Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/3205
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorGonzález, Rodrigo Esteban-
dc.contributor.advisorGutierrez, Rafael M.-
dc.creatorCalderón, José Amilkar-
dc.date.accessioned2021-03-11T15:33:03Z-
dc.date.available2021-03-11T15:33:03Z-
dc.date.created2021-02-15-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/3205-
dc.descriptionPropiaes_ES
dc.description.abstractThis thesis shows the development of a neurocognitive model based on neuropsychological processes to improve the game intelligence of grassroots and initiation athletes, amateurs and professionals. The state of the art of the term game intelligence and the cognitive processes involved in it, the basis of the model through neural networks and the programs in addition to the existing technology in the training of cognitive processes, was reviewed and developed, establishing a new definition of game intelligence. game applied to sport. The objective of this study was to implement a model for the diagnosis, development and increase of cognitive abilities that provides a structured method in terms of activities and processes that allow improving the relevant cognitive abilities in the areas of sport. The model was tested in an investigation that was carried out with 40 soccer players (men) between the ages of 14 and 17 in the pre-youth and youth category of the Club Atlético Galicia of the city of Ibagué. The population was divided into two groups of 20 players: control group and experimental group, to which the Neuropsychological test battery was applied and to the second group additionally, the neurocognitive model was implemented. The results were analyzed by means and principal component analysis, using the SPSS version 22 statistical package. Results: A high percentage of the cognitive processes evaluated showed a significant increase, and decision-making to a lesser extent. Conclusions: In this research it has been proven that the designed neurocognitive model greatly improves the cognitive processes in athletes, leading them to increase their performance and therefore to become more intelligent players on the playing field. The value proposition of the innovation, the applicability that it may have in world sport, is consigned in the different products carried out in the Doctorate, duly presented in this document that support contributions to knowledge, in particular the patent developed as protection of the innovative product, articles and congresses such as science and technology development, inter-institutional cooperation as interdisciplinary work for the application of scientific and technological knowledge.es_ES
dc.description.sponsorshipOtroes_ES
dc.description.tableofcontentsLa presente tesis muestra el desarrollo de un modelo neurocognitivo basado en los procesos neuropsicológicos para mejorar la inteligencia de juego de deportistas de base e iniciación, amateur y profesionales. Se revisó y desarrolló el estado del arte del término inteligencia de juego y los procesos cognitivos implicados en ella, la base del modelo mediante redes neuronales y los programas existentes, además de la tecnología existente en el entrenamiento de procesos cognitivos, estableciendo una nueva definición de inteligencia de juego aplicada al deporte. El objetivo de este estudio fue implementar un modelo para el diagnóstico, desarrollo e incremento de habilidades cognitivas que proporciona un método estructurado en cuanto a actividades y procesos que permiten mejorar las habilidades cognitivas relevantes en las áreas del deporte. El modelo se probó en una investigación que se realizó con 40 jugadores de fútbol (hombres) entre las edades de 14 a 17 años de categoría pre juvenil y juvenil del Club Atlético Galicia de la ciudad de Ibagué. La población se dividió en dos grupos de 20 jugadores: grupo control y grupo experimental, a los cuales les fue aplicada la batería de pruebas Neuropsicológicas y al segundo grupo adicionalmente, se le implementó el modelo neurocognitivo. Los resultados se analizaron mediante análisis de medias y de componentes principales, mediante el paquete estadístico SPSS versión 22. Resultados: Un alto porcentaje de los procesos cognitivos evaluados mostraron un incremento significativo y en menor escala la toma de decisiones. Conclusiones: En esta investigación se ha comprobado que el modelo neurocognitivo diseñado, mejora en gran medida los procesos cognitivos en deportistas, llevándolos a incrementar su desempeño y por ende a convertirse en jugadores más inteligentes en el campo de juego. La propuesta de valor de la innovación y la aplicabilidad que puede tener en el deporte mundial, se encuentra consignada en los diferentes productos realizaos en el Doctorado, debidamente presentados en este documento que soportan las contribuciones al conocimiento, en particular la patente desarrollada como protección del producto innovador, los artículos y congresos como desarrollo de ciencia y tecnología, las cooperaciones interinstitucionales como trabajo interdisciplinar de aplicación de conocimiento científico y tecnológico.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectInteligencia de Juego, Neuropsicologia, Deportes, Entrenamiento cognitivoes_ES
dc.titleModelo de Inteligencia de Juegoes_ES
dc.publisher.programDoctorado en Ciencia Aplicadaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordGame Intelligence, Neuropsychology, Sports, Cognitive traininges_ES
dc.type.spaTesis y disertaciones (Maestría y/o Doctorado)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAkerlund, E., Esbjörnsson, E., Sunnerhagen, K. S., and Björkdahl, A. (2013). Can computerized working memory training improve impaired working memory, cognition and psychological health? Brain Inj. 27, 1649–1657. Alloza, Clara. Cox, simon; duff, simon; semple, scott, bastin mark;, whalley, heather; lawrie, stephen. 2016. Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia. Psychiatry research: neuroimaging. Volume 254, páginas 26-3. Antonelli, F., & Salvini, A. (1982). Psicología del deporte. Valladolid: Miñón. Anzellotti , Stefano & Coutanche, Marc N. 2018, beyond functional connectivity: investigating networks of multivariate representations. Baddeley, A. (2010). Working memory. Curr Biol, 20(4), R136-140. Baddeley, A. D. (2006) Working memory: An overview. En S. Pickering Working Memory on Education. Nueva York, Academic Press, 1-31. Barbas H. Flow of information for emotions through temporal and orbitofrontal pathways. J Anat. 2007; 211:237—49. Barbas H. Flow of information for emotions through temporal and orbitofrontal pathways. J Anat. 2007; 211:237—49. Bassett DS, Nelson BG, Mueller BA, Camchong J, Lim KO. Altered resting state complexity in schizophrenia. Neuroimage. 2012; 59:2196–2207. Bassett, D.S., Bullmore, E.T., 2009. Human brain networks in health and disease. Curr. Opin. Neurol. 22, 340–347. Bisley, J. W. (2011). The neural basis of visual attention. J Physiol, 589(Pt 1), 49-57. Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in human neuroscience, 6, 63. Broche, y. Herrera, L. Martínez, O. 2016. Neural substrates of decision-making. Neurología. Volume 31, Issue 5, pages 319-325. Brown, C. H., Gould, D., & Foster, S. (2005). A framework for developing Contextual Intelligence (CI). Sport Psychologist, 19(1), 51-62. Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev., Neurosci. 10, 186–198. Butts, C.T., 2009. Revisiting the foundations of network analysis. Science 325, 414–416. Cecchi, G. a., Lake, M., Avi, M., Stolovizky, G.A., Wagner, J. M. (2009). Network Characterization to classification. Patent United States. Chiaravallotti, N., Genova, H., Deluca, J., Glenn, W. (2013). The Relationship between Executive Functioning, Processing Speed and White Matter Integrity in Multiple Sclerosis” Journal of Clinical and Experimental Neuropsychology 35(6) · June 2013 with 123 Reads Cianciolo, A. T., Matthew, C., Sternberg, R. J., & Wagner, R. K. (2006). Tacit knowledge, practical intelligence and expertise. En K. A. Erics- son, N. Charness, P.J. Feltovich, & R. R. Hoffman (Eds.), The Cambrid- ge handbook of expertise and expert performance (pp. 613-632). Cam- bridge: Cambridge University Press. Coca Fernández, S. (1985). Hombres para el fútbol: una aproximación humana al estudio psicológico del fútbolista en competición. Madrid: Gymnos. Collins A, Koechlin E. Reasoning, learning, and creativity: frontal lobe function and human decision- making. PLoS Biol. 2012; 10: e1001293. Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Prog Brain Res, 169, 323-338. Dunning, D. L., and Holmes, J. (2014). Does working memory training promote the use of strategies on untrained working memory tasks? Mem. Cogn. 42, 854–862. Dunning, D. L., Holmes, J., and Gathercole, S. E. (2013). Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial. Dev. Sci. 16, 915–925. E. J. T. Matser, A. G. Kessels, M. D. Lezak, B. D. Jordan, and J. Troost, “Neuropsychological impairment in amateur soccer players,” Journal ofthe American Medical Association, vol. 282, no. 10, pp. 971–973, 1999. Elferink-Gemser M, Visscher C, Lemmink K, et al. T. Relation between multidimensional performance characteristics and level of performance in talented youth field hockey players. J Sports Sci 2004;22(11—12):1053—63. Elferink-Gemser, M. T., Visscher, C., Richart, H., & Lemmink, K. A. (2004). Development of the Tactical Skills Inventory for Sports. Percept Mot Skills, 99(3 Pt 1), 883-895. Elferink-Gemser, M. T., Visscher, C., Richart, H., & Lemmink, K. A. (2004). Development of the Tactical Skills Inventory for Sports. Percept Mot Skills, 99(3 Pt 1), 883-895. Erin, J. M., & Healey, D. M. (2011). The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: can we alter the developmental trajectory of ADHD? Neurosci Biobehav Rev, 35(3), 621-634. Fox, M.D. et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673–9678. Fox, M.D. et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673–9678. Friston, K.J. et al. (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229. Friston, K.J. et al. (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229. García, S., Rodríguez, A., & Garzón, A. (2011). Conceptualización de inteligencia táctica en el fútbol: Consideraciones para el desarrollo de un instrumento de evaluación en campo desde las funciones ejecutivas. Cuad. Psicol. Deporte., 11(1), 69-78. Gardner, H. (1983). Frames of mind: the theory of multiple intelligences. New York: Basic Books. Gardner, H. (2001). La inteligencia reformulada. Las inteligencias múltiples en el siglo XXI. Barcelona: Paidós. Golden, C. J. 82010). Manual de Stroop: Test de colores y palabras (Departamento I+D de TEA Ediciones, trad). Madrid, España: TEA Ediciones S.A. Goleman, D., & Cherniss, C. (2001). Inteligencia emocional en el trabajo. Barcelona: Kairós. Greve, K. W. (2001). The WCST-64: A standardized short-form of the Wisconsin Card Sorting Test. The clinical Neuropsychologist, 15(2), 228-234. Harris, D. J., Wilson, M. R., and Vine, S. J. (2018). A systematic review of commercial cognitive training devices: implications for use in sport. Front. Psychol. 9:709. Huijgen, B. C., Leemhuis, S., Kok, N. M., Verburgh, L., Oosterlaan, J., Elferink-Gemser, M. T., et al. (2015). Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years. PLoS One, 10(12), e0144580. Karen, E., Salem, W., Hayasaka, S., (2014). Agent-Based Brain Modeland related methods. Patent United States. Krawczyk DC. 2002. Contributions of the prefrontal cortex to the neural basis of human decision-making. Neurosci Biobehav Rev. 2002; 26:631—64. Krawczyk DC. 2002. Contributions of the prefrontal cortex to the neural basis of human decision-making. Neurosci Biobehav Rev. 2002; 26:631—64. Krawczyk DC. 2002. Contributions of the prefrontal cortex to the neural basis of human decision-making. Neurosci Biobehav Rev. 2002; 26:631—64. Lehto JE, Juujärvi P, Kooistra L, Pulkkinen L. (2003). Dimensiones de funcionamiento ejecutivo: Pruebas de los niños Br. J. Dev. . Psychol. Lennartsson, J., Lidstrom, N., & Lindberg, C. (2015). Game intelligence in team sports. PLoS One, 10 (5), e0125453. Lezak, M. (1983). Neuropsychological assessment (2nd ed.). New York: Oxford University Press. Lunt L, Bramham J, Morris RG, Bullock PR, Selway RP, et al. Prefrontal cortex dysfunction and “jumping to conclusions”: bias or deficit? J. Neuropsychol. 2012; 6:65–78. Madden DJ, Bennett IJ, Song AW. Cerebral white matter integrity and cognitive aging: Contributions from diffusion tensor imaging. Neuropsychology Review. 2009; 19:415–435. Mcnorgan, C. Gregory j. Smith. Edwards, Erica S. (2020). Integrating functional connectivity and mvpa through a multiple constraint network analysis. Neuroimage. Vol: 208, 116412. Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol, 28(5), 597-613. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. J Exp Psychol Gen, 130(4), 621-640. Nieuwenhuys , R. (2013). The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 218:303–352 Oken, B. S., Salinsky, M. C., & Elsas, S. M. (2006). Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin Neurophysiol, 117(9), 1885-1901. Pariente, R.Palomo, M. (2012). Original Contextual Intelligence and Expertise in Soccer. Rev.int.med.cienc.act.fís.deporte- vol. X. Pecchinenda et al., 2006. A. Pecchinenda, M. Dretsch, P. ChapmanWorking memory involvement in emotion-based processes underlying choosing advantageously. Experimental Psychology, 53 (2006), pp. 191-197. Poggel and Strasburger, 2004. D.A. Poggel, H. StrasburgerVisual perception in space and time—mapping the visual field of temporal resolution Acta Neurobiologiae Experimentalis, 64 (2004), pp. 427-437. Posner, M. I., Sheese, B. E., Odludas, Y., & Tang, Y. (2006). Analyzing and shaping human attentional networks. Neural Netw, 19(9), 1422-1429. Redick, Thomas S. (2015). Working memory training and interpreting interactions in intelligence interventions. Journal: Inteligence, Vol. 50. P. 14-20. Rey, A. (2009). Test de copia y reproducción de una figura compleja. Madrid: TEA Ediciones. Roberts RE, Anderson EJ, Husain M. White matter microstructure and cognitive function. Neuroscientist. 2013; 19:8–15. Rosenbloom MH, Schmahmann JD, Price BH, 2012. The Functional Neuroanatomy of Decision-Making. J Neuropsychiatry Clin Neurosci. 24:266—77. Rosenbloom MH, Schmahmann JD, Price BH, 2012. The Functional Neuroanatomy of Decision-Making. J Neuropsychiatry Clin Neurosci. 24:266—77. Ruiz, L. M., Palomo, M., Garcia, V., Navia, J. A., & Miñano, J. (2014). Contextual intelligence and expertise in soccer. Rev.int.med.cienc.act.fís.deporte, 54(14), 307-317. Ruiz-Perez, L. M., Navia, J. A., Miñano-Espin, J., Garcia-Coll, V., & Palomo-Nieto, M. (2015). [Game intelligence and perceived competence to decide on soccer players]. Rev Int Cienc Deporte, 11(42), 329-338. Shenk,D. (2011).El genio que todos llevamos dentro. Por qué todo lo que nos han contado sobre genética, talento y CI no es cierto. Barcelona: Ariel. Siebenhuhner F, Weiss SA, Coppola R, Weinberger DR, Bassett DS. Intra- and inter-frequency brain network structure in health and schizophrenia. 2013;8: e72351. Sternberg, R. J. (2000a). Handbook of intelligence. Cambridge; New York: Cambridge University Press. Sternberg, R. J. (2000b). Practical intelligence in everyday life. Cambridge, U.K.; New York: Cambridge University Press. Strauss, E, Sherman, E. M., & Spreen, O. (2006). A Compendium of neuropsychological Test.: Administration, norms and commentary. New York. Osford University Prees. Stuss, D. T., & Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychol Bull, 95(1), 3-28. Stuss, D. T., & Benson, D. F. (1986). The frontal lobes. New York: Raven Press. Terenzini, P. T. (1993). On the nature of institutional research and the knowledge and skills it requires. Res High Educ, 34(1), 1-10. Tirapu-Ustarroz, J., Munoz-Cespedes, J. M., & Pelegrin-Valero, C. (2002). [Executive functions: the need for the integration of concepts]. Rev Neurol, 34(7), 673-685. Trends in cognitive sciencies. Volume 22, Issue 3, páginas 258-269 Tversky A, Kahneman D. The Framing of decisions and the psychology of choice. Science. 1981; 211:453—8. Tversky A, Kahneman D. The Framing of decisions and the psychology of choice. Science. 1981; 211:453—8. Tversky, A., Kahneman, D., 1981. The framing of decisions and the psychology of choice. Science 211, 453–458. Van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE. Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. Journal of Neuroscience. 2010; 30:15915–15926. Van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends in Cognitive Sciences. 2013; 17:683–696. Van den Heuvel, M.P. and Hulshoff Pol, H.E. (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534. van den Heuvel, M.P. and Hulshoff Pol, H.E. (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 Wein, H. (2005). Requisitos necesarios para la formación de jugadores creativos. Revista Training Fútbol, diciembre (118). Weng-Tink Chooi a,b, ⁎, Lee A. Thompson a. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence 40 - 531–542. Yogev, S., Schejter, E.D., Shilo, B.Z. (2008). Drosophila EGFR signalling is modulated by differential compartmentalization of Rhomboid intramembrane proteases. EMBO J. 27(8): 1219--1230. Yu Q, Sui J, Liu J, Plis SM, Kiehl KA, Pearlson G, et al. Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia. Schizophrenia Research. 2013; 143:165–171. Zalesky A, Fornito A, Bullmore E. ( 2012). On the use of correlation as a measure of network connectivity. Neuroimage; 60:2096–2106.es_ES
dc.description.degreenameDoctor(a) en Ciencia Aplicadaes_ES
dc.description.degreelevelDoctoradoes_ES
dc.publisher.facultyDoctorado en Ciencia Aplicadaes_ES
dc.description.funderRecursos propioses_ES
dc.description.notesPresenciales_ES
dc.creator.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001152858es_ES
dc.creator.cedula93385884es_ES
Aparece en las colecciones: Doctorado en Ciencia aplicada

Ficheros en este ítem:
Fichero Tamaño  
2021JoséAmilkarCalderónChagualá .pdf48.89 MBVisualizar/Abrir
2021AutorizaciondeAutores.pdf
  Restricted Access
871.3 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons