
dc.subjectTemperaturaes_ES
dc.subjectTransferencia de calores_ES
dc.subjectModelación numéricaes_ES
dc.subjectPuenteses_ES
dc.titleTemperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)es_ES
dc.publisher.programIngeniería Civiles_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordConvectiones_ES
dc.subject.keywordConductiones_ES
dc.subject.keywordRadiationes_ES
dc.subject.keywordTemperaturees_ES
dc.subject.keywordHeat transferes_ES
dc.subject.keywordNumerical modelinges_ES
dc.subject.keywordBridgees_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationApuntes de Geotecnia con Énfasis en Laderas: El Diseño Racional en la Ingeniería Geotécnica (I). (2012). http://geotecnia-sor.blogspot.com/2012/11/el-diseno-racional-en-la-ingenieria.htmles_ES
dc.source.bibliographicCitationAtlas Interactivo - Radiación IDEAM. (2019). http://atlas.ideam.gov.co/visorAtlasRadiacion.htmles_ES
dc.source.bibliographicCitationBayane, I., Mankar, A., Brühwiler, E., & Sørensen, J. D. (2019). Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109357es_ES
dc.source.bibliographicCitationBustamante, E. O. (2018). Avances en la regionalización de las cargas térmicas para el diseño de puentes en Colombia.es_ES
dc.source.bibliographicCitationCastaño, J. C. (1999). Universidad Nacional de Colombia: Repositorio institucional UN. http://www.bdigital.unal.edu.co/23972/es_ES
dc.source.bibliographicCitationCCP-14, A. C. de I. S. (2014). SECCION 3: Cargas y Factores de Carga. Norma Colombiana de Diseño de Puentes, CCP 14, 140.es_ES
dc.source.bibliographicCitationCengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa : fundamentos y aplicaciones. McGraw-Hill Interamericana. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3214430es_ES
dc.source.bibliographicCitationCheng, W., Wenchao, L., & Chen, Z. (2020). Calculation and Analysis of Box Girder Temperature Effect of Large Cantilever Bridge under the Solar Radiation. IOP Conference Series: Materials Science and Engineering, 780(2). https://doi.org/10.1088/1757-899X/780/2/022010es_ES
dc.source.bibliographicCitationChilds, D. (2020). Bridge Design| Temperature Effects in Bridge Decks. http://bridgedesign.org.uk/tutorial/temperature-effects.phpes_ES
dc.source.bibliographicCitationColombia Weather History | Weather Underground. (2020). https://www.wunderground.com/history/monthly/co/neiva/SKNV/date/2019-12es_ES
dc.source.bibliographicCitationEddyhrbs. (2010). INGENIERIA CIVIL: Puentes Cantiléver. https://www.ingenierocivilinfo.com/2011/01/puentes-cantilever.htmles_ES
dc.source.bibliographicCitationFeng, H., Liu, X., Wu, B., Wu, D., Zhang, X., & He, C. (2019). Temperature-insensitive cable tension monitoring during the construction of a cable-stayed bridge with a custom-developed pulse elasto-magnetic instrument. Structural Health Monitoring, 18(5–6), 1982–1994. https://doi.org/10.1177/1475921718814733es_ES
dc.source.bibliographicCitationGiovanni. (2020). https://giovanni.gsfc.nasa.gov/giovanni/es_ES
dc.source.bibliographicCitationGoogle Earth. (2020). https://earth.google.com/web/@0,0,0a,22251752.77375655d,35y,0h,0t,0res_ES
dc.source.bibliographicCitationGrishyn, I. V., Ivanov, G. P., & Kayumov, R. A. (2020). Durability of bridge asphaltic concrete pavements under temperature loads. IOP Conference Series: Materials Science and Engineering, 786(1). https://doi.org/10.1088/1757-899X/786/1/012032es_ES
dc.source.bibliographicCitationGuard, P. (2009). File:Gateway Bridge aerial3.JPG - Wikipedia. https://en.wikipedia.org/wiki/File:Gateway_Bridge_aerial3.JPGes_ES
dc.source.bibliographicCitationHossain, T., Segura, S., & Okeil, A. M. (2020). Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: analysis and field measurements. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2020.1713167es_ES
dc.source.bibliographicCitationHuang, W., Guo, W., & Wei, Y. (2019). Thermal Effect on Rheological Properties of Epoxy Asphalt Mixture and Stress Prediction for Bridge Deck Paving. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002861es_ES
dc.source.bibliographicCitationInfercal - Ingenieros Constructores. (2011). http://www.infercal.com/portal/es_ES
dc.source.bibliographicCitationKennedybrücke - Bonn, NRW, Germany Image. (2017). https://www.waymarking.com/gallery/image.aspx?f=1&guid=1b009955-1e51-45ad-9606-65038213ca47&gid=3es_ES
dc.source.bibliographicCitationKong, L. Y., Huang, L. H., Dai, L., & Yu, M. (2020). Coupling effect of temperature and roughness on the pull-out strength of concrete bridge deck inter-layer. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 40(2), 21–29. https://doi.org/10.19721/j.cnki.1671-8879.2020.02.003 Kuryłowicz-Cudowska, A., Wilde, K., & Chróścielewski, J. (2020). Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119224es_ES
dc.source.bibliographicCitationLee, J., Loh, K. J., Choi, H. S., & An, H. (2019). Effect of Structural Change on Temperature Behavior of a Long-Span Suspension Bridge Pylon. International Journal of Steel Structures, 19(6), 2073–2089. https://doi.org/10.1007/s13296-019-00279-3es_ES
dc.source.bibliographicCitationLei, X., Jiang, H., Wang, J., Zhang, D., & Jiang, R. (2020). Pavement Rut Depth Prediction for a Three-Span Suspension Steel Box Girder Bridge Based on Two-Year Temperature Monitoring Data. Journal of Transportation Engineering Part B: Pavements, 146(3). https://doi.org/10.1061/JPEODX.0000177es_ES
dc.source.bibliographicCitationLi, J., Hu, R., Yang, J., & Liu, Y. (2019). Effect of temperature gradient on competitive growth behavior of Si and YSi2 in a Si–Y eutectic alloy prepared by Bridgeman method. Ceramics International, 45(14), 16776–16783. https://doi.org/10.1016/j.ceramint.2019.05.213es_ES
dc.source.bibliographicCitationLin, J., Briseghella, B., Xue, J., Tabatabai, H., Huang, F., & Chen, B. (2020). Temperature Monitoring and Response of Deck-Extension Side-by-Side Box Girder Bridges. Journal of Performance of Constructed Facilities, 34(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001399es_ES
dc.source.bibliographicCitationLiu, J., Liu, Y., Zhang, C., Zhao, Q., Lyu, Y., & Jiang, L. (2020). Temperature action and effect of concrete-filled steel tubular bridges: A review. In Journal of Traffic and Transportation Engineering (English Edition) (Vol. 7, Issue 2, pp. 174–191). Periodical Offices of Chang- an University. https://doi.org/10.1016/j.jtte.2020.03.001es_ES
dc.source.bibliographicCitationLiu, Y. J., & Liu, J. (2020). Review on temperature action and effect of steel-concrete composite girder bridge. In Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering (Vol. 20, Issue 1, pp. 42–59). Chang’an University. https://doi.org/10.19818/j.cnki.1671-1637.2020.01.003es_ES
dc.source.bibliographicCitationMonleón Cremades, S. (2017). Diseño estructural de puentes. Universidad Politécnica de Valencia.es_ES
dc.source.bibliographicCitationPuente Britannia - Puente | RouteYou. (2006). https://www.routeyou.com/es-gb/location/view/48035182/puente-britanniaes_ES
dc.source.bibliographicCitationPuente de Forth - EcuRed. (2017). https://www.ecured.cu/Puente_de_Forthes_ES
dc.source.bibliographicCitationPuente Verrazano-Narrows - Megaconstrucciones, Extreme Engineering. (2012). https://megaconstrucciones.net/?construccion=puente-verrazano-narrowses_ES
dc.source.bibliographicCitationRepositorio Institucional IDU: Búsquedas. (2007). https://webidu.idu.gov.co/jspui/simple-search?query=Puente+avenida+de++las+amercias+con+boyaca+es_ES
dc.source.bibliographicCitationSalazar, P. (2012). CAPÍTULO IV APLICACIÓN DE LAS NORMAS AASHTO LRFD AL DISEÑO ESTRUCTURAL DE PUENTES 4.1.-INTRODUCCIÓN AL AASHTO LRFD.es_ES
dc.source.bibliographicCitationSheng, X. W., Zheng, W. Q., Zhu, Z. H., Yang, Y., & Li, S. (2019). Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 19(4), 24–34.es_ES
dc.source.bibliographicCitationShi, T., Zheng, J., Deng, N., Chen, Z., Guo, X., & Wang, S. (2020). Temperature Load Parameters and Thermal Effects of a Long-Span Concrete-Filled Steel Tube Arch Bridge in Tibet. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/9710613es_ES
dc.source.bibliographicCitationSomenson, H. M. (2017). Estudio y proyecto de puentes de hormigón armado. Díaz de Santos.es_ES
dc.source.bibliographicCitationStahlwerk Annahutte Max Aicher GmbH & Co.KG. (n.d.). Puente Gateway, Brisbane, Australia. Retrieved February 10, 2020, from https://www.annahuette.com/es/home/proyectos-de-referencia/sistemas-sas-proyectos/puente-gatewayes_ES
dc.source.bibliographicCitationSumargo, & Harahap, A. H. S. (2019). Loading Test and Temperature Effect on Steel Arch Bridge. IOP Conference Series: Materials Science and Engineering, 650(1). https://doi.org/10.1088/1757-899X/650/1/012035es_ES
dc.source.bibliographicCitationVOSviewer. (2020). https://universoabierto.org/2020/02/18/vosviewer-es-una-herramienta-de-software-para-construir-y-visualizar-redes-bibliometricas/es_ES
dc.source.bibliographicCitationWang, G. X., & Ding, Y. L. (2019). Long-term monitoring of temperature effect on horizontal rotation angle at beam ends of a railway steel truss bridge. Journal of Bridge Engineering, 24(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001484es_ES
dc.source.bibliographicCitationWang, J. F., Zhang, J. T., Xu, R. Q., & Yang, Z. X. (2019). Evaluation of Thermal Effects on Cable Forces of a Long-Span Prestressed Concrete Cable-Stayed Bridge. Journal of Performance of Constructed Facilities, 33(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001348es_ES
dc.source.bibliographicCitationWang, J. feng, Zhang, J. tao, Yang, Z. xuan, & Xu, R. qiao. (2020). Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges. Journal of Zhejiang University: Science A, 21(4), 255–267. https://doi.org/10.1631/jzus.A1900310 Wayne, D. J. (1999). The male analyst on the maternal erotic playground. In Gender & Psychoanalysis (Vol. 4, Issue 1). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=2000-03615-002es_ES
dc.source.bibliographicCitationXia, Q., Xia, Y., Wan, H. P., Zhang, J., & Ren, W. X. (2020). Condition analysis of expansion joints of a long-span suspension bridge through metamodel-based model updating considering thermal effect. Structural Control and Health Monitoring, 27(5). https://doi.org/10.1002/stc.2521es_ES
dc.source.bibliographicCitationXu, X., Ren, Y., Huang, Q., Zhao, D. Y., Tong, Z. J., & Chang, W. J. (2020). Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. Journal of Civil Structural Health Monitoring. https://doi.org/10.1007/s13349-020-00402-7es_ES
dc.source.bibliographicCitationYang, J. N., He, X. J., Yang, J. H. L., Wang, Y. D., & Zhang, Z. (2020). Analysis of Temperature Effect on an S Cable-Stayed Bridge with Steel Box Girder During Asphalt Concrete Placement. Bridge Construction, 50(2), 37–42.es_ES
dc.source.bibliographicCitationYang, K., Ding, Y., Sun, P., Zhao, H., & Geng, F. (2019). Modeling of Temperature Time-Lag Effect for Concrete Box-Girder Bridges. Applied Sciences, 9(16), 3255. https://doi.org/10.3390/app9163255es_ES
dc.source.bibliographicCitationYepes, V. (2017). Puente arco. https://victoryepes.blogs.upv.es/tag/puente-arco/es_ES
dc.source.bibliographicCitationZhang, W. M., Tian, G. M., & Liu, Z. (2019). Analytical Study of Uniform Thermal Effects on Cable Configuration of a Suspension Bridge during Construction. Journal of Bridge Engineering, 24(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001493es_ES
dc.source.bibliographicCitationZhang, W. M., Yang, C. Y., Tian, G. M., & Liu, Z. (2020). Analytical Assessment of Main Cable Shape for Three-Pylon Suspension Bridge with Unequal Main-Span Lengths: Thermal Effect Consideration. Journal of Bridge Engineering, 25(1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001522es_ES
dc.source.bibliographicCitationZhou, L., Zhang, G., Yu, Z., Zhao, L., Wei, T., & Yang, L. (2020). Model Experiments of Ballastless Track-bridge Structure under Cyclic Temperature Load. Tiedao Xuebao/Journal of the China Railway Society, 42(1), 82–88. https://doi.org/10.3969/j.issn.1001-8360.2020.01.012es_ES
dc.description.degreenameIngeniero(a) Civiles_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Ingeniería Civiles_ES
dc.description.notesPresenciales_ES
dc.publisher.campusBogotá - Sur-
Aparece en las colecciones: Ingeniería civil

Ficheros en este ítem:
Fichero Tamaño  
2020HernanDavidMenesesReal.pdf4.67 MBVisualizar/Abrir
2020AutorizacióndeAutores1.pdf
  Restricted Access
1.06 MBVisualizar/Abrir  Request a copy
2020AutorizacióndeAutores2.pdf
  Restricted Access
831.86 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons