Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/7248
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorJutinico, Andres Leonardo-
dc.coverage.spatialColombia(Bogotá,Dc)es_ES
dc.creatorSilva Soche, Lenny Tatiana-
dc.date.accessioned2022-11-15T16:00:33Z-
dc.date.available2022-11-15T16:00:33Z-
dc.date.created2022-06-03-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/7248-
dc.description.abstractPulmonary tuberculosis (TB) is an infectious disease that usually affects the lungs, this disease is curable and preventable, however, delayed diagnosis and treatment can cause death. In 2019 an estimated 10 million people worldwide fell ill with tuberculosis and a total of 1.4 million people died according to the World Health Organization (WHO) in 2020 [1]. In Colombia, in 2020 11390 people became ill, of which 10632 were new cases, and on average during the last 5 years, there have been 1077 deaths per year due to tuberculosis, according to the National Public Health Surveillance System (SIVIGILA) in 2021 [2]. At the national level the high demand for patients hinders the priority and quality of care by the Health Service Provider Institutions (IPS). These problems originate due to the poor management of resources and procedures, generating as a consequence the progression of the disease or lethality due to TB, particularly in isolated regions. This project contributes to the decision-making of health specialists under precarious conditions from an automated system, which consists of a software interface that allows establishing the high or low risk group to which suspected tuberculosis patients belong by entering a series of social, demographic and health status characteristics of the patient. Three previously trained and validated automatic learning algorithms Fuzzy C-means, K-means and Perceptron Multilayer were worked on, of the three algorithms the Perceptron Multilayer network was chosen to perform the risk prediction because it has the highest sensitivity with a value of 95 %.es_ES
dc.description.tableofcontentsLa tuberculosis pulmonar (TB) es una enfermedad infecciosa que suele afectar a los pulmones, esta enfermedad es curable y prevenible, sin embargo, el retraso diagn´ostico y de tratamiento puede causar la muerte. Se estima que en 2019 enfermaron de tuberculosis 10 millones de personas en todo el mundo y un total de 1.4 millones de personas murieron seg´un la Organizaci´on Mundial de la Salud (OMS) en 2020 [1]. En Colombia, en el 2020 se enfermaron 11390 personas, de las cuales 10632 fueron casos nuevos y en promedio durante los ´ultimos 5 a˜nos, se han presentado 1077 fallecidos por a˜no a causa de tuberculosis, seg´un el Sistema Nacional de Vigilancia en Salud P´ublica (SIVIGILA) en 2021 [2]. A nivel nacional la alta demanda de pacientes, dificulta la prioridad y calidad de atenci´on por las Instituciones Prestadoras de Servicio de Salud (IPS). Estos problemas se originan debido a la mala gesti´on de recursos y procedimientos generando como consecuencia el avance de la enfermedad o letalidad por TB, en particular en regiones aisladas. El presente proyecto contribuye en la toma de decisiones de los especialistas de la salud bajo condiciones precarias a partir de un sistema automatizado, el cual consiste en una interfaz software que permite establecer el grupo de riesgo alto o bajo al que pertenecen los pacientes sospechosos de tuberculosis al ingresar una serie de caracter´ısticas sociales, demogr´aficas y del estado de salud del paciente. Se trabajaron tres algoritmos de aprendizaje autom´atico previamente entrenados y validados Fuzzy C-means, K-means y Perceptron Multicapa, de los tres algoritmos se eligi´o la red Perceptron Multicapa para realizar la predicci´on del riesgo por tener la sensibilidad m´as alta con un valor del 95 %.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectInterfaz software,es_ES
dc.subjectTuberculosis pulmonar,es_ES
dc.subjectalgoritmos de aprendizaje automaticoes_ES
dc.subjectMatlabes_ES
dc.titleImplementación de una interfaz software para establecer grupos de riesgo de pacientes sospechosos de Tuberculosis Pulmonares_ES
dc.typeTesis - Trabajo de grado - Monografia - Pregradoes_ES
dc.publisher.programIngeniería Biomédicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordSoftware interface,es_ES
dc.subject.keywordPulmonary tuberculosis,es_ES
dc.subject.keywordmachine learning algorithms,es_ES
dc.subject.keywordMatlabes_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitation[1] Organizaci´on Mundial de la Salud. Tuberculosis. Salud, Instituto Nacional de Salud, 10 2020.es_ES
dc.source.bibliographicCitation[2] Sistema Nacional de Vigilancia en Salud P´ublica. bolet´ın epidemiol´ogico semanal. Salud, Instituto Nacional de Salud, 07 2020.es_ES
dc.source.bibliographicCitation[3] B. Tortora, G.and Derrickson. Anatom´ıa y fisiolog´ıa.es_ES
dc.source.bibliographicCitation[4] World Health Organization’s 2021 Global TB report. Las muertes por tuberculosis aumentan por primera vez en m´as de una d´ecada por la covid. Agencia de noticias cient´ıficas de la Fundaci´on Espa˜nola para la Ciencia y la Tecnolog´ıa SINC, 14(30), 10 2021.es_ES
dc.source.bibliographicCitation[5] R. Natalia Programa Nacional de Control y Eliminaci´on de la Tuberculosis M. Tania, M. Fabiola. Manual operativo implementaci´on del genexpert mtb/rif en el programa de tuberculosis. 2017.es_ES
dc.source.bibliographicCitation[6] Vu D. Phan and Janet M. Poponick. Tuberculosis. McGraw-Hill Education, New York, NY, 2018.es_ES
dc.source.bibliographicCitation[7] Linux. Gnu/linux. la terminal o l´ınea de comandos. Blog para los amantes de Linux y el software libre, 07 2019.es_ES
dc.source.bibliographicCitation[8] Ian. Sommerville. Ingenieria del software. PEARSON EDUCACION S.A., 2005. ´es_ES
dc.source.bibliographicCitation[9] S. Kumar. Agrupamiento difuso de c-means: ¿es mejor que el agrupamiento de k-means? Towards Data Science, 04 2021.es_ES
dc.source.bibliographicCitation[10] S. Kumar. Comprensi´on de los algoritmos de agrupaci´on en cl´usteres k-means, kmeans++ y k-medoids. Towards Data Science, 06 2020. [11] Z.Carlos. Evaluaci´on de modelos de clasificaci´on. RPubs, 05 2017. [12] J.D. Munera, L A. Montoya, J.A. Mosquera, et al. Casos de tuberculosis pulmonar y extrapulmonar notificados al programa de tuberculosis en el departamento del Choc´o, Colombia, periodo 2012-2015. Enf Infec Microbiol, 39(3):93–102, 09 2019. 122 Bibliograf´ıa [13] M.J. Gonzalez, B. Gonzales, J.A. Sotolongo, et al. Programa de intervencion comunitaria dirigido a pacientes con riesgo de tuberculosis pulmonar. Revista Cubana de Salud Publica, 45(3), 09 2019. [14] J.E. Polanco-Pasaje, L. Rodriguez Marquez, K.Y. Tello-Hoyos, et al. Cascada de atenci´on de la tuberculosis para la poblaci´on ind´ıgena en colombia: una investigaci´on operativa. Pan American Journal of Public Health, 44, 12 2020. [15] M.A. Sanchez, J. Pino, R. Pacheco, et al. An´alisis de letalidad en pacientes con diagn´ostico de tuberculosis en un centro de alta complejidad en cali, colombia. Ingenieria clinica, Universidad Icesi, Cali-Colombia, 02 2018. [16] Ke Yuan, Yabing Huang, and Qian Tang. The impact of social and economic development on the spread of infectious respiratory diseases, push or constrain? empirical research from china based on machine learning methods. In 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 1364–1369, 2020. [17] Sophie Khaddaj and Hussain Chrief. Prevention and control of emerging infectious diseases in human populations. In 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pages 336–339, 2020. [18] PMA. Alvarez, PXA. Morales, A. Rodriguez-Ramirez, et al. Costo-efectividad de tres pruebas diagn´osticas de tuberculosis pulmonar en dos ciudades de colombia, 2015. Enf Infec Microbiol, 39(4):129–133, 2015.es_ES
dc.description.degreenameIngeniero(a) Biomédico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaes_ES
dc.audienceGenerales_ES
dc.description.notesPresenciales_ES
dc.creator.cedula10561711390es_ES
dc.publisher.campusBogotá - Sures_ES
dc.description.degreetypeInvestigaciónes_ES
Aparece en las colecciones: Ingeniería biomédica

Ficheros en este ítem:
Fichero Tamaño  
2022_Acta-Silva.pdf
  Restricted Access
281.25 kBVisualizar/Abrir  Request a copy
2022_Autorización de tesis Lenny Silva.pdf
  Restricted Access
949.9 kBVisualizar/Abrir  Request a copy
2022_TG_tatiana (1).pdf6.97 MBVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons