Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/3159
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorTriana Martínez, Jenniffer Carolina-
dc.creatorSanchez Vasquez, Maria Jose-
dc.creatorBastos Claros, Carlos Alberto-
dc.date.accessioned2021-03-10T20:24:19Z-
dc.date.available2021-03-10T20:24:19Z-
dc.date.created2020-12-02-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/3159-
dc.descriptionPropiaes_ES
dc.description.abstractThe purpose of this project is to implement a Support Vector Machine (SVM) classifier, based on the Kellgren-Lawrence (KL) grade classification method, and the use of X-ray images (XR), with the objective of supporting the trauma specialist's diagnosis in the detection of knee Osteoarthritis (OA) grade according to the above-mentioned classification, in Orthopedic and Traumatology of the Medilaser Clinic of Neiva treated between the months of June and August 2020. It is expected that this project will allow the categorization of the degree of Osteoarthritis (OA) of the knee supporting the diagnosis of the specialist, in such a way that the amount of tests in addition to those previously named is minimized to determine a diagnosis of this pathology.es_ES
dc.description.sponsorshipOtroes_ES
dc.description.tableofcontentsEl propósito de este proyecto es implementar un clasificador de Máquina de Vectores de Soporte (SVM), basándose en el método de clasificación de la Escala de Kellgren-Lawrence (KL), y la utilización de imágenes de rayos x (RX), con el objetivo de apoyar en el diagnóstico del especialista en traumatología en la detección del grado Osteoartritis (OA) de rodilla de acuerdo a la clasificación antes mencionada, en pacientes de Ortopedia y Traumatología de la Clínica Medilaser de Neiva tratados entre los meses de junio y agosto de 2020. Se espera que este proyecto permita categorizar el grado de Osteoartritis (OA) de rodilla apoyando el diagnóstico del especialista, de tal manera que se minimice la cantidad de pruebas además de las nombradas anteriormente para determinar un diagnóstico de esta patología.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución 3.0 Estados Unidos de América*
dc.rightsAtribución-SinDerivadas 3.0 Estados Unidos de América*
dc.rightsAtribución-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectOsteoartritises_ES
dc.subjectSVMes_ES
dc.subjectAprendizaje de máquinaes_ES
dc.subjectCaracterísticas Kellgren-Lawrencees_ES
dc.subjectRayos Xes_ES
dc.titleClasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X.es_ES
dc.publisher.programIngeniería Electrónicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordOsteoarthritises_ES
dc.subject.keywordSVMes_ES
dc.subject.keywordMachine Learninges_ES
dc.subject.keywordKellgren-Lawrence Featureses_ES
dc.subject.keywordX- Rayes_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAgarap FA. (2018). A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data. 10th International Conference on Machine Learning and Computing, pp. 26-30.es_ES
dc.source.bibliographicCitationAlam S, K. M.-Y. (2016). Performance of classification based on PCA, linear SVM, and Multi-kernel SVM. Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 987- 989.es_ES
dc.source.bibliographicCitationAmat Rodrigo J. (2017, 04). Máquinas de Vector Soporte (Support Vector Machines, SVMs). Retrieved from https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_support_vect or_machines#Informaci%C3%B3n_sesi%C3%B3nes_ES
dc.source.bibliographicCitationArregui Espinoza JM, Y. A. (2016). Utilidad de rayos x digital en el diagnóstico de artrosis de rodilla en pacientes de 50 a 60 años de edad en el Hospital Privado Northospital de la ciudad de Quito. Quito: UCE.es_ES
dc.source.bibliographicCitationBradley J. Erickson, P. K. (2017). Machine Learning for Medical Imaging. RadioGraphics, vol. 37, no. 2.es_ES
dc.source.bibliographicCitationBraun, H. a. (2012). Diagnosis of osteoarthritis: Imaging. Bone, pp. 278-288.es_ES
dc.source.bibliographicCitationC. Cortes and V. Vapnik. (1995). Support-Vector Networks, Machine Learning. Springer, pp. 273- 297.es_ES
dc.source.bibliographicCitationC. Wang, L. L. (2011). Face Recognition Based on Principle Component Analysis and Support Vector Machine. 3rd International Workshop on Intelligent Systems and Applications, pp.1-4.es_ES
dc.source.bibliographicCitationCaleta, E. (2011). Artritis de la rodilla. Retrieved from Dr. Esteban Caleta Especialista en ortopedia y traumatologia Reemplazos articulares, Cirugia artroscopica: http://www.drestebancaleta.com.ar/index.php?PGN=51es_ES
dc.source.bibliographicCitationCapapé, D. D. (2020). Cirugía Ortopédica y Traumatología Deportiva. Retrieved from Artrosis de rodilla (Gonartrosis): http://doctorlopezcapape.com/cirugia-ortopedica/artrosis-de-rodilla- gonartrosises_ES
dc.source.bibliographicCitationCardona H.D.V, O. Á. (2014). Automatic Recognition of Microcalcifications in Mammography Images through Fractal Texture Analysis. Springer, Cham, Lecture Notes in Computer Science, vol 8888.es_ES
dc.source.bibliographicCitationCarmona Suarez, E. (2016). Tutorial sobre Máquinas de Vectores Soporte (SVM). Universidad Nacional de Educacion a Distancia (UNED), Madrid- España, pp. 1-27.es_ES
dc.source.bibliographicCitationCartas Solis U, P. H. (2015). Demography broad in the knees osteoarthritis. Revista Cubana de Reumatología, vol.17 no.1.es_ES
dc.source.bibliographicCitationChen, P. (2018, 09 03). Knee Osteoarthritis Severity Grading Dataset. Retrieved from Mendeley: https://data.mendeley.com/datasets/56rmx5bjcr/1es_ES
dc.source.bibliographicCitationCheng-Jin Du, D.-W. S. (2008). Histogram Equalization. ScienceDirect.es_ES
dc.source.bibliographicCitationDhabhai, A. K. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6.es_ES
dc.source.bibliographicCitationDhabhai. A, K. G. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6.es_ES
dc.source.bibliographicCitationdrzezo. (2017, 04 20). Imaging for osteoarthritis. Retrieved from PHYSICAL MEDICINE & REHABILITATION : https://musculoskeletalkey.com/imaging-for-osteoarthritis/es_ES
dc.source.bibliographicCitationFarias Concha NM. (2011, 12). MÁQUINAS VECTORIALES HÍBRIDAS PARA CLASIFICAR ACCIDENTES DE TRANSITO EN LA REGION METROPOLITANA . Retrieved from Pontificia Universidad Catolica de Valparaiso : http://opac.pucv.cl/pucv_txt/Txt- 9500/UCF9980_01.pdfes_ES
dc.source.bibliographicCitationFelson, D. (1988). Epidemiology of hip and knee osteoarthritis. Oxford Journals, pp.1-28.es_ES
dc.source.bibliographicCitationFierro J. (01 de 05 de 2020). Director medico de la Clinica Medilaser de Neiva. (I. d. grado, Entrevistador)es_ES
dc.source.bibliographicCitationFlandry, F. M. (2011). Normal Anatomy and Biomechanics of the Knee. Sports Medicine and Arthroscopy Review, pp. 82-92.es_ES
dc.source.bibliographicCitationFULKERSON J P, G. H. (1980). Anatomy of the Knee Joint Lateral Retinaculum. Clinical Orthopaedics and Related Research, pp. 183-188.es_ES
dc.source.bibliographicCitationGarcia Balboa, J. F. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205.es_ES
dc.source.bibliographicCitationGarcia-Balboa, J. A.-F.-L.-A. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205es_ES
dc.source.bibliographicCitationGavrilov Z. (n.d.). SVM Tutorial. Retrieved from https://web.mit.edu/zoya/www/SVM.pdfes_ES
dc.source.bibliographicCitationGonzalez R, B. A. (2017). Application of Support Vector Machines (SVM) for clinical diagnosis of Parkinson's Disease and Essential Tremor. Revista Iberoamericana de Automática e Informática Industrial RIAI, pp. 394-405.es_ES
dc.source.bibliographicCitationGuermazi, A. D. (2015). Severe radiographic knee osteoarthritis – does Kellgren and Lawrence grade 4 represent end stage disease? – the MOST study. Osteoarthritis and Cartilage, pp. 1499-1505.es_ES
dc.source.bibliographicCitationGuo H, W. W. (2009). A novel learning model-Kernel Granular Support Vector Machine. International Conference on Machine Learning and Cybernetics, pp. 930-935.es_ES
dc.source.bibliographicCitationGuyon I, G. S. (2008). Freature Extraction Foundation and Aplications. Poland: Springer.es_ES
dc.source.bibliographicCitationHaidekker, M. A. (2011). Advanced Biomedical Image Analysis. New Jersey: John Wiley & Sons. Inces_ES
dc.source.bibliographicCitationHEALTH, S. C. (2020). Lesiones de ligamento de la rodilla. Retrieved from STANFORD CHILDREN'S HEALTH: https://www.stanfordchildrens.org/es/topic/default?id=ligamentinjuriestotheknee-85-P04023es_ES
dc.source.bibliographicCitationHertzmann A, F. D. (2015). Support Vector Machines. Retrieved from http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdfes_ES
dc.source.bibliographicCitationHu, J. Z. (2009). Curvilinear thresholding method for noisy images based on 2D histogram. IEEE International Conference on Robotics and Biomimetics, pp. 1014-1019.es_ES
dc.source.bibliographicCitationHUAN-JUN, L. y.-N.-F. (2005). A METHOD TO CHOOSE KERNEL FUNCTION AND ITS PARAMETERS FOR SUPPORT VECTOR MACHINES. Fourth International Conference on Machine Learning and CyberneticS, pp. 4277-4280.es_ES
dc.source.bibliographicCitationIArtificial.net. (n.d.). Retrieved from https://www.iartificial.net/maquinas-de-vectores-de-soporte- svm/#:~:text=El%20truco%20del%20kernel%20consiste,con%20una%20superficie%20de% 20decisi%C3%B3nes_ES
dc.source.bibliographicCitationJakkula V. (2006). Tutorial on Support Vector Machine (SVM). Washington State: School of EECS, Washington State University.es_ES
dc.source.bibliographicCitationKhalid, R. R. (2015). Enhanced dynamic quadrant histogram equalization plateau limit for image contrast enhancement. Fifth InternationalConference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 86-91.es_ES
dc.source.bibliographicCitationKim, K. G. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354.es_ES
dc.source.bibliographicCitationKoonsanit, K. T. (2017). Image enhancement on digital x-ray images using N-CLAHE. Biomedical Engineering International Conference (BMEiCON), pp. 1-4.es_ES
dc.source.bibliographicCitationKwang Gi, K. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354.es_ES
dc.source.bibliographicCitationLopez Diaz, A. (2018). Fundamentos Matematicos de los Metodos Kernel para Aprendizaje Supervisado. Universidad de Sevilla. DEPARTAMENTO: CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL, pp. 1-73.es_ES
dc.source.bibliographicCitationLópez Pineda G. (2017, 05). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Retrieved from BUAP: https://repositorioinstitucional.buap.mx/handle/20.500.12371/488es_ES
dc.source.bibliographicCitationLópez-Portilla Vigil, B. M. (2016). Implementación del Algoritmo de Otsu sobre FPGA. Revista Cubana de Ciencias Informáticas. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992016000300002&lng=es&tlng=es.es_ES
dc.source.bibliographicCitationLovejoy, C. (2007). The natural history of human gait and posture: Part 3. The knee. Gait & Posture, pp. 325-341.es_ES
dc.source.bibliographicCitationLuijkx, T. &. (2016). Kellgren and Lawrence system for classification of osteoarthritis of knee. Retrieved from http://radiopaedia. org/articles/kellgren-and-lawrencesystem-for- classification-of-osteoarthritis-of-kneees_ES
dc.source.bibliographicCitationMark D. Kohn, A. A. (2016). Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clinical Orthopaedics and Related Research, pp. 1886-1893.es_ES
dc.source.bibliographicCitationMartinez Figueroa R, M. F. (2017). Knee Osteoarthritis (osteoarthrosis). Revista Chilena de Ortopedia y Traumatología, pp. 45-51.es_ES
dc.source.bibliographicCitationMartinez, D. A. (2020, 05 28). Caracteristicas mas relevantes de la rodilla. (M. J. Bastos, Interviewer)es_ES
dc.source.bibliographicCitationMartínez, V. G. (2013). TÉCNICAS DE UMBRALIZACIÓN PARA LA DETECCIÓN DE ANOMALÍAS EN LA PARED AÓRTICA MEDIANTE OCT. UNIVERSIDAD DE CANTABRIA.es_ES
dc.source.bibliographicCitationMatlab. (2020). MathWorks. Retrieved from regionprops: https://www.mathworks.com/help/images/ref/regionprops.htmles_ES
dc.source.bibliographicCitationMatlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.htmles_ES
dc.source.bibliographicCitationMatlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.htmles_ES
dc.source.bibliographicCitationMLMath.io. (2013, 02 13). Math behind SVM(Support Vector Machine). Retrieved from https://medium.com/@ankitnitjsr13/math-behind-svm-support-vector-machine-864e58977fdbes_ES
dc.source.bibliographicCitationMLMath.io. (2019, 02 09). Deep Learning. Retrieved from Math behind SVM (Support Vector Machine): https://medium.com/@ankitnitjsr13/math-behind-support-vector-machine-svm- 5e7376d0ee4d#:~:text=SVM%20is%20one%20of%20the,versatile%20supervised%20machi ne%20learning%20algorithm.&text=The%20main%20objective%20of%20SVM,blue%20and %20pink%20classes%20ballses_ES
dc.source.bibliographicCitationMori, M. (2010). Preprocessing techiniques in character recognition. Rijeka, Croatia: Character Recognition.es_ES
dc.source.bibliographicCitationMoya-Angeler J, V. J. (2016). Valuation of the degenerative process joint of the knee by magnetic resonance imaging. Revista Latinoamericana de Cirugía Ortopédica, pp. 88-94.es_ES
dc.source.bibliographicCitationNavale DI, H. R. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 338-341es_ES
dc.source.bibliographicCitationNoble, W. (2006). What is a support vector machine? Nat Biotechnol , pp. 1565-1567.es_ES
dc.source.bibliographicCitationOTSU N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. 2EEE TRANSACTIONS ON SYSTREMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 1, pp.62- 66es_ES
dc.source.bibliographicCitationPandey, M. B. (2018). An anatomization of noise removal techniques on medical image. International Conference on Innovation and Challenges in Cyber Security (ICICCS- INBUSH), pp. 224–229.es_ES
dc.source.bibliographicCitationPaoletti ME, H. M. (2020). Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales. Revista Iberoamericana de Automática e Informática industrial, pp. 129- 137.es_ES
dc.source.bibliographicCitationPatin aka, F. (2003). An Introduction To Digital Image Processing. pp.1-49.es_ES
dc.source.bibliographicCitationPineda, G. L. (2017). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Benemérita Universidad Autónoma de Puebla. Retrieved from https://hdl.handle.net/20.500.12371/488es_ES
dc.source.bibliographicCitationPizzi, N. P. (2006). Confusion Matrix. ScienceDirect.es_ES
dc.source.bibliographicCitationQ. Wang, H. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740.es_ES
dc.source.bibliographicCitationRajith B., S. M. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi.es_ES
dc.source.bibliographicCitationRajith, B. S. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi.es_ES
dc.source.bibliographicCitationRamamurthy, P. (1995). FACTORS CONTROLLING THE QUALITY OF RADIOGRAPY AND THE QUALITY ASSURANCE. X-ray, pp. 37-41.es_ES
dc.source.bibliographicCitationRamon Alcala J, N. G. (2008). La imagen digital y su tratamiento. Cuenca: MIDECIANTes_ES
dc.source.bibliographicCitationRoman V. (2019, 03 29). Aprendizaje Supervisado: Introducción a la Clasificación y Principales Algoritmos. Retrieved from Medium: https://medium.com/datos-y-ciencia/aprendizaje- supervisado-introducci%C3%B3n-a-la-clasificaci%C3%B3n-y-principales-algoritmos- dadee99c9407es_ES
dc.source.bibliographicCitationRuss, J. (1990). Image Processing. In: Computer-Assisted Microscopy. Boston, MA: Springer.es_ES
dc.source.bibliographicCitationS. Han, C. Q. (2014). Parameter selection in SVM with RBF kernel function. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1-4.es_ES
dc.source.bibliographicCitationSahu SK, P. A. (2015). GP-SVM: Tree Structured Multiclass SVM with Greedy Partitioning. International Conference on Information Technology (ICIT), pp. 142-147.es_ES
dc.source.bibliographicCitationShamir L, L. S. (2009). Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis and Cartilage, pp. 1307-1312. vol 17.es_ES
dc.source.bibliographicCitationShamir, L. (2009). Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis. IEEE Transactions on Biomedical Engineering, pp. 407-415.es_ES
dc.source.bibliographicCitationSharma S, S. V. (2016). Detection of Osteoarthritis using SVM. International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2997-3002.es_ES
dc.source.bibliographicCitationSolis Cartas U, C. B. (2018). Comorbidities and quality of life in Osteoarthritis. Revista Cubana de Reumatología, vol.20 no.2.es_ES
dc.source.bibliographicCitationSolis Cartas, U. d. (2014). Osteoartritis. Características sociodemográficas. Revista Cubana de Reumatología, pp. 97-103 no.2.es_ES
dc.source.bibliographicCitationSonka M, H. V. (2013). Image Processing, Analysis, and Machine Vision. EEUU: Cengage Learninges_ES
dc.source.bibliographicCitationSuykens J. A. K, S. (2001). Nonlinear modelling and support vector machines. 18th IEEE Instrumentation and Measurement Technology Conference, pp. 287-294.es_ES
dc.source.bibliographicCitationSzeliski, R. (2011). Computer Vision. Washington, USA: Springer.es_ES
dc.source.bibliographicCitationThimmiaraja, J. S. (2014). Histogram Equalization for Image Enhancement Using MRI Brain Images. World Congress on Computing and Communication Technologies, pp. 80-83.es_ES
dc.source.bibliographicCitationTromberg BJ. (n.d.). Tomografía Computarizada (TC). Retrieved from National Institute of Biomedical Imaging and Bioengieering: https://www.nibib.nih.gov/espanol/temas- cientificos/tomograf%C3%ADa-computarizada-tces_ES
dc.source.bibliographicCitationTurner A Blackburn, M. E. (1980). Knee Anatomy: A Brief Review. Physical Therapy, pp. 1556- 1560. vol 60, Issue 12.es_ES
dc.source.bibliographicCitationViatela Ardila, G. (2001). Curso Tecnologia de la Informacion y Comunicaciones por Video Interractivo. Bogota D.C: IICA.es_ES
dc.source.bibliographicCitationWang R. (2016, 08 19). Soft Margin SVM. Retrieved from Support Vector Machine: http://fourier.eng.hmc.edu/e161/lectures/svm/node5.htmles_ES
dc.source.bibliographicCitationWang, Q. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740.es_ES
dc.source.bibliographicCitationXu K, W. C. (2014). A MapReduce based Parallel SVM for Email. JOURNAL OF NETWORKS, VOL. 9, NO. 6, pp. 1640-1646.es_ES
dc.source.bibliographicCitationYang Y, W. J. (2012). Improving SVM classifier with prior knowledge in microcalcification detection1. IEEE International Conference on Image Processing, pp. 2837-2840.es_ES
dc.source.bibliographicCitationYin-Wen C, C.-J. L. (2008). Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI. PMLR, pp. 53-64.es_ES
dc.source.bibliographicCitationYu, D. L. (2009). Otsu Method and K-means. Ninth International Conference on Hybrid Intelligent Systems, Shenyang, pp. 344-349.es_ES
dc.source.bibliographicCitationZahurul S, Z. S. (2010). An Adept Edge Detection Algorithm for Human Knee Osteoarthritis Images. International Conference on Signal Acquisition and Processing, pp.375-379.es_ES
dc.source.bibliographicCitationZhang Y, J. J. (2010). Epidemiology of Osteoarthritis. Clinics in Geriatric Medicine, pp. 355-369.es_ES
dc.source.bibliographicCitationZhou, S. K. (2016). Medical Image Recognition Segmentation and Parsing. London UK, San Diego CA: ELSEVIER. INC.es_ES
dc.description.degreenameIngeniero(a) Electrónico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaes_ES
dc.description.funderFinanciación estudiantes 2'270.000 COP, Financiación UAN 1'009.520 COPes_ES
dc.description.notesPresenciales_ES
dc.creator.cedula1075312324es_ES
dc.creator.cedula1075311566es_ES
dc.creator.cedula38212233es_ES
dc.publisher.campusNeiva Buganviles-
Aparece en las colecciones: Ingeniería electrónica

Ficheros en este ítem:
Fichero Tamaño  
2020MariaJoseSanchezVasquez.pdf2.27 MBVisualizar/Abrir
2020AutorizaciondeAutores2.pdf
  Restricted Access
358.96 kBVisualizar/Abrir  Request a copy
2020AutorizaciondeAutores.pdf
  Restricted Access
332.55 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons