Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/8511
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorVillate Mercy Tatiana-
dc.creatorRavelo Mendivelso Karol Yuliete-
dc.creatorVillate Mercy Tatiana-
dc.creatorHernandez, José D.-
dc.creatorMiranda, Orlando M.-
dc.creatorPacheco, Pedro J.-
dc.creatorCampusano, Manuel J.-
dc.date.accessioned2023-08-16T03:03:25Z-
dc.date.available2023-08-16T03:03:25Z-
dc.date.created2022-11-30-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/8511-
dc.description.abstractAbstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs.es_ES
dc.description.tableofcontentsAbstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs.es_ES
dc.language.isoenges_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectAHPes_ES
dc.subjectRendimiento Hidrodinámicoes_ES
dc.subjectMCDMes_ES
dc.subjectIntercambiador de calor de carcasa y tuboses_ES
dc.subjectEficiencia térmicaes_ES
dc.titleThermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Methodes_ES
dc.publisher.programIngeniería Mecánicaes_ES
dc.rights.accesRightsclosedAccesses_ES
dc.subject.keywordAHPes_ES
dc.subject.keywordHydrodynamic performancees_ES
dc.subject.keywordMCDMes_ES
dc.subject.keywordShell-and-tube heat exchangeres_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationCui, X., Zhang, H., Guo, J., Huai, X., Xu, M. 2019. Analysis Of Two‐Stage Waste Heat Recovery Based on Natural Gas‐Fired Boiler. International Journal of Energy Research, Volume 43(14), pp. 8898–8912es_ES
dc.source.bibliographicCitationFrota, M.N., Castro-Pacheco, E.R., Hernández-Vásquez, J.D., da-Silva, R.P.M., 2021a. Alternative Method for Assessing The Effectiveness of Heat Exchangers. Measurement: Sensors, Volume 18, p. 100066es_ES
dc.source.bibliographicCitationFrota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, E.R., Germano, S.B., Jr, J.B., 2019. Enhancing the Effectiveness of Hydro Generator Heat Exchangers Through the Control of Measurement Uncertainties. In: XIII Heat Exchanger Fouling and Cleaning Conference, Warsaw, Polandes_ES
dc.source.bibliographicCitationFrota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, R.P., da-Silva, M., 2021b. An Adapted Version of The Ε-Ntu Method For Assessing The Effectiveness of Multiple-Pass Heat 534 Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method Exchangers of Hydrogenerators. In: 15thes_ES
dc.source.bibliographicCitationGowri, N.V., Isaac, J.S., Muralikrishna, T., Babu, G.S., Depoures, M.V., Sekar, S., Sasirekha, P., Ramesh, M., Prabhakar, S., 2022. Genetic Algorithm Integrated Fuzzy AHP-VIKOR Approach for the Investigation of W-Cut Insert Heat Exchanger for Cooling of Dielectric Fluid Used in Ultra-High Voltage Transformer. Advances in Materials Science and Engineering, Volume 2022, p. 2819688es_ES
dc.source.bibliographicCitationHazza, M.H.A., Abdelwahed, A., Ali, M.Y., Sidek, A.B.A., 2022. An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework. International Journal of Technology, Volume 13(1), pp. 16–25es_ES
dc.source.bibliographicCitationKadoi, N., Re-ep, N.B., Divjak, B., 2017. Decision Making with The Analytical Network Process. In: 14th International Symposium on Operations Research. Sloveniaes_ES
dc.source.bibliographicCitationHe, F., Nagano, K., Seol, S.H., Togawa, J., 2022. Thermal Performance Improvement of AHP Using Corrugated Heat Exchanger by Dip-Coating Method with Mass Recovery. Energy, Volume 239, p. 122418es_ES
dc.source.bibliographicCitationKeklikcioglu, O., Günes, S., Senyigit, E., Akcadirci, E., Ozceyhan, V., 2022. The Optimization of The Thermal and Hydraulic Characteristics of a Tube With Twisted Tapes Using Taguchi-Based-AHP-TOPSIS Approach. Journal of Thermal Analysis and Calorimetry, Volume 2022, pp. 1–13es_ES
dc.source.bibliographicCitationKrishankumar, R., Nimmagadda, S.S., Rani, P., Mishra, A.R., Ravichandran, K.S., Gandomi, A.H., 2021. Solving Renewable Energy Source Selection Problems Using a Q-Rung Orthopair Fuzzy-Based Integrated Decision-Making Approach. Journal of Cleaner Production, Volume 279, p. 123329es_ES
dc.description.degreenameIngeniero(a) Mecánico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaes_ES
dc.audienceEspecializadaes_ES
dc.description.notesPresenciales_ES
dc.creator.cedula20451729551es_ES
dc.publisher.campusTunjaes_ES
dc.description.degreetypeInvestigaciónes_ES
Aparece en las colecciones: Ingeniería mecánica

Ficheros en este ítem:
Fichero Tamaño  
2023_KarolRaveloMendivelso_Actapdf
  Restricted Access
165.79 kBVisualizar/Abrir  Request a copy
2023_KarolRaveloMendivelso _Articulo.pdf382.15 kBVisualizar/Abrir
2023_KarolRaveloMendivelso_Autorizaciòn.pdf
  Restricted Access
933.98 kBVisualizar/Abrir  Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.