Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.uan.edu.co/handle/123456789/2216
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Duarte González, Mario Enrique | - |
dc.creator | González Rosas, Adriana Camila | - |
dc.date.accessioned | 2021-03-02T15:15:48Z | - |
dc.date.available | 2021-03-02T15:15:48Z | - |
dc.date.created | 2020-07-21 | - |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/2216 | - |
dc.description.abstract | Active proteins and allosteric sites are distinguished in proteins. The latter have their binding site within the enzyme in a different place from the active site. Its importance lies in the contribution it makes in the inhibition and / or activation of its biological function, this, through molecules (ligands) that act as allosteric modulators, being a basis for the design of drugs, since they provide fewer adverse effects than traditional ones. (active regulators). One of the main molecules that can act as an allosteric regulator is adenosine triphosphate (ATP), since it is essential for obtaining cellular energy. Among the public databases that have information on the structure of proteins, is the National Center for Biotechnology Information (NCBI), there are 1,364,990 proteins in Homo sapiens, some of which have not been studied and therefore it is not known if there is an allosteric site, nor its molecular position. In the work that follows, the creation of an allosteric site profile (ASP) is presented, from three proteins and with the help of the Deacon Active Site Profiler 3 tool (DASP3), which allows identify active sites by creating an active site profile; these proteins, through the reviewed literature, are known allosteric site in interaction with the ATP ligand. | es_ES |
dc.description.sponsorship | Otro | es_ES |
dc.description.tableofcontents | En las proteínas se distinguen los sitios activos y los sitios alostéricos. Estos últimos poseen su sitio de unión dentro de la enzima en un lugar diferente al del sitio activo. Su importancia radica en la contribución que realiza en la inhibición y/o activación de su función biológica, esto, mediante moléculas (ligandos) que actúan como moduladores alostéricos, siendo una base para el diseño de fármacos, pues proporcionan menos efectos adversos que los tradicionales (reguladores activos). Una de las principales moléculas que puede actuar como regulador alostérico es el adenosín trifosfato (ATP), ya que es fundamental para la obtención de energía celular. Entre las bases de datos públicas que cuentan con información sobre la estructura de las proteínas, se encuentra el National Center for Biotechnology Information (NCBI), allí existen 1’364.990 proteínas en Homo sapiens, algunas de estas no han sido estudiadas y por tanto no se conoce si existe un sitio alostérico, ni su posición molecular. En el trabajo que se desarrolla a continuación, se presenta la creación de un perfil de sitio alostérico (ASP), a partir de tres proteínas y con la ayuda de la herramienta Deacon Active Site Profiler 3 (DASP3), que permite identificar sitios activos a partir de la creación de un perfil de sitio activo; a dichas proteínas, por medio de la literatura revisada, se les conoce sitio alostérico en interacción con el ligando ATP. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Antonio Nariño | es_ES |
dc.rights | Atribución-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.subject | Proteínas | es_ES |
dc.subject | Sitio alostérico | es_ES |
dc.subject | ATP | es_ES |
dc.subject | Bioinformática | es_ES |
dc.subject | DASP3 | es_ES |
dc.subject | Docking | es_ES |
dc.title | Identificación de sitios alostéricos en proteínas de Homo sapiens que interactúan con la molécula de ATP mediante la herramienta Deacon Active Site Profiler (DASP3) | es_ES |
dc.publisher.program | Ingeniería Biomédica | es_ES |
dc.rights.accesRights | openAccess | es_ES |
dc.subject.keyword | Proteins | es_ES |
dc.subject.keyword | Allosteric Site | es_ES |
dc.subject.keyword | ATP | es_ES |
dc.subject.keyword | Bioinformatics | es_ES |
dc.subject.keyword | DASP3 | es_ES |
dc.subject.keyword | Docking | es_ES |
dc.type.spa | Trabajo de grado (Pregrado y/o Especialización) | es_ES |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.source.bibliographicCitation | O Flores Herrera, E Rendón Huerta, H Riveros Rosas, A Sosa Peinado, E Vázquez Contreras, and I Velázquez López. La estructura y la visualización molecular de proteínas. Mensaje bioquímico, 29, 2005. | es_ES |
dc.source.bibliographicCitation | David L Nelson, Michael M Cox, and Albert L Lehninger. Principles of biochemistry. Freeman New York, 2008. | es_ES |
dc.source.bibliographicCitation | HN Curtis. Ns barnes biología. Editorial M´edica Panamericana, 2002. | es_ES |
dc.source.bibliographicCitation | Homero Saénz-Suárez, Leonardo René Lareo, Carlos Oribio-Quinto, Juan Martínez Mendoza, and Aura Chávez-Zobel. Predicción computacional de estructura terciaria de las proteínas humanas hsp27, ab-cristalina y hspb8. Universitas Scientiarum, 16(1):15– 28, 2011. | es_ES |
dc.source.bibliographicCitation | Victoria Luque Guillén. Estructura y propiedades de las proteínas, 2009. | es_ES |
dc.source.bibliographicCitation | Luis A Chel Guerrero, Luis Corzo Ríos, and David A Betancur Ancona. Estructura y propiedades funcionales de proteínas de leguminosas. Revista de la Universidad Autónoma de Yucatán, pages 34–43, 2003. | es_ES |
dc.source.bibliographicCitation | O Martínez Augustin and E Martínez de Victoria. Proteínas y péptidos en nutrición enteral. Nutrición Hospitalaria, 21:01–14, 2006. | es_ES |
dc.source.bibliographicCitation | Ángel Gil and FermÍn SÁnchez de Medina Contreras. Tratado de Nutrición: Bases fisiológicas y bioquímicas de la nutrición. Acción Médica, 2005. | es_ES |
dc.source.bibliographicCitation | Micaela Anahí Santucho Cordoba. Proteínas. Monografía, 2014. | es_ES |
dc.source.bibliographicCitation | Jesús Merino Pérez and Maria José Noriega Borge. Enzimas. universidad de cantabria, 2011. | es_ES |
dc.source.bibliographicCitation | Trudy McKee and James R Mckee. Enzimas. In Bioqu´ımica: la base molecular de la vida, chapter 6, pages 184–226. McGraw-Hill/Interamericana,, 5 edition, 2003. | es_ES |
dc.source.bibliographicCitation | Yael Avissar, Jung Choi, Jean DeSaix, Vladimir Jurukovski, Robert Wise, Connie Rye, et al. Atp: Adenosine triphosphate. In Biology. OpenStax, 2018. | es_ES |
dc.source.bibliographicCitation | Elizabeth Lira Silva, Ricardo Jasso Chávez, and Juan Pablo Pardo Vázquez. Respuestas al problema bioquímico. REB. Revista de educación bioquímica, 33(2):68–72, 2014. | es_ES |
dc.source.bibliographicCitation | Ismael Lares-Asseff and Francisca Trujillo-Jiménez. La farmacogenética y su importancia en la clínica. Gaceta medica de Mexico, 137(3), 2001. | es_ES |
dc.source.bibliographicCitation | Claude Denson Pepper. National center for biotechnology information (ncbi). [citado 17 marzo 2020]. Disponible en: https://www.ncbi.nlm.nih.gov/, 1988. | es_ES |
dc.source.bibliographicCitation | Janelle B Leuthaeuser, John H Morris, Angela F Harper, Thomas E Ferrin, Patricia C Babbitt, and Jacquelyn S Fetrow. Dasp3: identification of protein sequences belonging to functionally relevant groups. BMC bioinformatics, 17(1):458, 2016. | es_ES |
dc.source.bibliographicCitation | Richard D Taylor, Philip J Jewsbury, and Jonathan W Essex. A review of protein-small molecule docking methods. Journal of computer-aided molecular design, 16(3):151–166, 2002. | es_ES |
dc.source.bibliographicCitation | Ruifeng Qi, Evans Boateng Sarbeng, Qun Liu, Katherine Quynh Le, Xinping Xu, Hongya Xu, Jiao Yang, Jennifer Li Wong, Christina Vorvis, Wayne A Hendrickson, et al. Allosteric opening of the polypeptide-binding site when an hsp70 binds atp. Nature structural & molecular biology, 20(7):900, 2013. | es_ES |
dc.source.bibliographicCitation | Marta Acebro´n Garc´ıa de Eulate. Fragment based ligand discovery on Focal Adhesion Kinase. PhD thesis, Universidad Auto´noma de Madrid, 2018. | es_ES |
dc.source.bibliographicCitation | Alejandro Reyes. ANÁLISIS FUNCIONAL DE MUTANTES PUNTUALES EN SITIOS ALOSTÉRICOS ENDO Y EXOFACIALES EN EL TRANSPORTADOR DE GLUCOSA GLUT1. PhD thesis, Universidad de Concepci´on, 2009. | es_ES |
dc.source.bibliographicCitation | Joerg Klepper and Baerbel Leiendecker. Glut1 deficiency syndrome–2007 update. Developmental Medicine & Child Neurology, 49(9):707–716, 2007. | es_ES |
dc.source.bibliographicCitation | Rafael Lahoz-Beltr´a. Bioinform´atica: Simulaci´on, vida artificial e inteligencia artificial. Ediciones Díaz de Santos, 2010. | es_ES |
dc.source.bibliographicCitation | Vincent Le Guilloux, Peter Schmidtke, and Pierre Tuffery. Fpocket: an open source platform for ligand pocket detection. BMC bioinformatics, 10(1):168, 2009. | es_ES |
dc.source.bibliographicCitation | Joe G Greener, Ioannis Filippis, and Michael JE Sternberg. Predicting protein dynamics and allostery using multi-protein atomic distance constraints. Structure, 25(3):546–558, 2017. | es_ES |
dc.source.bibliographicCitation | Declan Clarke, Anurag Sethi, Shantao Li, Sushant Kumar, Richard WF Chang, Jieming Chen, and Mark Gerstein. Identifying allosteric hotspots with dynamics: Application to inter-and intra-species conservation. Structure, 24(5):826–837, 2016. | es_ES |
dc.source.bibliographicCitation | Leslie B Poole and Kimberly J Nelson. Distribution and features of the six classes of peroxiredoxins. Molecules and cells, 39(1):53, 2016. | es_ES |
dc.source.bibliographicCitation | Jacquelyn S Fetrow. Active site profiling to identify protein functional sites in sequences and structures using the deacon active site profiler (dasp). Current protocols in bioinformatics, 14(1):8–10, 2006. | es_ES |
dc.source.bibliographicCitation | Laura Soito, Chris Williamson, Stacy T Knutson, Jacquelyn S Fetrow, Leslie B Poole, and Kimberly J Nelson. Prex: Peroxiredoxin classification index, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic acids research, 39(suppl 1):D332–D337, 2011. | es_ES |
dc.source.bibliographicCitation | Ryan G Huff, Ersin Bayram, Huan Tan, Stacy T Knutson, Michael H Knaggs, Allen B Richon, Peter Santago, and Jacquelyn S Fetrow. Chemical and structural diversity in cyclooxygenase protein active sites. Chemistry & biodiversity, 2(11):1533–1552, 2005. | es_ES |
dc.source.bibliographicCitation | Maritza Rodríguez Charry. Identificación automática de sitios alostéricos en proteínas mediante la herramienta deacon active site profiler (dasp3). Trabajo integral de grado, Antonio Nariño, 2019. | es_ES |
dc.source.bibliographicCitation | Michael McCarthy, Priyanka Prakash, and Alemayehu A Gorfe. Computational allosteric ligand binding site identification on ras proteins. Acta biochimica et biophysica Sinica, 48(1):3–10, 2016. | es_ES |
dc.source.bibliographicCitation | Alexander L Perryman, Daniel N Santiago, Stefano Forli, Diogo Santos-Martins, and Arthur J Olson. Virtual screening with autodock vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of hiv integrase: participation in the sampl4 protein–ligand binding challenge. Journal of computer-aided molecular design, 28(4):429–441, 2014. | es_ES |
dc.source.bibliographicCitation | Carlos Roca, Carlos Requena, Víctor Sebastián-Pérez, Sony Malhotra, Chris Radoux, Concepción Pérez, Ana Martinez, Juan Antonio Paez, Tom L Blundell, and Nuria E Campillo. Identification of new allosteric sites and modulators of ache through computational and experimental tools. Journal of enzyme inhibition and medicinal chemistry, 33(1):1034–1047, 2018. | es_ES |
dc.source.bibliographicCitation | Garrett M Morris, Ruth Huey, William Lindstrom, Michel F Sanner, Richard K Belew, David S Goodsell, and Arthur J Olson. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16):2785–2791, 2009. | es_ES |
dc.source.bibliographicCitation | Marcelo Adrian Marti and Adrian Turjanski. La bioinformática estructural o la realidad virtual de los medicamentos. Química Viva, 2009. | es_ES |
dc.source.bibliographicCitation | Ruth Nussinov and Chung-Jung Tsai. The different ways through which specificity works in orthosteric and allosteric drugs. Current pharmaceutical design, 18(9):1311– 1316, 2012. | es_ES |
dc.source.bibliographicCitation | Shaoyong Lu, Shuai Li, and Jian Zhang. Harnessing allostery: a novel approach to drug discovery. Medicinal research reviews, 34(6):1242–1285, 2014. | es_ES |
dc.source.bibliographicCitation | Alejandro Panjkovich and Xavier Daura. Exploiting protein flexibility to predict the location of allosteric sites. BMC bioinformatics, 13(1):273, 2012. | es_ES |
dc.source.bibliographicCitation | Fernanda Saldívar-González, Fernando D Prieto-Martínez, and José L Medina-Franco. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación química, 28(1):51–58, 2017. | es_ES |
dc.source.bibliographicCitation | Carlos Roca Magad´an. Estrategias computacionales en el desarrollo de neurofármacos: una tecnología de éxito. PhD thesis, Universidad Complutense de Madrid, 2018. | es_ES |
dc.source.bibliographicCitation | Shaoyong Lu, Mingfei Ji, Duan Ni, and Jian Zhang. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug discovery today, 23(2):359–365, 2018. | es_ES |
dc.source.bibliographicCitation | Ruth Nussinov and Chung-Jung Tsai. The design of covalent allosteric drugs. Annual review of pharmacology and toxicology, 55:249–267, 2015. | es_ES |
dc.source.bibliographicCitation | Gerard J Tortora and Bryan Derrickson. Principios de anatomía y fisiología. Médica Panamericana,, 2013. | es_ES |
dc.source.bibliographicCitation | W Sperl, P Jeˇsina, J Zeman, JA Mayr, L Demeirleir, Rudy VanCoster, A Pickova, H Hansikova, H Houˇst’kov´a, Z Krejˇc´ık, et al. Deficiency of mitochondrial atp synthase of nuclear genetic origin. Neuromuscular Disorders, 16(12):821–829, 2006. | es_ES |
dc.source.bibliographicCitation | Paolo Cremonesi. L’ambiente acquoso per il trattamento di opere policrome. il prato publishing house srl, 2012. | es_ES |
dc.source.bibliographicCitation | Marcela Ayala Aceves. Enzimas:¿ qué son y cómo funcionan? Revista Digital Universitaria, 15(12), 2017. | es_ES |
dc.source.bibliographicCitation | Frank Bradley Armstrong, Frank Bradley Armstrong, and Thomas Peter Bennett. Bioquímica. Reverte, 1982. | es_ES |
dc.source.bibliographicCitation | Laurence A Cole. Biology of Life: Biochemistry, Physiology and Philosophy. Academic Press, 2016. | es_ES |
dc.source.bibliographicCitation | Dominio pu´blico NEUROtiker. Estructura del trifosfato de adenosina (atp), protonado. [citado 15 julio 2020]. Disponible en: https://upload.wikimedia.org/wikipedia/commons/3/31/Adenosintriphosphat protoniert.svg, 2007. | es_ES |
dc.source.bibliographicCitation | Greelane. El atp en el metabolismo. [citado 15 julio 2020]. Disponible en: https://www.greelane.com/es/ciencia-tecnolog%C3%ADamatem%C3%A1ticasciencia/phosphorylation-definition-4140732/, 2019. | es_ES |
dc.source.bibliographicCitation | Simon Orozco Arias and Jeferson Arango L´opez. Aplicacio´n de la inteligencia artificial en la bioinform´atica, avances, definiciones y herramientas. UGCiencia, 22(1):159–171, 2016. | es_ES |
dc.source.bibliographicCitation | Dinler A Antunes, Didier Devaurs, and Lydia E Kavraki. Understanding the challenges of protein flexibility in drug design. Expert opinion on drug discovery, 10(12):1301–1313, 2015. | es_ES |
dc.source.bibliographicCitation | Jacob D Durrant and J Andrew McCammon. Molecular dynamics simulations and drug discovery. BMC biology, 9(1):71, 2011. | es_ES |
dc.source.bibliographicCitation | Morris. Adt / autodocktools. [citado 05 de mayo 2020]. Disponible en: http://autodock.scripps.edu, 2007. | es_ES |
dc.source.bibliographicCitation | Ruth Huey, Garrett M Morris, and Stefano Forli. Using autodock 4 and autodock vina with autodocktools: A tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 2012. | es_ES |
dc.source.bibliographicCitation | Ambrish Roy, Alper Kucukural, and Yang Zhang. I-tasser: a unified platform for automated protein structure and function prediction. Nature protocols, 5(4):725, 2010. | es_ES |
dc.source.bibliographicCitation | John Moult, Jan T Pedersen, Richard Judson, and Krzysztof Fidelis. A large-scale experiment to assess protein structure prediction methods. Proteins: Structure, Function, and Bioinformatics, 23(3):ii–iv, 1995. | es_ES |
dc.source.bibliographicCitation | Sitao Wu, Jeffrey Skolnick, and Yang Zhang. Ab initio modeling of small proteins by iterative tasser simulations. BMC biology, 5(1):17, 2007. | es_ES |
dc.source.bibliographicCitation | Nicolas Gue. Swiss-pdbviewer. [citado 16 de junio 2020]. Disponible en: https://spdbv.vital-it.ch/. | es_ES |
dc.source.bibliographicCitation | Visualizaci´on e Inform´atica (RBVI) Recurso para Biocomputaci´on. Ucsf chimera. [citado 16 de junio 2020]. Disponible en: https://www.cgl.ucsf.edu/chimera/, 2019. | es_ES |
dc.source.bibliographicCitation | Version 1.XX. Software Libre. Avogadro: an open-source molecular builder and visualization tool. [citado 10 de junio 2020]. Disponible en: https://avogadro.cc/, 2006. | es_ES |
dc.source.bibliographicCitation | Celia Torres Quezada, Patricia Varela Gangas, María Verónica Frías, and Patricio Flores-Morales. Implementación de avogadro como visualizador y constructor de moléculas para alumnos de primer año de odontología en la asignatura química general y orgánica. Educación química, 28(1):22–29, 2017. | es_ES |
dc.source.bibliographicCitation | Sebastian Raschka. Molecular docking, estimating free energies of binding, and autodock’s semi-empirical force field, 2014. | es_ES |
dc.source.bibliographicCitation | Instituto Europeo de Bioinformática (EBI), Instituto Suizo de Bioinformática (SIB), and Protein Information Resource (PIR). The UniProt Knowledgebase (UniProtKB). [citado 17 marzo 2020]. Disponible en: https://www.uniprot.org/, 2002. | es_ES |
dc.source.bibliographicCitation | Karin Walld´en and P¨ar Nordlund. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5-nucleotidase ii. Journal of molecular biology, 408(4):684–696, 2011. | es_ES |
dc.source.bibliographicCitation | AS Bretonnet, LP Jordheim, C Dumontet, and JM Lancelin. Regulation and activity of cytosolic 5-nucleotidase ii: A bifunctional allosteric enzyme of the haloacid dehalogenase superfamily involved in cellular metabolism. FEBS letters, 579(16):3363–3368, 2005. | es_ES |
dc.source.bibliographicCitation | Marco Kloos, Antje Bru¨ser, Ju¨rgen Kirchberger, Torsten Scho¨neberg, and Norbert Stra¨ter. Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation. Biochemical Journal, 469(3):421–432, 2015. | es_ES |
dc.source.bibliographicCitation | Wen Yi, Peter M Clark, Daniel E Mason, Marie C Keenan, Collin Hill, William A Goddard, Eric C Peters, Edward M Driggers, and Linda C Hsieh-Wilson. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science, 337(6097):975–980, 2012. | es_ES |
dc.source.bibliographicCitation | Lukasz Wieteska, Saeid Shahidi, and Anastasia Zhuravleva. Allosteric fine-tuning of the conformational equilibrium poises the chaperone bip for post-translational regulation. Elife, 6:e29430, 2017. | es_ES |
dc.source.bibliographicCitation | Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, and Qinglian Liu. Close and allosteric opening of the polypeptide-binding site in a human hsp70 chaperone bip. Structure, 23(12):2191–2203, 2015. | es_ES |
dc.source.bibliographicCitation | Edgar Meyer and Walter Hamilton. PDB (Protein Data Bank). [citado 17 marzo 2020]. Disponible en: https://www.rcsb.org/, 1971. | es_ES |
dc.source.bibliographicCitation | Akemi Irie, Akira Yamauchi, Keiichi Kontani, Minoru Kihara, Dage Liu, Yukako Shirato, Masako Seki, Nozomu Nishi, Takanori Nakamura, Hiroyasu Yokomise, et al. Galectin9 as a prognostic factor with antimetastatic potential in breast cancer. Clinical cancer research, 11(8):2962–2968, 2005. | es_ES |
dc.source.bibliographicCitation | Yumiko Kashio, Kazuhiro Nakamura, Mohammad J Abedin, Masako Seki, Nozomu Nishi, Naoko Yoshida, Takanori Nakamura, and Mitsuomi Hirashima. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. The Journal of Immunology, 170(7):3631–3636, 2003. | es_ES |
dc.source.bibliographicCitation | Yuka Tsuboi, Hiroko Abe, Ryusuke Nakagawa, Souichi Oomizu, Kota Watanabe, Nozomu Nishi, Takanori Nakamura, Akira Yamauchi, and Mitsuomi Hirashima. Galectin-9 protects mice from the shwartzman reaction by attracting prostaglandin e2-producing polymorphonuclear leukocytes. Clinical immunology, 124(2):221–233, 2007. | es_ES |
dc.source.bibliographicCitation | Alexander H Stegh, Hyunggee Kim, Robert M Bachoo, Kristin L Forloney, Jean Zhang, Harald Schulze, Kevin Park, Gregory J Hannon, Junying Yuan, David N Louis, et al. Bcl2l12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes & development, 21(1):98–111, 2007. | es_ES |
dc.source.bibliographicCitation | Xiutian Guo, Mao-Gang Li, Shan-Shan Li, Feng-Hua Liu, Zhan-Ju Liu, and Ping-Chang Yang. Tumor necrosis factor suppresses interleukin 10 in peripheral b cells via upregulating bcl2-like protein 12 in patients with inflammatory bowel disease. Cell biochemistry and function, 35(2):77–82, 2017. | es_ES |
dc.source.bibliographicCitation | Zhi-Qiang Liu, Ying Feng, Li-Hua Mo, Xian-Hai Zeng, Jiang-Qi Liu, Rui-Di Xie, ZhiGang Liu, Ping-Chang Yang, Guang-Ji Zhang, and Shan-Dong Wu. Bcl2-like protein 12 plays a critical role in development of airway allergy through inducing aberrant th2 polarization. Journal of Allergy and Clinical Immunology, 143(1):427–430, 2019. | es_ES |
dc.source.bibliographicCitation | Hongyan Li, Dongbai Yang, and Zhifeng Tang. Bcl2 like protein-12 suppresses foxp3+ regulatory t cells in patients with rheumatoid arthritis. American Journal of Translational Research, 11(5):3048, 2019. | es_ES |
dc.source.bibliographicCitation | Ekaterina Dik, Adi Naamati, Hadar Asraf, Norbert Lehming, and Ophry Pines. Human fumarate hydratase is dual localized by an alternative transcription initiation mechanism. Traffic, 17(7):720–732, 2016. | es_ES |
dc.source.bibliographicCitation | Ohad Yogev, Adi Naamati, and Ophry Pines. Fumarase: a paradigm of dual targeting and dual localized functions. The FEBS journal, 278(22):4230–4242, 2011. | es_ES |
dc.source.bibliographicCitation | Julie Adam, Ming Yang, Christina Bauerschmidt, Mitsuhiro Kitagawa, Linda O’Flaherty, Pratheesh Maheswaran, Gizem ¨Ozkan, Natasha Sahgal, Dilair Baban, Keiko Kato, et al. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell reports, 3(5):1440–1448, 2013. | es_ES |
dc.source.bibliographicCitation | IP Tomlinson, NA Alam, AJ Rowan, E Barclay, EE Jaeger, D Kelsell, I Leigh, P Gorman, H Lamlum, S Rahman, et al. Multiple leiomyoma consortium: Germline mutations in fh predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet, 30(4):406–410, 2002. | es_ES |
dc.source.bibliographicCitation | Mariana A Ajalla Aleixo, Victor L Rangel, Joane K Rustiguel, Ricardo AP de Pa´dua, and Maria Cristina Nonato. Structural, biochemical and biophysical characterization of recombinant human fumarate hydratase. The FEBS journal, 286(10):1925–1940, 2019. | es_ES |
dc.source.bibliographicCitation | Margarita Velásquez, Juan Drosos, Carlos Gueto, Johana Márquez, and Ricardo VivasReyes. Método acoplado autodock-pm6 para seleccionar la mejor pose en estudios de acoplamiento molecular. Revista Colombiana de Química, 42(1), 2013. | es_ES |
dc.description.degreename | Ingeniero(a) Biomédico(a) | es_ES |
dc.description.degreelevel | Pregrado | es_ES |
dc.publisher.faculty | Facultad de Ingeniería Mecánica, Electrónica y Biomédica | es_ES |
dc.description.funder | Costo del proyecto $ 2’260.000. Financiación propia $ 1’010.000. Financiación UAN $ 1’250.000. | es_ES |
dc.description.notes | Presencial | es_ES |
dc.publisher.campus | Bogotá - Sur | - |
Aparece en las colecciones: | Ingeniería biomédica |
Ficheros en este ítem:
Fichero | Tamaño | |
---|---|---|
2020AutorizacióndeAutores.pdf Restricted Access | 649.93 kB | Visualizar/Abrir Request a copy |
2020AdrianaCamilaGonzalezRosas.pdf | 3.99 MB | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons