Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/2215
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorRuiz Olaya, Andrés Felipe-
dc.creatorBlanco Díaz, Cristian Felipe-
dc.date.accessioned2021-03-02T14:24:14Z-
dc.date.available2021-03-02T14:24:14Z-
dc.date.created2020-06-02-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2215-
dc.description.abstractIn recent years, the Brain Computer Interfaces(BCI) have been highly studied, due to they allow to interact with the environment without the requirement to use the peripherical nervious system. Consequently, The appliaction of this, has been very useful in the rehabilitation engineering. However, the traslation of the user's intent through of Electroencephalography(EEG) is still a challenge for the scientific community, consequently, the stimulation that allow to evoke responses in patterns form, for that the system can recognizes them, is necessary. An experiment highly used corresponding to the Oddball paradigm, that through of visual stimulus, allow to evoke a positive deflection in the parieto-central cortex to the 300 ms, when the subject is interested in a specific stimuli between aleatory stimulation, known as P300 potential. The P300 have a problematic in his recognition that consist in a low signal to noise ratio, this generate that the extraction techniques be reason of interest. In the present work, a comparative study between five P300-recognition methods is preformed: two standard methods reported in literature: Mean-Amplitude-LDA(MA-LDA) and Stepwise-LDA(SWLDA), and three novel methods based in the Canonical Correlation Analysis(CCA): MA+CCA-LDA, CCA with Regularizad Logistic Regression and CCA with Multilayer Perceptron(MLP). The methods were validated in a available dataset, that consisted in a BCI-P300 system implemented in a Speller. Using as evaluation metrics: the classification percentage and the computational cost. Also a measurement protocol in healthy people was developed, to implement the BCI-P300 Speller in real time, at the simulation Lab of the Universidad Antonio Nariño, using the device of EEG acquisition g.Nautilus-32 PRO and the public software BCI 2000es_ES
dc.description.sponsorshipOtroes_ES
dc.description.tableofcontentsEn los últimos años, las Interfaces Cerebro-Computador(BCI) han sido altamente estudiadas, debido a que permiten interactuar con el entorno sin necesidad de usar el sistema nervioso periférico. Por lo que, su aplicación en el campo de la ingeniería de rehabilitación, ha sido muy útil. Sin embargo, la traducción de la intención del usuario a través de Electroencefalografía todavía sigue siendo un reto para la comunidad científica, por lo que es necesario la estimulación que permita evocar respuestas en patrones que el sistema pueda reconocer. Un experimento altamente usado corresponde al paradigma Oddball, que a través de estimulación visual, permite evocar una deflexión positiva en la corteza parieto-central a los 300 ms cuando al sujeto de pruebas le llama la atención un estímulo específico entre una estimulación aleatoria, conocido como potencial P300. El P300 tiene una problemática en su reconocimiento que consiste en la baja relación señal a ruido, por lo que las técnicas de extracción de esta señal son motivo de interés. En el presente trabajo, se realiza un estudio comparativo entre cinco métodos de reconocimiento P300. dos métodos estándar reportados en la literatura: Mean-Amplitude-LDA(MA-LDA) y Stepwise-LDA(SWLDA), y tres nuevos basados en el análisis de correlación canónica(CCA): MA+CCA-LDA ,CCA con Regresión Logística Regularizada y CCA con Perceptrón Multicapa (CCA-MLP). Los métodos se validaron en una base de datos disponible, que consistió en un sistema BCI-P300 implementado en un deletreador o Speller. Usando como métricas de evaluación:el porcentaje de clasificación y el costo computacional. También se elaboró un protocolo de medición en personas sanas para implementar el sistema BCI-P300 Speller en tiempo real, en el laboratorio de simulación de la Universidad Antonio Nariño, utilizando el dispositivo de adquisición de EEG g.Nautilus-32 PRO y el software público BCI2000.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectInterfaz Cerebro-Computadores_ES
dc.subjectElectroencefalografíaes_ES
dc.subjectPotencial Relacionado a Eventoses_ES
dc.subjectP300es_ES
dc.subjectAnálisis de Correlación Canónicaes_ES
dc.titleEstudio comparativo de métodos para el reconocimiento de potenciales relacionados a eventos P300 para una interfaz cerebro-computadores_ES
dc.publisher.programIngeniería Biomédicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordBrain-Computer Interfacees_ES
dc.subject.keywordElectroencephalographyes_ES
dc.subject.keywordEvent-Related Potentiales_ES
dc.subject.keywordP300es_ES
dc.subject.keywordCanonical Correlation Analysises_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAbdulkader, S., Atia, A., Mostafa, S., y Mostafa, M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatic Journal , 16 , 213-230.es_ES
dc.source.bibliographicCitationAbiri, R., Borhani, S., Sellers, E., Jiang, Y., y Zhao, X. (2018, 11). A comprehensive review of EEG-based brain-computer interface paradigms. Journal of Neural Engineering, 16 .es_ES
dc.source.bibliographicCitationAl-Fahoum, A., y Al-Fraihat, A. (2014). Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neuroscience, 1-7.es_ES
dc.source.bibliographicCitationAmeera, A., A.Saidatul, y Ibrahim, Z. (2018). Analysis of EEG spectrum bands using power spectral density for pleasure and displeasure state. En IOP conference series: Materials science and engineering.es_ES
dc.source.bibliographicCitationAsociación Médica Mundial, A. (1964). Declaración de helsinki.es_ES
dc.source.bibliographicCitationBai, O., Kelly, G., Fei, D., Murphy, D., Fox, J., Burkhardt, B., . . . Soars, J. (2015). A wireless, smart EEG system for volitional control of lower-limb prosthesis. En Tencon 2015 - 2015 IEEE region 10 conference (p. 1-6).es_ES
dc.source.bibliographicCitationBasar, E., y A.Duzgun. (2015). The clair model: Extention of brondmanns areas based on brain oscillations and connectivity. International Journal of Psychophysiology, 103 , 185-198.es_ES
dc.source.bibliographicCitationBaura, G. (2011). Medical device technologies:a system-based overview using engineering standars. San Diego(CA): Oxford Academic Press.es_ES
dc.source.bibliographicCitationBecedas, J. (2012). Brain–machine interfaces: Basis and advances. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 42 (6), 825-836.es_ES
dc.source.bibliographicCitationBlanco, C., y Ruiz, A. (2020). Caracterización de señales de EEG relacionadas a potenciales evocados visuales en estado estacionario. Revista Ontare, 7 .es_ES
dc.source.bibliographicCitationBoelts, J., Cerquera, A., y Ruiz, A. (2015). Decoding of imaginary motor movements of fists applying spatial filtering in a BCI simulated application. En International work-conference on the interplay between natural and artificial computation ( IWINAC 2015). Elche, Spain.es_ES
dc.source.bibliographicCitationBolduc-Teasdale, J., Jolicoeur, P., y McKerral, M. (2012). Multiple electrophysiological markers of visual-attentional processing in a novel task directed toward clinical use. Journal of ophthalmology , 2012 , 618-654.es_ES
dc.source.bibliographicCitationBright, D., Nair, A., Salvekar, D., y Bhisikar, S. (2016). EEG-based brain controlled prost- hetic arm. En 2016 conference on advances in signal processing (CASP). Pune, India. Brouwer, A., y Erp, J. V. (2010). A tactile P300 brain-computer interface. Frontier in Neuroscience, 4 , 1-19.es_ES
dc.source.bibliographicCitationCaicedo, E., y López, J. (2009). Una aproximación práctica a las redes neuronales. Cali: Programa editorial universidad del Valle.es_ES
dc.source.bibliographicCitationCecotti, H., y Graeser, A. (2011). Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE transactions on pattern analysis machine intelligence, 33 , 433-45.es_ES
dc.source.bibliographicCitationChaudary, U., Birbaumer, N., y Ramos, A. (2016). Brain-computer interfaces for communi- cation and rehabilitation. Nature Reviews Neurology, 12 , 513-525.es_ES
dc.source.bibliographicCitationChiou, E., y Puthusserypady, S. (2016). Filter feature extraction methods for P300 BCI speller: A comparison. En 2016 IEEE international conference on systems, man, and cybernetics. Budapest, Hungary.es_ES
dc.source.bibliographicCitationElsawy, A., Eldawlatly, S., Taher, M., y Aly, G. (2013). A principal component analysis ensemble classifier for P300 speller applications. En 8th international symposium on image and signal processing and analysis (ISPA).es_ES
dc.source.bibliographicCitationFarwell, L., y Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and clinical Neurophysiology, 70 , 510-523.es_ES
dc.source.bibliographicCitationFazel, R., y Abhari, K. (2009). A region-based P300 speller for brain-computer interface. Electrical and Computer Engineering, Canadian Journal of , 34 , 81 - 85.es_ES
dc.source.bibliographicCitationFrolov, A., Mokienko, O., Lyukmanov, E. K. S., R. and Biryukova, Lydia, T., Georgy, N., y Yulia, B. (2017). Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: A randomized controlled multicenter trial. Frontiers in Neuroscience, 11 , 400.es_ES
dc.source.bibliographicCitationGoméz, J., y Departamento Administrativo Nacional de Estadística, D. (2008). Discapacidad. url https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y- poblacion/discapacidad.es_ES
dc.source.bibliographicCitationg.tec medical engineering Gmbh. (2017). Instruction for use v1.16.06 g.nautilus pro [Manual de software informático]. Schiedlberg.es_ES
dc.source.bibliographicCitationGupta, S., y Singh, H. (1996). Preprocessing EEG signals for direct human-system interface. En Proceedings IEEE international joint symposia on intelligence and systemses_ES
dc.source.bibliographicCitationGámez Albán, H., Cabrera, J., Salas, O., y Bravo Bastidas, J. (2016). Aplicación de mapas de kohonen para la priorización de zonas de mercado: una aproximación práctica. Revista EIA, 13 , 157-169.es_ES
dc.source.bibliographicCitationHaider, A., y Fazel, R. (2017). Chapter2:applications of p300 event related potential in brain computer interface. Croatia: Oxford Academic Press.es_ES
dc.source.bibliographicCitationHastie, T., Tibshirani, R., y Friedman, J. (2009). The elements of statistical learning. New York (NY): Springer.es_ES
dc.source.bibliographicCitationHohne, J., Tangermann, M., y Towards, M. (2014). User-friendly spelling with an auditory Brain Computer Interface: The charstreamer paradigm. Plos ONE , 9 .es_ES
dc.source.bibliographicCitationHwang, J., Lee, M., y Lee, S. (2017). A brain-computer interface speller using peripheralstimulus-based SSVEP and P300. En 5 th international winter conferen- ce on brain-computer interface(BCI). Sabuk, South Korea.es_ES
dc.source.bibliographicCitationKabbara, A., Khalil, M., El-Falou, W., Eid, H., y Hassan, M. (2015). Functional brain connectivity as a new feature for P300 speller. PLOS One, 11 , 1-18.es_ES
dc.source.bibliographicCitationKarimi, S., Mijani, A., Talebian, M., y Mirzakuchaki, M. (2019). Comparison of the P300 detection accuracy related to the BCI speller and image recognition scenario. Arxiv , 1912.11371 .es_ES
dc.source.bibliographicCitationKo-lodziej, M., Majkowski, A., y Rak, R. (2010). Matlab FE-toolbox - an universal utility for feature extraction of EEG signals for BCI realization. Przeglpmd Elektrotechniczny , 86 , 44-46.es_ES
dc.source.bibliographicCitationKrusienski, D., Sellers, E., Cabestaing, F., Bayoudh, S., Mcfarland, D., Vaughan, T., y Wolpaw, J. (2007). A comparison of classification techniques for the P300 speller. Journal of neural engineering , 3 , 299-305.es_ES
dc.source.bibliographicCitationKrusienski, D., Sellers, E., Cabestaing, F., Bayoudh, S., Mcfarland, D., Vaughan, T., y Wol- paw, J. (2008). Toward enhanced P300 speller performance. Journal of neuroscience methods, 167 , 15-21.es_ES
dc.source.bibliographicCitationKumar, J., y Bhuvaneswari, P. (2012). Analysis of electroencephalography (EEG) signals and its categorization–a study. Clinical Neurophysiology, 38 , 2525-2536.es_ES
dc.source.bibliographicCitationKwak, N., Mu¨ller, K., y Lee, S. (2017). A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PLOS ONE , 12 (2), 1-20.es_ES
dc.source.bibliographicCitationLee, H., Kwon, Y., Kim, Y., Kim, H., Lee, Y., Williamson, J., . . . Lee, S. (2019). EEG dataset and open BMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Giga-Science, 8 , 1-16.es_ES
dc.source.bibliographicCitationLi, F., Yi, C., Jiang, Y., Liao, Y., Si, Y., Dai, J., . . . Xu, P. (2019). Different contexts in the oddball paradigm induce distinct brain networks in generating the P300. Frontiers in Human Neuroscience, 12 , 520.es_ES
dc.source.bibliographicCitationLi, J., Gu, R., Ji, H., Pang, Z., y Li, M. (2016). Interaction study of SSVEP and P300 in electroencephalogram. En Paper presented at: Proceedings of the PIERS Progress in Electromagnetic Research Symposium. Shangai, China.es_ES
dc.source.bibliographicCitationMaterka, A., y Poryzala, P. (2014). A robust asynchronous ssvep brain-computer interface based on cluster analysis of canonical correlation coefficients. Advances in Intelligent Systems and Computing , 300 , 3-14.es_ES
dc.source.bibliographicCitationMcFarland, D., y Wolpaw, J. (2011). Brain-computer interfaces for communication and control. Communications of the ACM , 5 , 60-66.es_ES
dc.source.bibliographicCitationMendoza, O. (2017). Development of a Hybrid Brain-Computer Interface for Autonomous System (Tesis Doctoral no publicada). Free University of Berlin.es_ES
dc.source.bibliographicCitationMinisterio de salud, M. (1993). Resolución número 8430 de 1993.es_ES
dc.source.bibliographicCitationMotlagh, E., y Ibrahim, F. (2015). Developing an optimized single-trial P300-based brain computer interface system. En International Conference for Innovation in Biomedical Engineering and Life Sciences. Putrajaya, Malaysia.es_ES
dc.source.bibliographicCitationMuller-Putz, G., y Pfurtscheller, G. (2008). Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Transactions on Biomedical Engineering, 55 , 361 - 364.es_ES
dc.source.bibliographicCitationMurphy, D., Bai, O., Gorgey, O., Fox, A., Lovegreen, J., William, T., . . . Fei, D. (2017). Electroencephalogram-based brain–computer interface and lower-limb prosthesis control: A case study. Frontiers in Neurology , 8 , 696.es_ES
dc.source.bibliographicCitationNacional Center for Adaptative Neurotechnologies, N. (2018). BCI2000. url https://www. bci2000.org/mediawiki/index.php/MainP age.es_ES
dc.source.bibliographicCitationNicolas, L., y Gomez, J. (2012). Brain computer interfaces, a review. Sensors, 12 (6), 1211-1279.es_ES
dc.source.bibliographicCitationNiedermeyer, E., y da Silva, F. (2004). Electroencephalography:basic principles, clinical applications and related fields. Philadelphia(PA): Lippincot Williams Wilkins.es_ES
dc.source.bibliographicCitationOno, T., Shindo, K., Kawashima, K., Ota, N., Ito, M., Ota, T., . . . Ushiba, J. (2014). Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Frontiers in Neuroengineering , 7 , 19.es_ES
dc.source.bibliographicCitationOrellana, D., y Cuenca, J. (2017). Comparative study of feature extraction methods and classificationof event-related potentials P300. CEDAMAZ , 7 , 71-82.es_ES
dc.source.bibliographicCitationPatelia, V., y Patel, M. (2019). Brain computer interface: Applications and P300 over- view. En 10th ICCCNT International Conference on Computing, Communication and Networking Technologies. Kanpur, India.es_ES
dc.source.bibliographicCitationPiccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., . . . Beverina, F. (2006). P300-based brain computer interface: Reliability and performance in healthy and pa- ralysed participants. Clinical Neurophysiology, 117 (3), 531 - 537.es_ES
dc.source.bibliographicCitationPicton, T. (1992). The P300 a wave of the human event-related potential. Journal of Clinical Neurophysiology, 9 , 456-479.es_ES
dc.source.bibliographicCitationPugh, G. (1977). The biological origin of human values. Michigan(MI): Basic Books.es_ES
dc.source.bibliographicCitationRaksha, N., Sahana, S., Sahana, P., y Niranjana, K. (2018). Stepwise and quadratic discrimi- nant analysis of P300 signals for controlling a robot. En 2018 international conference on networking, embedded and wireless system (ICNEWS). Bangalore, India.es_ES
dc.source.bibliographicCitationRezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, F., y Volosyak, I. (2018). Brain- computerinterface spellers: A review. Brain Sciences, 8 , 1-38.es_ES
dc.source.bibliographicCitationSeeck, M., Koessler, L., Bast, T., Leijten, F., Michel, C., Baumgartner, C., . . . Beniczky, S. (2017). The standardized EEG electrode array of the IFCN. Clinical Neurophysiology, 128 (10), 2070-2077.es_ES
dc.source.bibliographicCitationShalev, S., y Ben, D. (2014). Understanding machine learning: From theory to algorithms (draft ed.). CUP.es_ES
dc.source.bibliographicCitationSpuler, M., Walter, A., Rosenstiei, W., y Bogdan, M. (2014). Spatial filtering based on canonical correlation analysis for classification of evoked or event-related potentials in EEG data. IEEE transactions on neural systems and rehabilitation engineering., 22 , 1097-1103.es_ES
dc.source.bibliographicCitationSur, S., y Sinha, V. (2009). Event-related potential: An overview. Ind Psychiatry J , 18 (1), 70-73.es_ES
dc.source.bibliographicCitationTal, O., y D.Friedman. (2019). Recurrent neural networks for P300-based BCI. arXiv .es_ES
dc.source.bibliographicCitationTang, J., Liu, Y., Hu, D., y Zhou, Z. (2018). Towards BCI-actuated smart wheelchair system. Biomedical engineering online, 17 , 111.es_ES
dc.source.bibliographicCitationViana, S., Batista, D., y Melges, D. (2014). Logistic regression models: Feature selection for P300 detection improvement. En XXIV congresso brasileiro de engenharia biom´edica- CBEB. Belo Horizonte, Brazil.es_ES
dc.source.bibliographicCitationVillamizar, N. (2019). Elaboración y ejecución de un protocolo para adquisición de señales de electroencefalografía para una interfaz cerebro-computadora, aplicado a ingeniería de rehabilitación. Bogotá: Universidad Antonio Nariño.es_ES
dc.source.bibliographicCitationWang, H., Wang, Y., Jing, J., y Wang, X. (2015). SSVEP recognition using multivariate linearregression for brain computer interface. En IEEE international conference on computer and communications(ICCC). Chengdu, China.es_ES
dc.source.bibliographicCitationWang, H., Zhang, Y., Waytowich, N., Krusienski, D., Zhou, G., Jin, J., . . . Chichocki, A. (2016). Discriminative feature extraction via multivariate linear regression for SSVEP- based BCI. IEEE transactions on neural systems and rehabilitation engineering., 24 , 1-10.es_ES
dc.source.bibliographicCitationWorld Health Organization. (2011). World report on disability . Geneve. (ISBN 9789241564182)es_ES
dc.source.bibliographicCitationXiao, X., Xu, M., Jin, J., Wang, Y., Jung, T., y Ming, D. (2019). Discriminative canonical pattern matching for single-trial classification of ERP components. IEEE Transaction on BiomedicalEngineering , 1-1.es_ES
dc.source.bibliographicCitationXiao, X., Xu, M., Wang, Y., Jung, T., y Ming, D. (2019). comparison of classification methods for recognizing single-trial P300 in brain-computer interfaces. En 41st an- nual international conference of the ieee engineering in medicine and biology society. Berlin, Germany.es_ES
dc.source.bibliographicCitationXu, M., Long, C., y He, F. (2016). Incorporation of inter-subject information to improve the accuracy of subject-specified P300 classifiers. International Journal of Neural Systems, 26 , 1-10.es_ES
dc.source.bibliographicCitationZhang, X., Xu, G., Mou, X., Ravi, A., Li, M., Wang, Y., y Jiang, N. (2019). A convolutional neural network for the detection of asynchronous steady state motion visual evoked po- tential. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27 (6), 1303-1311.es_ES
dc.description.degreenameIngeniero(a) Biomédico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaes_ES
dc.description.funderValor Total proyecto $28.290.000. Financiación UAN $26.390.000, Financiación propia $1.900.000.es_ES
dc.description.notesPresenciales_ES
dc.publisher.campusBogotá - Sur-
Aparece en las colecciones: Ingeniería biomédica

Ficheros en este ítem:
Fichero Tamaño  
2020CristianFelipeBlancoDiaz.pdf5.28 MBVisualizar/Abrir
2020AutorizaciondeAutores.pdf
  Restricted Access
585.2 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons