

Caracterización Hidrogeológica Para el Análisis de Viabilidad Sobre el Aprovechamiento del Agua Subterránea en la Vereda La Cumbre, Municipio de Villavicencio, Meta, Colombia

David Eduardo Monroy Ramos

Código 11961828454

Universidad Antonio Nariño

Maestría en Hidrogeología Ambiental
Facultad de Ingeniería Ambiental
Bogotá, Colombia

Caracterización Hidrogeológica Como Base Para el Análisis de Viabilidad Sobre el Aprovechamiento del Agua Subterránea en la Vereda La Cumbre, Municipio de Villavicencio, Meta, Colombia

David Eduardo Monroy Ramos

Proyecto de grado presentado como requisito parcial para optar al título de:

Magister en Hidrogeología Ambiental

Director:

Msc. Douglas Quintero Restrepo

Línea de Investigación: Caracterización Hidrogeológica

Universidad Antonio Nariño

Maestría en Hidrogeología Ambiental
Facultad de Ingeniería Ambiental
Bogotá, Colombia

2021

NOTA DE ACEPTACIÓN

El trabajo de grado titulado Caracterizacion
Hidrogeológica Como Base Para el Análisis de
Viabilidad Sobre el Aprovechamiento del Agua
Subterránea en la Vereda La Cumbre, Municipio de
Villavicencio, Meta Colombia, cumple con los
requisitos para opta
Al título de Magister en Hidrogeología Ambiental
·
Firma del Tuto
Firma Jurado
I IIIIu Juiud
Firma Jurado
Tima surado
Pogotó do do 202

Contenido

Pág.

1.	Localización	10
2.	Objetivos	12
	2.1. Objetivo General2.2. Objetivos Específicos	
3.	Marco Teórico	
	3.1. Balance Hídrico 3.2. Hidráulica 3.2.1. Porosidad 3.2.2. Conductividad Hidráulica (K) [l/t] 3.2.3. Transmisividad (T) [a/t] 3.2.4. Coeficiente de Almacenamiento (S)	14 16 17
4.	3.3. Hidrogeoquímica	
	4.1. Fase 1 4.1.1 Heurística: 4.1.2 Hermenéutica: 4.2. Fase 2 4.2.1 Caracterización Geológica 4.2.2 Cálculo del Balance Hídrico 4.2.3 Monitoreo Hidrogeoquímico 4.2.1 Inventario de Puntos de Agua 4.3. Fase 3 4.3.1 Caracterización Hidrogeológica 4.3.2 Direcciones de Flujo 4.3.3 Elaboración del Modelo Hidrogeológico Preliminar 4.3.4 Análisis de Viabilidad 4.4 Fase 4	23242529343839404343
5.	Geología	45
	 5.1. Geología Regional 5.1.1. Unidades Estratigráficas 5.1.2. Geología Estructural Regional 5.2. Ilustración Vectorial 	46 61
6.	Balance Hídrico	72

	6.1. l	Precipitación	72
		Evapotranspiración	
		Escorrentía Superficial y Recarga	
7.		geoquímica	
8.	Inventa	ario de Puntos de Agua Subterranea	90
9.	Hidrog	eología	95
	9.1.	Гіро A. Rocas y Sedimentos con Flujo Esencialmente Intergranular	96
		.1. Acuífero Une (A1)	
	9.1	.2. Acuífero Chipaque-Palmichal (A2)	97
	9.1	.3. Acuífero Depósitos Aluviales (A3)	99
	9.2.	Гіро C. Sedimentos y Rocas con Limitado a Ningún Recurso de Agua	
		ánea	
	9.2	2.1. Acuitardo Fómeque (C1)	100
	9.2	2.2. Acuitardo Arcillolitas del Limbo (C2)	
	9.3.	Direcciones de flujo	101
	9.4.	Modelo Hidrogeológico Preliminar	102
	9.4	.1. Mapa hidrogeológico	103
	9.4	2. Perfiles hidrogeológicos	105
		3. Bloque diagrama hidrogeológico	
	9.5.	Viabilidad del agua Subterránea en la vereda la Cumbre y Alrededores	109
10.	Conclu	siones	111
11.	Refere	ncias Bibliográficas	115

Lista de Figuras

Figura 1-1: Localización del área de caracterización hidrogeológica	11
Figura 3-1: Volumen de control tomado de Otálvaro & Victoria, (1992)	13
Figura 4-1: Diagrama de flujo de la metodología general del presente estudio	22
Figura 4-2: Información bibliográfica del área de estudio, utilizada como base para la	
elaboración de esta investigación	24
Figura 4-3: Diagrama de flujo de la metodología base para la fase 2	24
Figura 4-4: Localización de las estaciones analizadas en el área de estudio	27
Figura 4-5: Protocolo diario COVID-19, para la salida de campo.	28
Figura 4-6: Ubicación y diagramas Stiff de los puntos de monitoreo hidrogeoquímico	35
Figura 4-7: Diagrama de Piper	36
Figura 4-8: Diagrama de Stiff	38
Figura 4-9: Diagrama de Flujo de la metodología para la Fase 3	40
Figura 4-10 Tonalidades de las unidades hidrogeológicas	41
Figura 5-1: Geología regional a escala 1:100000, de la plancha 266	46
Figura 5-2: Geología estructural del área de caracterización hidrogeológica	64
Figura 5-3: Mapa Geológico de la zona de caracterización hidrogeológica	66
Figura 5-4: Perfiles geológicos de la zona de caracterización hidrogeológica	68
Figura 5-5: Perfiles geológicos de la zona de caracterización hidrogeológica	69
Figura 5-6: Bloque diagrama Geológico de la zona de Caracterización hidrogeológica	69
Figura 5-7: Sobreposición de los perfiles geológicos.	70
Figura 6-1: Gráfica de precipitación mensual para las estaciones meteorológicas	
analizadas	74
Figura 6-2: Gráficas de precipitación promedio mensual, evapotranspiración real,	
escorrentía superficial y recarga de la zona de caracterización hidrogeológica	82
Figura 7-1: Diagrama Piper para la clasificación de las muestras de monitoreo	
hidrogeoquímico	87
Figura 7-2: Diagramas Stiff para cada muestra de agua.	88
Figura 8-1: Ubicación de los puntos de captación de agua	90
Figura 8-2:Tipo de captaciones por unidad litológica.	91
Figura 8-3: Porcentajes de los diferentes tipos de captaciones y uso del recuro hídrico	94
Figura 9-1 Direcciones de flujo del área de caracterización hidrogeológica	102
Figura 9-2: Mapa hidrogeológico	104
Figura 9-3: Perfiles hidrogeológicos 1, 2 y 3	106
Figura 9-4: Perfiles hidrogeológicos 4 y 5	
Figura 9-5: Bloquediagrama hidrogeológico	108
Figura 9-6: Bloquediagrama de perfiles hidrogeológicos	108

Lista de Fotografías

Fotografía 4-1: Materiales utilizados en la salida de campo	26
Fotografía 5-1: Vista panorámica de la formación Fómeque	47
Fotografía 5-2: Vista en afloramiento de la formación Fómeque	
Fotografía 5-3: Imágenes en lupa a 500X en muestra de la formación Fómeque	49
Fotografía 5-4: Vista panorámica de la formación Une	50
Fotografía 5-5: Vista en afloramiento de la formación Une, unidad superior	51
Fotografía 5-6: Vista en afloramiento de la formación Une, unidad intermedia	51
Fotografía 5-7: Muestra Macroscópica de la formación Une	52
Fotografía 5-8: Muestra Microscópica de la formación Une en 50x	52
Fotografía 5-9: Vista panorámica de la formación Chipaque	53
Fotografía 5-10: Vista en afloramiento de la formación Chipaque	54
Fotografía 5-11: Vista panorámica del grupo Palmichal	56
Fotografía 5-12: Vista en afloramiento de la formación Palmichal	56
Fotografía 5-13: Muestra Macroscópica de la formación Palmichal	57
Fotografía 5-14: Muestra Microscópica del grupo Palmichal en 50x	57
Fotografía 5-15: Vista panorámica del Cuaternario	58
Fotografía 5-16: Depósito aluvial antiguo	59
Fotografía 5-17: Vista en afloramiento de los depósitos aluviales proximales	60
Fotografía 5-18: Depósito de cauce activo	61

Lista de Tablas

Pág.
Tabla 3-1: Porosidad teórica de diferentes tipos de roca. Tomado de Otálvaro & Victoria (1992)
Tabla 3-2: Conductividad hidráulica teórica de diferentes tipos de rocas. Tomado de
Otálvaro & Victoria (1992)
Tabla 3-3: Relación entre la conductividad hidráulica y los grados de permeabilidad del
medio. Tomado de Otálvaro & Victoria (1992)
Tabla 3-4: Relación entre el coeficiente de almacenamiento y tipo de acuífero. Tomado de
Iglesias (1984)
Tabla 3-5: Iones más comunes presentes en las aguas subterráneas
Tabla 3-6: Conductividades eléctricas teóricas para diferentes tipos de agua
Tabla 3-7: Rangos de concentración de solidos disueltos para diferentes tipos de agua 21
Tabla 4-1: Valores de capacidad de campo para cada tipo de suelo según Alfani en
Calvache (2013)
Tabla 4-2: Puntos de toma de muestra de agua para análisis químico
Tabla 4-3 Clasificación general de las unidades hidrogeológicas
Tabla 6-1 Estaciones meteorológicas del IDEAM de las que se extrajo información para el
cálculo de la precipitación
Tabla 6-2: Número total de datos y porcentaje de datos faltantes de las estaciones
meteorológicas analizadas
Tabla 6-3: Ecuaciones de Correlación entre pares de estaciones meteorológicas
Tabla 6-4: Precipitación mensual multianual de las estaciones meteorológicas del IDEAM
en milímetros
Tabla 6-5: Precipitación mensual promedio de la zona de caracterización hidrogeológica.
76
Tabla 6-6: Parámetros de cálculo y valor de la temperatura promedio en la zona de
caracterización hidrogeológica
Tabla 6-7: Calculo de evapotranspiración real (ETR)
Tabla 6-8: Balance hídrico de la zona de caracterización hidrogeológica
Tabla 7-1: Parámetros fisicoquímicos <i>in situ</i> básicos tomados en el área de caracterización
hidrogeológica84
Tabla 7-2:Concentración de los principales iones en las muestras de monitoreo
hidrogeoquímico86
Tabla 8-1: Inventario de puntos de agua subterránea analizados en el área de
caracterización hidrogeológica

"En algún lugar algo increíble está esperando a ser descubierto".

Carl Sagan

Agradecimientos

Agradezco a todas las personas que me han apoyado de manera constante y silenciosa, a la serie de circunstancias que me llevaron a estudiar geología y posteriormente hidrogeología, a los profesores y compañeros que hicieron parte de mi vida universitaria y todos aquellos que me he encontrado en el camino y de alguna manera me permitieron llegar hasta acá.

Un agradecimiento especial a mis padres Elina Ramos Pardo y José Andrés Monroy Bonilla, por su cariño y apoyo incondicional, a mis hermanos y a Rose Anny quien me acompaño en la elaboración de la cartografía geológica, a quien considero una gran profesional y una gran amiga. Finalmente, gracias a mi director de tesis Douglas Quintero, al profesor Diego Felipe Gómez por sus orientaciones y acompañamiento en la elaboración del documento.

Resumen

En el presente trabajo se realiza una caracterización hidrogeológica de la vereda la Cumbre y alrededores, en el municipio de Villavicencio, Meta (Colombia), a partir de la caracterización geológica, el balance hídrico, el inventario de puntos de agua subterránea, y el monitoreo hidrogeoquímico, con lo que se determinaron las características litológicas y estructurales de las unidades, la recarga y el tipo de agua presente en la zona, la información de las principales captaciones de agua y, las zonas de recarga, tránsito y descarga de los diferentes acuíferos.

La integración de esta información permite la construcción del mapa, los perfiles y los bloquediagramas temáticos de las diferentes unidades hidrogeológicas, que dan una visión global del comportamiento hidrogeológico de la zona y que son la base para la determinación de los acuíferos con mayor viabilidad como fuente complementaria de la demanda de agua en las comunidades.

Palabras Claves: Caracterización Hidrogeológica, Hidrogeoquímica, Balance Hídrico, Geología, Viabilidad Agua Subterránea.

Abstract

A hydrogeological characterization of the village *la Cumbre* and its surroundings was carried out, in the municipality of Villavicencio, Meta (Colombia), based on the geological characterization, the water balance, the inventory of groundwater points, and the hydrogeochemical monitoring, which were used to determine the lithological and structural characteristics of the units, the recharge and type of water present in the area, the information on the main water catchments and the recharge, transit and discharge areas of the different aquifers.

The integration of this information allowed the construction of the map, the profiles and thematic block diagrams of the different hydrogeological units, which give a global vision of the hydrogeological behavior of the area. And constitute the basis for determining the most viable aquifers as sources, complementary to the community's demand for water.

Key Words: Hydrogeological Characterization, Hydrogeochemistry, Water Balance, Geology, Groundwater Viability.

Introducción

El agua subterránea es un recurso natural muy importante para el desarrollo de la sociedad, siendo una alternativa para el consumo humano en las zonas con problemas de suministro del agua potable y útil para llevar a cabo proyectos agroindustriales, mineros y de hidrocarburos. Así mismo el agua subterránea se ha aprovechado desde la antigüedad para el abastecimiento de poblaciones y el riego, siendo su utilización de mayor importancia cada día debido al agotamiento y la contaminación de las aguas superficiales. (Herraiz (2009), Hernández Cadena & Morales Parrado (2014)).

Los estudios relacionados con las aguas subterráneas en el país son insuficientes, generando un desconocimiento del potencial de tales recursos, por lo que el aprovechamiento de las aguas subterráneas en la mayor parte del territorio colombiano es todavía muy incipiente (Rodríguez, Vargas, Jaramillo, Piñeros, & Cañas, 2010). Esta problemática no es ajena a la zona de estudio donde a pesar de encontrarse en un régimen hidrológico que muestra un gran volumen por precipitación, gran parte de las personas que viven en este territorio no tienen acceso al agua potable, por lo que existe una necesidad de realizar estudios hidrogeológicos que permitan a la población acceder a dicho recurso mejorando así las condiciones sociales de la población, actual y futura.

En este trabajo de maestría se realizó una caracterización hidrogeológica, elaborando los componentes geológicos, hidrológicos, hidráulicos e hidrogeoquímicos, con información recopilada bibliográficamente y adquirida en las campañas de campo. Además de esto se realizó un inventario de captación de agua mediante el formato FUNIAS, con el cual se analizó el uso del agua de los habitantes del Área de Caracterización Hidrogeológica para soportar el consumo, obteniendo datos actualizados de número de habitantes, número de animales, hectáreas regadas, tanques de almacenamiento y

frecuencia de llenado de los mismos. También se analizaron los puntos de captación de agua, (manantiales, aljibes, quebradas, agua lluvia) y demás información socio ambiental. Obteniendo como resultado una caracterización hidrogeológica que tiene en cuenta el componente socio ambiental y les permite a los habitantes tomar decisiones a la hora de realizar la construcción de pozos de agua subterránea y su uso de forma eficiente y sostenible, supliendo las necesidades actuales y futuras de consumo de agua.

1. Localización

La zona de caracterización hidrogeológica está ubicada en la zona rural del municipio de Villavicencio, Meta, Colombia como se muestra en la figura 1-1. El cual se encuentra a aproximadamente 94Km al suroriente de Bogotá, en la parte más oriental de la Cordillera Oriental, encontrándose una zona de colinas, en la parte más norte del área y, piedemonte llanero hacia la parte sur.

La zona está ubicada a aproximadamente 15km de la plaza Los Libertadores, abarcando las veredas La Cumbre, La Concepción, La Unión y Cometal. La zona de estudio tiene un área de 24km², la cual es abarcada por las planchas a escala 1:25000, 266IIC y 266 IVA, del IGAC.

Para acceder a la zona partiendo del parque de los fundadores, se toma la Av. 40 vía a Acacias, hasta llegar al caserío La Cuncia, la cual ya se encuentra dentro de la parte más sur del área, para ingresar hacia la parte más norte, en el caserío La Cuncia se toma la vía que va hacia la vereda la Cumbre.

La zona de caracterización hidrogeológica se encuentra dentro de la macrocuenca del río Orinoco. Dividiéndose entre dos subcuencas, la parte izquierda de la zona pertenece a la cuenca del río Guayuriba y la parte derecha pertenece a la microcuenca del río Ocoa el cual a su vez desemboca en el río Guatiquía.

1032000 1036000 948000 /Illavicencio Vda. Cometal 946000 944000 Vda. Unión Vda. La Cumbre 942000 Cuenca del Río Ocoa 800000 1000000 1200000 1400000 1600000 Cuenca del Río Guayuriba 1000000 940000 Vda. La Concepción Ro Guayuriba 938000 800000 800000 Acacias 1032000 1036000 1038000 1040000 1042000 800000 1000000 1200000 1400000 1600000 1034000 Localización del Convenciones área de estudio Área de Caracterización Hidrogeológica Villavicencio Villavicencio, Meta, Colombia 2020 Acacías Escala 1:50000 Colombia Vías Proyección Transversa de Mercator Magna Colombia Bogotá

Figura 1-1: Localización del área de caracterización hidrogeológica.

Elaboración propia.

2. Objetivos

2.1. Objetivo General

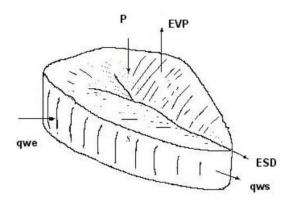
Desarrollar un estudio preliminar de viabilidad a partir de la caracterización hidrogeológica para el aprovechamiento del agua subterránea, como una alternativa capaz de complementar las demás fuentes del recurso hídrico, en la vereda la Cumbre, municipio de Villavicencio, Meta, Colombia.

2.2. Objetivos Específicos

- Interpretar la geología con base en información primaria, con el fin de identificar los materiales y estructuras geológicas que permitan caracterizar las unidades hidrogeológicas acuíferas.
- Calcular la recarga de los acuíferos del área de interés mediante el cálculo del balance hídrico.
- Realizar la caracterización hidrogeológica de las diferentes unidades acuíferas presentes en el área de estudio.
- Determinar la viabilidad del agua subterránea como fuente complementaria del suministro de agua.

3. Marco Teórico

La caracterización hidrogeológica consiste en identificar las unidades hidrogeológicas presentes en el área de estudio, para esto es necesario integrar el conocimiento geológico, hidrológico, hidráulico e hidrogeoquímico de la zona y de esta manera poder diferenciar y delimitar las principales unidades acuíferas. Para cada una de estas ramas se hace una contextualización.


3.1. Balance Hídrico

El balance hídrico permite relacionar el flujo de las aguas subterráneas con los componentes del ciclo hidrológico, su determinación se basa en aplicar el principio de la conservación de la masa o ecuación de la continuidad (Ecuación 3-1), en una región que tiene un volumen y condiciones de contorno conocidas.

 $Entradas = Salidas \pm Variación de almacenamiento$ Ecuación 3-1

Para el caso de un volumen esquemático como el mostrado en la figura 3-1, en el que se tiene en cuenta los flujos de la escorrentía superficial y los flujos del agua subterránea, la ecuación del balance hídrico se escribe como se muestra en la Ecuación 3-2.

Figura 3-1: Volumen de control tomado de Otálvaro & Victoria, (1992)

$$P - ESD + q_{we} - EVP - q_{ws} = 0$$

Ecuación 3-2

Donde el termino P indica la precipitación, ESD la escorrentía superficial directa, EVP la evapotranspiración real, q_{we} el flujo subterráneo que entra y q_{ws} el flujo subterráneo que sale.

Durante el periodo de tiempo en el que se realiza el balance, el total de entradas y salidas del sistema debe ser igual al cambio del almacenamiento de agua medido en masa. En caso que las densidades permanezcan constantes o cuya variación sea despreciable, este valor también puede determinarse en volumen (Custodio & Llamas, 1976).

Cada uno de los factores que se muestran en la ecuación 3-2 son los parámetros que permiten conservar el balance hídrico. Como el propósito de este capítulo busca determinar las entradas de agua al sistema hidrogeológico que provienen de la atmosfera y la superficie, los parámetros a analizar son la precipitación, la evapotranspiración y la escorrentía superficial que se presentan en la zona de estudio.

3.2. Hidráulica

La hidráulica de pozos es una rama de la mecánica de fluidos que se encarga del estudio de las propiedades mecánicas de los líquidos en un medio poroso o fracturado. Las propiedades hidráulicas más importantes son la porosidad (n), la conductividad hidráulica (K), el coeficiente de almacenamiento (S) y la transmisividad (T) como se describen a continuación.

3.2.1. Porosidad

La porosidad de una roca se refiere a los espacios abiertos que existen dentro de esta que pueden ser de dos tipos: porosidad primaria y porosidad secundaria, siendo la primera la porosidad intrínseca de la roca, como por ejemplo los espacios intergranulares de una roca sedimentaria, y la segunda una porosidad generada por procesos posteriores a la formación de la roca, que puede ser por disolución o fracturamiento. Sin embargo, la porosidad de la roca está relacionada con la interconexión que existe entre los poros, por lo existen rocas muy porosas con baja conductividad hidráulica como la roca pómez o rocas poco porosas con alta conductividad hidráulica como las rocas ígneas fracturadas.

La porosidad total o verdadera (n), se define como la relación entre el volumen vacío (Vv) su volumen total (Vt), y se expresa como se muestra en la ecuación 3-3.

$$n = \frac{Vv}{VT}$$

Ecuación 3-3.

La porosidad eficaz (ne) se define como la relación del volumen de agua contenido en una roca, liberada por acción de la gravedad (Ve, volumen de agua libre) y el volumen total (VT), como se expresa en la ecuación 3-4.

$$ne = \frac{Ve}{VT} * 100$$

Ecuación 3-4.

La tabla 3-1 muestra los valores teóricos de la porosidad para diferentes tipos de rocas.

Tabla 3-1: Porosidad teórica de diferentes tipos de roca. Tomado de Otálvaro & Victoria (1992).

Material	Porosidad (%)
Grava	25 - 40
Arenas y gravas	36
Arenas	25 - 50
Limos	35 - 50
Arcillas	40 - 70
Mármoles	0.1 - 0.2
Esquistos	1 - 10
Dolomitas	2.9
Granitos	1.5 - 0.02
Basaltos	0.1 - 2.9

3.2.2. Conductividad Hidráulica (K) [l/t]

La conductividad hidráulica se define como el caudal que pasa por una sección unitaria del acuífero bajo un gradiente (Custodio & Llamas, 1976).

Este parámetro K o coeficiente de permeabilidad, tiene las dimensiones de una velocidad, como indica la ecuación 3-5:

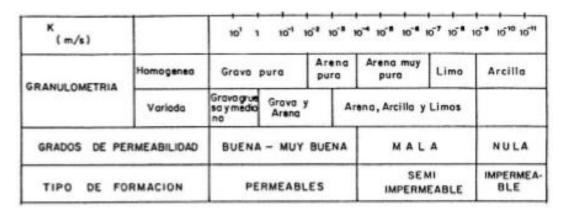
$$(K) = \frac{Q}{A(\frac{dh}{dl})}$$

Ecuación 3-5.

Donde Q, es el caudal y A el área. Sustituyendo A como L2 y el gradiente hidráulico queda expresado en forma de la ecuación 3-6.

$$(K) = \frac{\frac{L^3}{T}}{(\frac{L}{L})L^2} = \frac{L}{T}$$

Ecuación 3-6.


En términos generales se puede decir que la conductividad hidráulica (*Ki*) depende de la permeabilidad intrínseca del medio poroso, del peso específico y la viscosidad del fluido. En la tabla 3-2 se muestra las conductividades teóricas para diferentes tipos de

rocas, y en la tabla 3-3 se muestran la relación cuantitativa y cualitativa de la conductividad hidráulica con la granulometría del medio (Otálvaro & Victoria, 1992).

Tabla 3-2: Conductividad hidráulica teórica de diferentes tipos de rocas. Tomado de Otálvaro & Victoria (1992).

Rocas	K (m/día)	
Grava limpia 1000		
Arena gruesa limpia	10 - 1000	
Mezcla de arena 5 - 10		
Arena fina 1 - 5		
Arena limosa	0.1 - 2	
Limo 0.001 - 0.5		
Arcilla < 0.001		

Tabla 3-3: Relación entre la conductividad hidráulica y los grados de permeabilidad del medio. Tomado de Otálvaro & Victoria (1992).

3.2.3. Transmisividad (T) [a/t]

La transmisividad (T), se define como el volumen de agua por unidad de tiempo (caudal), que pasa a través de una sección vertical de ancho unitario y de altura b, bajo un

gradiente hidráulico unitario a través de un ancho unitario de acuífero en todo su espesor (Custodio & Llamas, 1976). De esta manera la ley de Darcy se resume en la ecuación 3-7.

$$Q = K * b * L * i$$

Ecuación 3-7.

Al producto K b se le llama transmisividad y se designa por T, quedando la ley de Darcy expresada como la ecuación 3-8.

$$O = T * L * i$$

Ecuación 3-8.

Siendo T la Transmisividad y L, la longitud.

3.2.4. Coeficiente de Almacenamiento (S)

El coeficiente de almacenamiento se define como el volumen de agua que es liberado por un prisma de sección unitaria y altura igual a la parte saturada del acuífero cuando se produce un cambio en el nivel piezómetro.

El coeficiente de almacenamiento es adimensional y en los acuíferos libres es mucho mayor que en los acuíferos confinados, teniendo en el primer caso valores que pueden oscilar entre 0,02 y 0,3 y en el segundo caso entre 0,0001 y 0,001, en la tabla 3-4 se muestra de manera más detallada las relaciones entre el coeficiente de almacenamiento y el tipo de acuífero.

Tabla 3-4: Relación entre el coeficiente de almacenamiento y tipo de acuífero. Tomado de Iglesias (1984).

Material Permeable	Acuífero	S (Valores medios)
Kárstico: Calizas y dolomías jurásicas	Libre Semiconfinado Confinado	2.10 ⁻² 5.10 ⁻⁴ 5.10 ⁻⁵
Calizas y dolomías cretácicas y terciarias	Libre Semiconfinado Confinado	$2.10^{-2} - 6.10^{-2}$ $10^{-3} - 5.10^{-4}$ $10^{-4} - 5.10^{-5}$
Poroso intergranular gravas y arenas	Libre Semiconfinado Confinado	$5.10^{-2} - 15.10^{-2}$ 10^{-3} 10^{-4}
Kársticos y porosos Calcarenitas marinas terciarias	Libre	10.10-2 - 18.10-2

3.3. Hidrogeoquímica

La hidrogeoquímica es una ciencia interdisciplinaria que combina los análisis químico, biológico y geológico para analizar los procesos y reacciones que afectan la distribución y circulación de especies químicas disueltas en el agua (Otálvaro & Victoria, 1992).

Desde el momento que el agua se infiltra en el subsuelo y viaja hasta su sitio de descarga sufre una serie de cambios producidos por la interacción con elementos orgánicos e inorgánicos con los que se encuentra. El enriquecimiento de estos elementos en el agua subterránea permite identificar algunas características de los acuíferos que las contiene ya que están influenciados por factores litológicos, mineralógicos, edáficos, biológicos y antrópicos (Otálvaro & Victoria, 1992).

Las sustancias minerales que se pueden encontrar disueltas en el agua son principalmente cationes (iones cargados positivamente) y aniones (iones cargados negativamente), de los cuales los más comunes se muestran en la tabla 3-5, y con menos

frecuencia se puede encontrar manganeso, boro, estroncio, arsénico, cadmio y cromo (Otálvaro & Victoria, 1992).

Tabla 3-5: Iones más comunes presentes en las aguas subterráneas.

Cationes	Aniones
Calcio (Ca)	Bicarbonato (HCO3)
Magnesio (Mg)	Sulfatos (SO4)
Sodio (Na)	Cloruros (Cl)
Potasio (K)	Nitratos (NO3)
Hierro (Fe)	Sílice (Si)

Tomado de Custodio & Llamas (1976).

El pH es el coeficiente que indica la concentración de iones hidrogeno presente en una solución, e indica el grado de acidez o alcalinidad de la misma se presenta en una escala que va de 1 a 14, siendo 1 un pH extremadamente acido, 7 un pH neutro y 14 un pH extremadamente alcalino. En las aguas subterráneas potables el pH varía entre 5,5 y 8 (Otálvaro & Victoria, 1992).

La conductividad eléctrica: es la capacidad de una solución de permitir el paso de la corriente eléctrica, la cual es el flujo de electrones por una diferencia de potencial eléctrico, está relacionada con la cantidad de iones y la temperatura de la solución, incrementándose con el aumente de los iones y la temperatura. Debido a esto la conductividad eléctrica permite medir de manera indirecta la cantidad de iones de una solución, en la tabla 3-6 se muestran las conductividades eléctricas teóricas de diferentes tipos de agua (Otálvaro & Victoria, 1992).

Tabla 3-6: Conductividades eléctricas teóricas para diferentes tipos de agua.

Tipo de agua	C (µmho)
Agua pura	0,055
Agua destilada	0,5-5
Agua lluvia	5-30
Agua subterránea potable	30-2000
Ríos y quebradas	1

Salmuera	>100000
Agua de mar	50000

Tomado de Otálvaro & Victoria (1992).

Solidos disueltos totales (TDS) permiten determinar la concentración de iones en una solución, relacionándose con la conductividad eléctrica mediante la ecuación 3-9.

$$TDS = CE * 700$$

Ecuación 3-9

Donde TDS es la concentración de solidos totales y CE la conductividad eléctrica.

La tabla 3-7 muestra rangos teóricos de concentraciones de solidos disueltos para diferentes tipos de agua.

Tabla 3-7: Rangos de concentración de solidos disueltos para diferentes tipos de agua.

Tipo de agua	TDS (mg/L)
Fresca	0-1000
Salobre	1000-10000
Salina	10000-100000
Salmuera	>100000

Tomado de Otálvaro & Victoria (1992).

4. Metodología

Para el presente trabajo de investigación y para cumplir con los objetivos propuestos en este estudio, se realizaron metodologías en fases secuenciales, que permitieron un análisis sistemático de la información, esta metodología general se resume en el diagrama de flujo mostrado en la

figura 4-1.

De forma general la metodología se divide en 5 fases. Fase 1, toma de datos bibliográficos generales y etapa precampo. Fase 2, generación de los modelos conceptuales. La fase 2 se basó en la recopilación de los datos tanto en campo como en fuentes bibliográficas de los diferentes componentes (Geología, hidrología, hidráulica e hidrogeoquímica) y su posterior análisis. Fase 3, integración de los diferentes componentes en la caracterización hidrogeológica. Fase 4, Análisis de viabilidad de las aguas subterráneas como complemento a las demás fuentes de abastecimiento de agua en la zona, y por último la fase 5, revisión y redacción del documento final y anexos.

Metodología Fase 1 Elaboración de las Caracterización Elaboración del Recopilación de Interpretaciones Hidrogeológica documento final información primaria Geológica Revisión Bibliográfica primaria Hidrológica Análisis de viabilidad Heurística Inventario de Puntos de Agua Hermenéutica Hidrogeoquímica Revisión Bibliográfica

Figura 4-1: Diagrama de flujo de la metodología general del presente estudio

Elaboración propia.

4.1. Fase 1

En esta fase se utilizó el método descriptivo de investigación científica, el cual se basa en la revisión, análisis y generalización de la información geológica, hidráulica, hidrológica, hidrogeoquímica e hidrogeológica. Esta fase es aplicada en todas las fases y va desde el principio hasta el final del proceso de realización de este documento.:

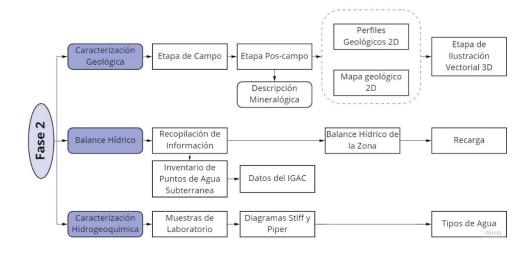
4.1.1. Heurística:

En esta se analizó la bibliografía general de las diferentes temáticas que componen esta investigación, formando un panorama de las investigaciones en las diferentes líneas de investigación que cubren el tema de estudio. Esta se llevó a cabo mediante la recopilación, organización y análisis de fuentes primarias de investigación como artículos, disertaciones, tesis, libros, informes científicos, y fuentes secundarias como bases de datos, informes técnicos, revistas indexadas entre otros.

4.1.2. Hermenéutica:

Esta fase se fundamentó en clasificar, analizar e interpretar las diferentes fuentes bibliográficas consultadas, lo que permitió sistematizar la información disponible, desarrollando teóricamente los modelos geológicos, hidrológico, hidrogeoquímico, hidráulico e hidrogeológico, de la zona de estudio.

La información secundaria del área de estudio, necesaria para la elaboración del documento y preparación para las salidas de campo, se muestra en la figura 4-2.


Figura 4-2: Información bibliográfica del área de estudio, utilizada como base para la elaboración de esta investigación.

POMCA río Guayuriba	CORMACARENA (Autoridad ambiental de la zona de estudio)
POMCA río Guatiquía	
Mapa geológico plancha 266	Servicio Geológico Colombiano (SGC).
Memoria explicativa plancha 266	
(Briceño Amarillo, 2018)	Universidad Nacional de Colombia
Información hidrometeorológica	IDEAM (Instituto de hidrología, meteorología y estudios ambientales)
Plancha topográfica 266IIC y 266 IVA	Instituto Geográfico Agustín Codazzi (IGAC).
Modelo de elevación digital	ALOS PALSAR (12m) AP_24274_FBD_F0060_RT1
(Consorcio Ambiental Chivor, 2010)	EIA proyecto UPME-03-2010, subestación Chivor II – y norte 230 kv y líneas de transmisión asociadas

4.2. Fase 2

En esta fase se interpretaron los componentes geológico, hidrológico, hidráulico e hidrogeoquímico siguiendo las etapas resumidas en la figura 4-3, los materiales y métodos aplicados se detallan a profundidad en cada componente.

Figura 4-3: Diagrama de flujo de la metodología base para la fase 2.

Elaboración Propia

4.2.1. Caracterización Geológica

La caracterización geológica consta de 3 etapas. Etapa de campo, donde se realizó la geología de campo identificando los materiales y estructuras que componen las diferentes unidades hidrogeológicas presentes en el área de estudio. Etapa poscampo, donde se analizó toda la información recopilada en campo, dando como resultado las columnas, perfiles y mapa geológicos que esquematicen la distribución de las unidades. Finalmente, la etapa de Ilustración vectorial de la cual se obtuvo el modelo geológico preliminar.

• Etapa de campo

La metodología utilizada para esta etapa fue la propuesta por Etayo, Laverde & Pava (1985) en el Proyecto Cretácico. Para la toma de datos geológicos de campo se utilizó brújula BRUNTON modelo 70m, lupa Five Elements de 10-20 aumentos, martillo geológico Estwing de 22 Oz, cámara Xiaomi Redmi Note 8, GPS Garming Montana 680, ácido clorhídrico, elementos de recolección y marcado apropiado de muestras, e implementos de seguridad y bioseguridad necesarios como se muestra en la fotografía 4-1.

Para la planeación previa y durante la salida de campo, fueron utilizadas las planchas topográficas 266IIC y 266 IVA, el mapa geológico plancha 266, imágenes satelitales en alta resolución tomadas de Google Earth y el modelo de elevación digital (DEM) ALOS PALSAR (12m) AP_24274_FBD_F0060_RT1. Para la orientación y localización de afloramientos y caminos se utilizó el software ArcGIS de la empresa ESRI.

Fotografía 4-1: Materiales utilizados en la salida de campo

Mediante el software ArcGIS y las imágenes satelitales de alta resolución tomadas de Google Earth se realizó la interpretación geológica y estructural preliminar, que fueron verificados en campo.

En la fase de campo se analizaron setenta y cuatro (74) estaciones sobre el terreno (Estaciones geológicas), entre los valles de algunas quebradas y caminos que atraviesan de manera perpendicular las unidades estratigráficas, de estas estaciones se extrajeron catorce (14) muestras (Puntos de muestreo), y se tomaron 29 datos estructurales (Estaciones de control estructural). La ubicación de estas estaciones se muestra en la figura 4-4.

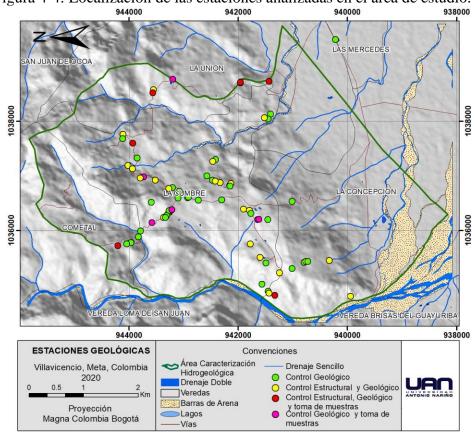


Figura 4-4: Localización de las estaciones analizadas en el área de estudio.

Elaboración propia.

De cada estación se realizaron anotaciones de la fecha, numero, fotografías, coordenadas en el sistema WGS 84 y descripción de los afloramientos. El análisis de los afloramientos se realizó mediante una observación a distancia y una observación detallada. Para la primera se tomó información general como características geomorfológicas y estructurales, y para la segunda se realizó medición de datos estructurales, dirección e inclinación de las fallas, diques y pliegues, textura, color y composición de la roca para la cual se utilizó la metodología de clasificación de Folk, (1974). En los afloramientos de las rocas mejor conservadas se tomaron muestras para análisis detallados en la etapa poscampo.

 Protocolo para salidas de campo durante la emergencia sanitaria del COVID-19

Debido a la emergencia sanitaria que se está viviendo en este momento en el mundo y para no poner en riesgo la salud de las personas que habitan en el territorio de la zona de estudio, se llevó a cabo un protocolo básico, que busca prevenir el contagio y/o propagación del virus, el cual se muestra esquemáticamente en la figura 4-5, que comprende la rutina que se llevó a cabo todos los días del trabajo de campo.

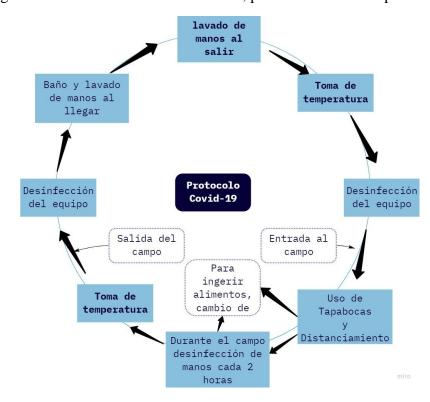


Figura 4-5: Protocolo diario COVID-19, para la salida de campo.

Elaboración propia.

• Etapa poscampo

En la etapa poscampo se escogieron las muestras de roca para la elaboración de descripciones microscópicas, se analizó toda la información recopilada en campo, se

realizaron seis (6) perfiles geológicos y por último se generó un mapa geológico preliminar a escala 1:25000 de la zona de estudio. Las descripciones microscópicas se elaboraron con una lupa *Digital Microscope 500X*, en el cual se observaron las características de selección, redondez, esfericidad, tamaño y composición de los granos para la clasificación textural y mineralógica de la roca. Los perfiles geológicos y el mapa se realizaron mediante los softwares Excel 2016, AutoCAD map 3D 2020 y ArcMap 10.5.

• Etapa de ilustración vectorial 3D

En esta etapa se integra la información recopilada y generada de los ítems anteriores mediante los softwares ArcGIS, AutoCAD map 3D y SketchUp Pro 2021, simulando las diferentes formaciones geológicas con sus características estructurales y geomorfológicas, dando como resultado el bloque diagrama geológico de la zona que se utiliza como insumo para la caracterización hidrogeológica.

4.2.2. Cálculo del Balance Hídrico

Para la determinación de las entradas de agua al sistema hidrogeológico, provenientes de la atmosfera y la superficie, se calcula cada factor del balance hídrico dentro de la zona de caracterización hidrogeológica, estos parámetros son: La precipitación mensual multianual, determinada a partir de los datos brindados por el IDEAM; la evapotranspiración, calculada mediante las ecuaciones de Thornthwaite (1948).

Para los objetivos de este estudio el cálculo de balance hídrico se realiza con una temporalidad de un año siendo coherente con los ciclos de los fenómenos climáticos de precipitación y evapotranspiración y con la finalidad de obtener un valor de recarga o almacenamiento anual.

Precipitación mensual multianual

Para la determinación de la precipitación en la zona de caracterización hidrogeológica se solicitan las series de datos diarias de las estaciones meteorológicas del IDEAM dentro y alrededor del área de estudio, a estas series se les practica el tratamiento de datos según la metodología de Quishpe (2017), agrupando las estaciones de acuerdo a su régimen de precipitación, descartando las que poseen poca información, correlacionándolas y rellenando los datos faltantes.

Una vez se tienen las series de datos completas para cada una de las estaciones, se determina la precipitación media anual y la precipitación media mensual para cada una de estas, para finalmente, por medio de la interpolación de estos datos determinar la precipitación media en la zona de estudio.

• Evapotranspiración mensual multianual:

La evapotranspiración se determina a partir de las ecuaciones de Thornthwaite (1948), en este documento el autor introduce un nuevo concepto llamado evapotranspiración potencial o perdida por evapotranspiración, que supone un desarrollo vegetal óptimo y una capacidad de campo permanentemente completa. Esto significa que el coeficiente de evapotranspiración potencial es el límite superior de la cantidad de agua que realmente vuelve a la atmosfera y se conoce como evapotranspiración real. (Custodio & Llamas, 1976).

La fórmula de Thornthwaite es un método empírico que utiliza como variable principal el promedio mensual de la temperatura media diaria del aire, por lo tanto, es necesario determinar primero este valor.

La temperatura en el territorio colombiano se encuentra íntimamente ligada a la altitud, la hora del día y la época del año. Para la determinación de la temperatura media en la zona se utiliza la ecuación.

$$T(z) = b + mZ$$

Ecuación 4-1

donde T es la Temperatura, b indica la temperatura base, m el gradiente de temperatura y por último Z la altura sobre el nivel del mar.

La variación de la temperatura se determinó con el gradiente geotérmico dado por UT Guayuriba Sostenible (2018), y las isotermas se generaron mediante el software ArcGIS 10.5, con el método de interpolación Natural Neighbor, ya que este método no infiere tendencias ni produce zonas de datos atípicos.

Con la temperatura media mensual del Área de Caracterización Hidrogeológica se calcula el índice mensual del aire siguiendo la ecuación 4-2, y el índice de calor anual (I) mediante la ecuación 4-3.

$$i = (t/5)^{1,514}$$
 $I = \sum i$ Ecuación 4-2 Ecuación 4-3

Donde $\sum i$ equivale a la suma de los doce índices mensuales, para días con 12 horas diarias de sol y meses teóricos de 30 días.

Teniendo en cuenta esto Thornthwaite (1948), formula la ecuación 4-4 para la determinación de la evapotranspiración media.

$$e = 16(10t/I)^a$$

Ecuación 4-4

Donde e es la evapotranspiración media sin ajustar en mm/día, t es la temperatura media diaria del mes en °C, I corresponde al índice de calor anual, por último a se determina a partir de la ecuación 4-5.

$$a = 675 * 10^{-9} * I^{3} - 771 * 10^{-7} * I^{2} + 1972 * 10^{-5} * I + 0,49239$$

Ecuación 4-5

Para ajustar esta evapotranspiración media (e), se hace la corrección con el brillo solar, el cual se determina según el número de horas de luz de cada día en función de la latitud (N) y número de días por mes (d), dando como resultado la ecuación de evapotranspiración potencial (ETP) (Ecuación 4-6).

$$ETP = e * \frac{d}{30} * \frac{N}{12}$$

Ecuación 4-6

Finalmente, la evapotranspiración potencial solo será real cuando la precipitación (P) sea mayor o igual, en caso contrario la evapotranspiración real (ETr) dependerá de la precipitación y el agua almacenada en el suelo (alm), como se muestra en la ecuación 4-7.

$$ETr = ETP, si P + \left|alm_j - alm_{j-1}\right| \ge ETP$$

$$ETr = P + \left|alm_j - alm_{j-1}\right|, si P + \left|alm_j - alm_{j-1}\right| < ETP$$

$$Ecuación 4-7$$

Teniéndose en cuenta que j y j-1 hacen referencia a los valores del mes sobre el que se hace el cálculo y el mes anterior, respectivamente.

El agua almacenada en el suelo (alm) es el volumen de agua que retiene el suelo por unidad de superficie, el agua máxima almacenada es característico de cada tipo de suelo y depende de su capacidad de campo (CC) y espesor. Los valores de capacidad de campo que se tomaron para el presente estudio se encuentran en la tabla 4-1. Por encima de este valor

el suelo se considera saturado y el restante de la precipitación se convierte en exceso.

Dentro del balance hídrico el agua almacenada en el suelo se calcula mediante la ecuación 4-8.

$$Alm = CC * 1000mm$$
, $si\ P - ETP > CC * 1000mm$
 $Alm = P - ETP$, $si\ 0 < P - ETP < CC * 1000mm$
 $Alm = 0$, $si\ P - ETP < 0$

Ecuación 4-8

Tabla 4-1: Valores de capacidad de campo para cada tipo de suelo según Alfani en Calvache (2013)

Textura	CC %	PMP %
Arenosa	5 - 7	1 - 3
Franco – arenosa	8 – 13	4 - 6
Franca	12 - 18	4 - 11
Franca – arcillosa	18 - 23	9 – 10
Arcillosa	23 – 46	13 - 29

• Escorrentía superficial e infiltración:

El cálculo de la escorrentía superficial se determina a partir del agua que precita, queda en estado líquido y no es captada por el suelo, también llamada exceso. El exceso se calcula a partir de la ecuación 4-9:

$$Def / exc = Alm_{j-1} + P_j - ETP_j - Alm_j$$

Ecuación 4-9

Siendo los subíndices j y j-1 los valores correspondientes al mes del cálculo y el mes inmediatamente anterior respectivamente. Cuando el valor da negativo se considera déficit y cuando es positivo, exceso. Del exceso una parte se manifiesta como escorrentía superficial (Esc) y el restante se considera como la recarga (R).

La escorrentía superficial se determina a partir del coeficiente de escorrentía el cual se obtuvo mediante la clasificación de Velasco-Molina (1991) en (Azagra, 2006) para un terreno con una pendiente promedio mayor al 36%, una vegetación de bosque y una textura del suelo arenosa, por lo tanto la escorrentía equivale a un 30% de la precipitación del área, a partir de esto se determina la recarga con la ecuación 4-10.

$$R = P - ETr - Esc - (alm_j - alm_{j-1})$$

Ecuación 4-10

4.2.3. Monitoreo Hidrogeoquímico

Para el monitoreo hidrogeoquímico se recolectaron 4 muestras de agua, tres (3) de ellas fueron tomadas de manantiales de diferentes unidades litológicos y una (1) corresponde a una muestra de Pozo en la formación Chipaque. Los puntos de toma de muestra de agua se listan en la tabla 4-2 y se muestran en la figura 4-6. La recolección de dichas muestras se realizó siguiendo la metodología propuesta en Nava (2011).

Tabla 4-2: Puntos de toma de muestra de agua para análisis químico.

Muestra	Unidad litológica	Lugar de toma	Coordenada en X	Coordenada en Y	Altitud (z)
M-1	Formación Une	Caño Colorado	1037177	944131	794
P-2	Formación Chipaque	Finca Guaira Pozo2	1036548	942082	853
M-3	Grupo Palmichal	Quebrada La Candelaria	1037178	940631	853
M-4	Grupo Palmichal	Vía Villavicencio- Acacias sector "Las mangueras"	1034863	939504	553

940000 939000 941000 942000 943000 944000 945000 1035000 Cuenca del río Guayuriba 1037000 1037000 1038000 Cuenca del río Gu 1039000 941000 940000 942000 944000 939000 943000 945000 Monitoreo Convenciones Hidrogeoquímico Villavicencio, Meta Área de Colombia Barras de arena Caracterización 2021 Drenaie Sencillo 0.3250.65 Proyeccion Magna Sirgas Colombia Bogotá Drenaje Doble

Figura 4-6: Ubicación y diagramas Stiff de los puntos de monitoreo hidrogeoquímico.

Elaboración Propia

Las muestras se enviaron al laboratorio certificado de Ingeniería Ambiental de la Universidad Nacional de Colombia, para analizar los parámetros de bicarbonatos, carbonatos, calcio, cloruros, magnesio, nitratos, potasio, sodio y sulfatos.

Con los resultados de los ensayos se emplearon los diagramas de Piper y Stiff (Figura 4-7 y Figura 4-8) tomados de Custodio & Llamas (1976), para la correcta caracterización, representación gráfica y posterior interpretación de las propiedades del agua, como grado de enriquecimiento de cada ion (relaciones iónicas) y visualización de la evolución geoquímica, con lo que finalmente se realiza la cartografía a partir de la

localización de los puntos de muestreo con la finalidad de caracterizar de manera adecuada los diferentes tipos de agua presentes en la zona de estudio.

El diagrama de Piper está formado por dos triángulos equiláteros, donde se representan los iones mayoritarios. En éstos, los triángulos de aniones y cationes ocupan los ángulos inferiores izquierdo y derecho con sus bases alineadas. Los datos de los diagramas triangulares se proyectan en un rombo central en el que se representa la composición del agua deducida a partir de aniones y cationes.

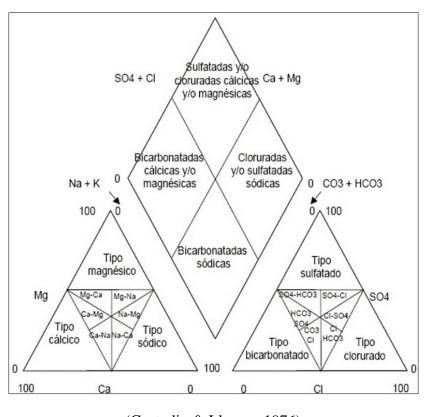
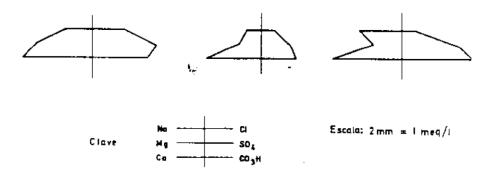


Figura 4-7: Diagrama de Piper

(Custodio & Llamas, 1976)

Este diagrama de Piper permite representar un gran número de muestras en un sólo gráfico, la agrupación de puntos define familias de aguas con características químicas semejantes en cuanto al contenido iónico, las cuales son principalmente cuatro:

I. Aguas del tipo bicarbonatada cálcica y/o magnésica.


- II. Aguas del tipo Sulfatadas y/o cloruradas cálcicas y/o magnésicas.
- III. Aguas del tipo cloruradas y/o sulfatadas sódicas.
- IV. Aguas del tipo bicarbonatadas sódicas.

Las aguas del tipo bicarbonatadas (Numerales I y IV) corresponden a una zona con flujo activo superficial, generalmente de recorridos cortos influenciada por la precipitación (tránsito local), con una menor solubilidad de minerales y la permanencia podría ser de pocos años. El agua de recarga de estos flujos, proviene normalmente de la lluvia (el agua meteórica tiene baja concentración iónica) que atraviesa la zona no saturada en tiempos cortos. Con respecto a la composición catiónica tiene una evolución esperada donde predomina el ion calcio seguido por el magnesio (Custodio & Llamas, 1976).

Las aguas del tipo sulfatadas (Numerales II y III), tendrían un mayor tiempo de circulación de acuerdo a la secuencia de Chevotarev o esta composición podría estar influenciada por la descomposición de minerales ricos en sulfuros como la pirita (FeS2) presente en algunas formaciones aflorantes en el piedemonte, también en esquistos piritosos o magnesianos y del lavado de terrenos formados en ambientes marinos (Domenico, 1972). Estas aguas tendrían recorridos menos activos, más largos y mayores tiempos de permanencia (Custodio & Llamas, 1976).

El diagrama Stiff muestra la concentración de los iones mayores, en meq/l, en una representación gráfica de tres ejes horizontales a la misma escala, donde al lado izquierdo se encuentran los cationes, y al derecho los aniones. Cada eje une un catión y un anión, confrontando el Na+ con Cl-, el Ca+2 con HCO3- y el Mg+2 con SO4-2. Este grafico permite visualizar los diferentes tipos de agua y simultáneamente da idea del grado de mineralización (ancho de la gráfica) (Custodio & Llamas, 1976).

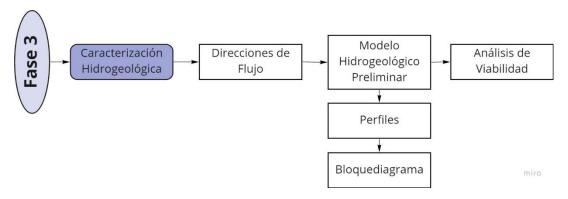
Figura 4-8: Diagrama de Stiff

Modificado de Custodio & Llamas (1976)

4.2.1. Inventario de Puntos de Agua

El inventario de puntos de agua subterránea del área de caracterización hidrogeológica ha sido construido a partir de información primaria tomada en campo, información secundaria, y, en el caso de las zonas más apartadas y de difícil acceso la información se recopilo de forma oral mediante reuniones con los presidentes de la junta de acción comunal de las diferentes veredas y llamadas telefónicas. El inventario fue realizado con el objeto de recolectar, ordenar, almacenar y analizar la información básica de las captaciones de agua subterránea que servirán como insumo para evaluar la disponibilidad del recurso subterráneo y generar una visión global de las características y comportamiento de las diferentes unidades geológicas potencialmente acuíferas, además de conocer la dirección regional del flujo subterráneo.

La captura de la información fue realizada a través del Formulario Único Nacional de Inventarios de Aguas Subterráneas (FUNIAS), del IDEAM. Se utiliza como nomenclatura de identificación de los diferentes puntos de agua subterránea las siglas: para pozos P-, Aljibes Al- y para manantiales M- seguidas de un número consecutivo. Los formatos FUNIAS pueden ser consultados en el Anexo E.

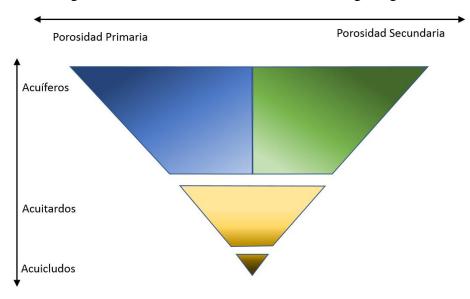

A partir de la información de niveles piezométricos obtenida mediante el inventario de puntos de agua subterránea se determinan las direcciones de flujo se determinaron mediante el software surfer 15, teniendo en cuenta, de manera conceptual la influencia generada por los puntos de captación de agua subterránea estructuras y fallas. Las cuales en el caso de las fallas inversas se consideran como de baja conductividad hidráulica en base a lo mencionado en "Aguas subterráneas en Colombia, Una visión general" (IDEAM, 2013), esta suposición se hace debido a la falta de información específica, sin embargo, es un tema que requiere mayor investigación futura.

4.3. Fase 3

En esta fase se realiza la integración de la información de los diferentes componentes analizados en este documento, para realizar la caracterización hidrogeológica de las unidades presentes en la zona de estudio, para lo cual se realiza la ilustración vectorial dando como resultado un mapa hidrogeológico, 3 perfiles, y 2 bloquediagrama, con lo que se construye el modelo hidrogeológico preliminar de la zona de estudio. Los colores y nomenclatura utilizada para el modelo hidrogeológico conceptual fueron tomados de la metodología propuesta por la Asociación Internacional de Hidrogeología en Struckmeier & Margat, (1995).

Finalmente se realiza un análisis de viabilidad del agua subterránea como fuente complementaria del abastecimiento de agua subterránea en la zona, esta fase se resume en la figura 4-9.

Figura 4-9: Diagrama de Flujo de la metodología para la Fase 3


Elaboración Propia

4.3.1. Caracterización Hidrogeológica

La caracterización hidrogeológica permite identificar las unidades hidrogeológicas y dar una aproximación del comportamiento estático y dinámico del agua subterránea como son la distribución de los puntos de agua, la dirección regional de flujo, las condiciones de recarga y descarga, las características hidrogeoquímicas y la capacidad de flujo y almacenamiento de los materiales que componen el subsuelo.

Integrando la información primaria con la secundaria se realiza la caracterización hidrogeológica de las unidades presentes en el área de estudio, con lo que se busca identificar las unidades acuíferas analizando su composición geológica, tipo de agua, características hidráulicas básicas, y direcciones de flujo, con el fin de identificar la presencia de acuíferos de acuerdo con su potencial y diferenciarlos de las unidades impermeables conforme la metodología propuesta por la Asociación Internacional de Hidrogeólogos Struckmeier & Margat (1995), (ver Figura 4-10 y Tabla 4-3). Así mismo y de acuerdo al tipo de porosidad dominante (primaria o intergranular, secundaria o por fracturas) y a su potencial acuífero. Las tonalidades usadas para representar las diferentes unidades hidrogeológicas se muestran en la figura 4-10.

Figura 4-10 Tonalidades de las unidades hidrogeológicas

Fuente: Modificado de (Struckmeier & Margat, 1995).

Tabla 4-3 Clasificación general de las unidades hidrogeológicas

Tonalidad	Unidad GERDINENTOS V POGAS CON EL LIO ESENCIAL MENTE DITERCI	Capacidad específica promedio (l/s/m)			
Α.	A. SEDIMENTOS Y ROCAS CON FLUJO ESENCIALMENTE INTERGRANULAR				
	Acuíferos continuos de extensión regional, de muy alta productividad, conformados por sedimentos cuaternarios no consolidados de ambiente fluvial. Acuíferos libres y confinados con aguas de buena calidad química para consumo humano.	Muy Alta Mayor de 5,0			
	Acuíferos continuos de extensión regional, de alta productividad, conformados por sedimentos cuaternarios no consolidados y rocas sedimentarias terciarias poco consolidados de ambiente fluvial, glaciofluvial, marino y volcanoclástico. Acuíferos libres y confinados con aguas de buena calidad química para consumo humano.	Alta Entre 2,0 y 5,0			
	Acuíferos continuos de extensión regional, de mediana productividad, conformados por sedimentos cuaternarios no consolidados y rocas sedimentarias terciarias poco consolidados de ambiente fluvial, glaciofluvial, marino y volcanoclástico. Acuíferos generalmente confinados con aguas de buena calidad química para el consumo humano.	Media Entre 1,0 y 2,0			
P. POCAS G	Acuíferos discontinuos de extensión local, de baja productividad, conformados por sedimentos cuaternarios y rocas sedimentarias terciarias poco consolidadas de ambiente aluvial lacustre, coluvial, eólico y marino marginal. Acuíferos libres y confinados con aguas de regular calidad química para consumo humano.	Baja Entre 0,05 y 1,0			
B. ROCAS C	B. ROCAS CON FLUJO ESENCIALMENTE A TRAVÉS DE FRACTURAS (ROCAS FRACTURADAS Y/O CARSTIFICADAS)				
	Acuíferos discontinuos de extensión regional, de muy alta productividad, conformados por rocas sedimentarias carbonatadas cretácicas, consolidadas, de ambienta marino. Acuíferos generalmente confinados, con aguas de buena calidad química para consumo humano.	Muy Alta Mayor de 5,0			

Tonalidad	Unidad	Capacidad específica promedio (l/s/m)		
	Acuíferos discontinuos de extensión regional de extensión regional, de alta productividad, conformados por rocas sedimentarias clásticas y carbonatadas, terciarias y cretácicas consolidadas, de ambiente transicional a marino. Acuíferos confinados con aguas de buena calidad química para consumo humano, generalmente duras.	Alta Entre 2,0 y 5,0		
	Acuíferos continuos de extensión regional, de mediana productividad, conformados por rocas sedimentarias y volcánicas piroclásticas, de ambiente marino y continental. Acuíferos libres y confinados con aguas de buena calidad química. Con frecuencia se encuentran fuentes termales asociadas a la tectónica.	Media Entre 1,0 y 2,0		
	Acuíferos discontinuos de extensión regional y local, de baja productividad, conformados por rocas sedimentarias y volcánicas, terciarias a paleozoicas consolidadas, de ambiente marino y continental. Acuíferos generalmente confinados con aguas de buena calidad química para consumo humano.	Baja Entre 0,05 y 1,0		
C.	C. SEDIMENTOS Y ROCAS CON LIMITADO A NINGÚN RECURSO DE AGUAS SUBTERRÁNEAS.			
	Complejo de sedimentos y rocas con muy baja productividad, constituidos por depósitos cuaternarios no consolidados de ambiente lacustre, deltaicos y marinos, y por rocas sedimentarias terciarias a cretácicas poco consolidadas a muy consolidadas, de origen continental o marino. Almacenan aguas de regular a muy mala calidad química para consumo humano, generalmente salada en regiones costeras.	Muy Baja Menor de 0,05		
	Complejo de rocas ígneo metamórficas con muy baja a ninguna productividad, muy compactas y en ocasiones fracturadas, terciarias a precámbricas. Con frecuencia se encuentran fuentes termales asociadas a la tectónica.	Muy Baja a ninguna Menor de 0,05		
	Regiones compuestas por depósitos arcillosos o de playas con agua salada.	Muy Baja a ninguna Menor de 0,05		

Fuente: Modificado de(Struckmeier & Margat, 1995)

Con base en lo anterior la caracterización de las unidades hidrogeológicas de la zona de estudio, se dividió en 3 grupos:

- Acuífero: Unidad geológica capaz de almacenar agua y transmitirla, con buenas condiciones de permeabilidad y porosidad.
- Acuicierres o Acuitardos: Son rocas de muy baja permeabilidad que almacenan agua, pero no permiten el flujo de ella en cantidades significativas. El término acuitardo se aplica para rocas que almacenan agua, pero solo permiten el movimiento de agua subterránea en cantidades muy

pequeñas, consideradas despreciables. En este estudio se utilizará el término Acuitardo.

 Acuífugos: Son rocas impermeables que no almacenan ni permiten el flujo de agua subterránea.

4.3.2. Direcciones de Flujo

Las direcciones de flujo se determinaron a partir de los datos de nivel estático del agua, obtenidos en el inventario de puntos de agua subterránea. A los cuales se les resta los valores de elevación sobre el nivel de la mar tomada con el GPS Garming Montana 680, posteriormente con los softwares ArcMap 10.5 y Surfer 15, y mediante el método de interpolación Natural Neighbor, se obtienen las isopletas del nivel estático para cada uno de los acuíferos. Finalmente se trazan las direcciones de flujo perpendiculares a las isopiezas.

4.3.3. Elaboración del Modelo Hidrogeológico Preliminar

Para la elaboración del modelo hidrogeológico preliminar, se realizan las lustraciones vectoriales del área de caracterización hidrogeológica, teniendo en cuenta la hidroestratigrafía de la zona,

4.3.4. Análisis de Viabilidad

A partir de la caracterización hidrogeológica, el modelo hidrogeológico preliminar y la información socioeconómica y de caudales obtenida en el inventario de puntos de captaciones de agua superficial y subterránea, se determinan los acuíferos de mayor potencial hidrogeológico para su aprovechamiento, como complemento al abastecimiento

de agua, en las comunidades con mayor población y de posible mayor crecimiento poblacional y económico.

4.4. Fase 4

Por último, se realizó la edición y redacción del presente documento que se presenta como requisito para obtener el título de magister en hidrogeología ambiental.

5. Geología

La geología de la zona de estudio presenta una sucesión de rocas sedimentarias de arenitas y lodolitas con una distribución compleja como resultado de los procesos tectónicos activos asociados al levantamiento de la Cordillera Oriental. Para su entendimiento se realiza un mapa geológico, cinco perfiles y un bloque diagrama, con su respectiva descripción estratigráfica y estructural, basadas en la nomenclatura y las descripciones realizadas por Pulido, Gómez & Marín (2014) y por Morales (2010), siendo completada por la información primaria tomada en campo de las diferentes unidades, incluyendo descripciones del paisaje y de los afloramientos, la composición de las muestras de cada unidad, distribución y espesor de las unidades, y los plegamientos y fallas que se presentan en la zona.

5.1. Geología Regional

La zona de estudio presenta complejos procesos tectónicos asociados a la influencia de esfuerzos compresionales, propiciados por un largo proceso de actividad e interacción de las placas Nazca, suramericana y Caribe, que generaron el levantamiento de la Cordillera Oriental. Estos esfuerzos favorecen la deformación de las secuencias sedimentarias presentes bajo un frente de deformación que posee su eje paralelo al tren estructural de la cordillera en dirección NE-SW (García y Méndez, 2000 en CORMACARENA *et al* (2008); Consorcio Ingedisa Dessau Antea San Fernando (2017)) y presenta en general fallas inversas de alto ángulo que ponen en contacto unidades Meso-Cenozoicas entre sí.

La zona de caracterización hidrogeológica se encuentra ubicada en la Región del Borde Llanero, esta región limita al occidente con la Región de Quetame - Farallones de Medina por las fallas de Servitá, La Reforma, Manzanares y Río Grande, hacia el oriente se

encuentra limitada con la Región de los Llanos Orientales por medio de las fallas el Mirador, Colepato y Villavicencio que hacen parte del complejo de fallas de Guaicáramo como se muestra en la figura 5-1. (Pulido & Gómez, 2001)

La Región de Borde Llanero está conformada por unidades del que van del Cretácico al Cuaternario de las cuales afloran en la zona de estudio la formación Fómeque, Une, Chipaque, el grupo Palmichal y la formación Arcillolitas del Limbo estando esta última principalmente cubierta por los depósitos Cuaternarios, la descripción bibliografía de estas unidades se encuentra a continuación.

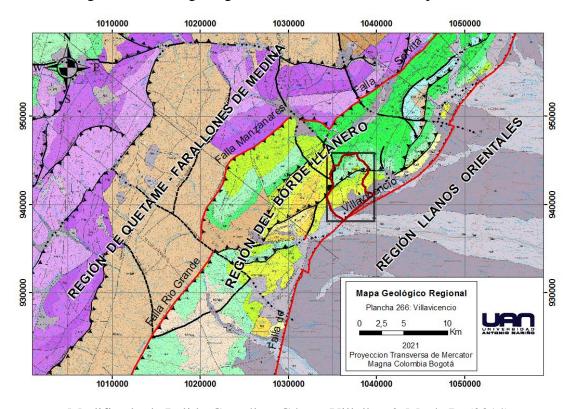


Figura 5-1: Geología regional a escala 1:100000, de la plancha 266

Modificado de Pulido González, Gómez Villalba, & Marín R. (2014)

5.1.1. Unidades Estratigráficas

La Región de Borde Llanero está conformada por unidades del que van del Cretácico al Cuaternario de las cuales afloran en la zona de estudio la formación Fómeque,

Une, Chipaque, el grupo Palmichal y la formación Arcillolitas del Limbo estando esta última principalmente cubierta por los depósitos Cuaternarios.

A continuación, se presentan las características generales de cada una de las formaciones ocurrentes en la zona de caracterización hidrogeológica, así como la descripción de su estructura y composición según lo visto en campo.

• Formación Fómeque (Kif)

Inicialmente Hubach (1931 en Corredor *et al* (2015)) utiliza el nombre de Fómeque (conjunto de) para referirse a las rocas sedimentarias caracterizadas en la región de Fómeque que representan el piso del Aptiano y al menos una parte del Barremiano, compuesta por paquetes gruesos de arcillolitas y lodolitas con biomicritas intercaladas, además de algunas cuarzoarenitas y bioesparitas. Suprayace en contacto transicional a las Areniscas de Cáqueza y de igual manera infrayace a la Formación Une.

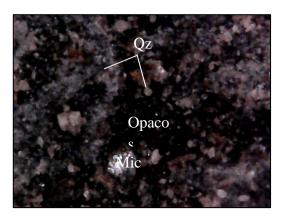
Dentro de la zona de estudio esta unidad corresponde a la más antigua, se ubica en la parte noroccidental de la misma, en contacto fallado con la formación Une, su orientación preferencial es N65W/35SW, su espesor es de 800 metros en el lado oriental del Anticlinorio de Farallones, según lo reportado por Ulloa & Rodríguez (1979). Geomorfológicamente esta unidad posee un relieve de lomas con laderas inclinadas de longitudes muy cortas a moderadas (Carvajal, 2012), como se muestra en la fotografía 5-1.

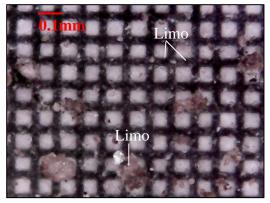
Fotografía 5-1: Vista panorámica de la formación Fómeque.

Coordenadas X: 1.035.726, Y: 944.165.

La formación Fómeque consta de capas medianamente friables, con estratificación ondulosa a lenticular y grosores de varios milímetros a algunos centímetros, compuestos por lodolitas de color negro (Fotografía 5-2) con presencia de fósiles.

Debido a la dificultad de acceso y los pocos afloramientos encontrados en campo la ubicación estratigráfica de los afloramientos no es clara, sin embargo, se asume que estos se encuentran en la parte superior de la formación Fómeque.


Fotografía 5-2: Vista en afloramiento de la formación Fómeque.



Coordenadas X: 1.035.722, Y: 944.208.

El estudio de las muestras bajo lupa digital indica que se trata de lodolitas cuarzo moscoviticas fosilíferas con alto contenido de materia orgánica, donde se reconocen partículas de cuarzo y mica de tamaño limo, subredondeadas a subangulosas, con formas esféricas y tabulares en una matriz arcillosa conformada principalmente por minerales opacos (Ver fotografía 5-3).

Fotografía 5-3: Imágenes en lupa a 500X en muestra de la formación Fómeque

• Formación Une (Kiu)

Inicialmente Hubach (1957) la describe como una secuencia de rocas que afloran en la carretera Bogotá-Villavicencio, entre las poblaciones de Chipaque y Cáqueza. En general está constituida por areniscas cuarzosas, de color blanco amarillento, friable y de tamaño de grano grueso a medio, ligeramente conglomeráticas, con interestratificaciones finas de lodolitas grises y capas de carbón de hasta un metro de espesor (CORMACARENA et al., 2008).

Estratigráficamente se encuentra infrayaciendo la formación Fómeque y suprayaciendo la formación Chipaque, de manera concordante. La edad de la formación es Albiano (Pulido González et al., 2014).

Las rocas de la formación Une afloran en la parte nororiental de la zona, en un sinclinal con tendencia aproximada NNW-SSE y cierre hacia el norte, cortado por una falla de orientación N55E que desaparece la base de la unidad. Hacia el centro de la estructura la formación Une se encuentra en contacto concordante con la formación Chipaque.

El espesor aflorante de la Formación Une no pudo determinarse en el área de estudio, Terraza *et al.* (2010) (en Corredor, Terraza, & Etayo-Serna (2015)) calculan al menos 1300 m de espesor sobre el flanco oriental del Sinclinal de Úmbita en la plancha 210-Guateque y, Pulido & Gómez (2001) en base a perfiles geológicos dentro de la plancha 266 calculan el espesor en más de 500 metros para el borde Llanero y aproximadamente 1000 metros al sur de la población de Gutiérrez.

De la formación Une se pueden diferenciar dos unidades de alta competencia separadas por una menos competente, evidenciadas por cambios en la topografía donde, siguiendo la metodología de Carvajal (2012), las unidades competentes muestran lomas de laderas muy abruptas y crestas agudas mientras que la unidad intermedia se expresa como laderas inclinadas En la fotografía 5-4 se observa la geomorfología abrupta de la unidad superior.

Fotografía 5-4: Vista panorámica de la formación Une

X: 1.038.418, Y: 942.548

Las unidades competentes de la formación Une están compuestas por arenitas con estratificación tabular, lenticular u ondulosa de muy gruesa a delgada y en algunos casos con laminación interna inclinada, su textura varia de arena fina a arena conglomerática bien clasificadas como se observa en la fotografía 5-5.

Fotografía 5-5: Vista en afloramiento de la formación Une, unidad superior.

X:1.036.383, Y: 943.229

X: 1.038.001, Y: 943.909

La parte media de la formación Une muestra capas delgadas no fisiles, con estratificación tabular a cuneiforme de Lodolitas arenosas bien cementadas de color blancos, gris y amarillo como se muestra en la fotografía 5-6.

Fotografía 5-6: Vista en afloramiento de la formación Une, unidad intermedia

X:1.036.145, Y: 943.581

Las muestras analizadas bajo lupa digital que corresponden a la parte superior de la formación Une presentan un armazón arenoso de tamaño de grano medio con matriz lodosa, bien clasificado, subredondeado a subanguloso, compuesto por cuarzo principalmente, con formas esféricas, algunas capas presentan laminación interna al igual que matriz de composición lodosa de color café a ocre, correspondiente a cuarzo arenitas limosas. (Fotografía 5-7 y fotografía 5-8).

Fotografía 5-7: Muestra Macroscópica de la formación Une.

Fotografía 5-8: Muestra Microscópica de la formación Une en 50x

• Formación Chipaque (Ksc)

La formación Chipaque, fue definida inicialmente por Hubach, (1957), para referirse a una secuencia de lutitas negras, con intercalaciones de calizas, areniscas y calizas arenosas, posteriormente es redefinida por Renzoni, (1967), quien extiende el techo de esta formación hasta la base de la formación Arenisca Dura.

En el páramo de Chingaza se encuentran amplios afloramientos de la formación Chipaque, sin embargo, en el borde llanero la formación se encuentra fallada y plegada. Su edad es establecida como Coniaciano-Santoniano por Guerrero & Sarmiento (1996).

La formación Chipaque aparece distribuida por la parte central de la zona de estudio en una franja con sentido noreste – suroeste, limitada hacia el norte por la falla San Pablo y

al sur por el grupo Palmichal con el cual se encuentra en contacto concordante. También aflora en la parte central del Sinclinal con eje principal ubicado en el sector de las Delicias donde su contacto con la formación Une es abrupto. El espesor de esta unidad fue estimado por Corredor et al. (2015) en al menos 1000 metros hacia el sector oriental de la plancha 228 – Bogotá noreste, mediante perfil geológico, y por Guerrero & Sarmiento (1996), en la quebrada San Antonio (Afluente del río Lengupá) siendo de 565 metros.

La morfología de la formación Chipaque es de montículos suavemente inclinados de crestas convexas y presencia de lagos naturales, como se muestra en la fotografía 5-9.

Fotografía 5-9: Vista panorámica de la formación Chipaque.

X: 1.038.593, Y: 943.130.

La formación Chipaque se distingue de las formaciones Palmichal y Une por ser principalmente lodosa, con intercalaciones continuas, en paquetes de capas y láminas gruesos, fisiles, no fisiles o con ocurrencia de anillos de Liesegan de forma tabular y ondulosa.

Está compuesto por la intercalación de lodolitas grises a negras con alto contenido de materia orgánica, intercaladas con láminas ondulosas de arenitas de grano fino a muy fino de color blanco a grisáceo, con presencia esporádica de pequeñas capas de carbón con alto contenido de arcilla, estratos de arenitas de grano fino y muy fino bien cementado, de

colores amarillo anaranjado y negro, con intercalado con pequeñas láminas de lodolitas negras, estratos de lodolitas muy cementadas, con meteorización de anillos de Liesegan.

La formación presenta una composición más arenosa hacia la parte superior, llegando a tener capas de cuarzoarenita de grano a medio a fino de hasta tres metros de espesor intercaladas con estratos de lodolitas negras a grises con alto contenido de materia orgánica de aproximadamente un metro. (Ver fotografía 5-10).

Fotografía 5-10: Vista en afloramiento de la formación Chipaque

X: 1.038524, Y:943.566

X: 1.038524, Y:943.566

X: 1.038524, Y:943.566

• Grupo Palmichal (KPgp)

El grupo Palmichal fue propuesto inicialmente en Ulloa & Rodriguez, (1976), haciendo referencia a una sucesión de arenitas y conglomerados finos con intercalaciones de lutitas. Los afloramientos más importantes de esta unidad se pueden encontrar en la Vereda Loma del Pañuelo, cerca de la salida a los llanos Orientales del río Guayuriba.

En el cerro de Cristo Rey aflora esta unidad, compuesta de areniscas cuarzosas de color blanco amarillento, con estratificación cruzada paralela, de grano medio, grueso a conglomeráticas, friables, en capas de hasta 3m de espesor, con algunas intercalaciones de arcillolitas grises.

Hay reportes de impregnaciones de hidrocarburos y presencia de icnofósiles en las areniscas, su espesor se estima en 600 m y su edad es Cretácico Superior, según observaciones paleontológicas y palinológicas Pulido et al., (1998).

El grupo Palmichal aflora en la zona de campo al sur de la formación Chipaque, en una franja con orientación N70E, hacia el sur se encuentra cubierto en parte, por los depósitos cuaternarios. Su espesor según Pulido & Gómez (2001) es de 600 metros aproximadamente con base en algunos perfiles geológicos. Su relieve es de colinas con laderas muy inclinadas y crestas redondeadas como se observa en la fotografía 5-11.

Fotografía 5-11: Vista panorámica del grupo Palmichal

X: 1.037.144, Y:942.545

En base a lo visto en campo únicamente aflora la parte inferior del grupo Palmichal con un espesor de aproximadamente 240 metros. La unidad presenta afloramientos de capas masivas, deleznables y duras, de color blanco y amarillento, con estratificación ondulosa y espesores alrededor de 1 metro, con algunas intercalaciones de capas laminadas. Las capas masivas están compuestas de arenitas de grano fino a grueso, mientras que las capas laminadas corresponden a lodolitas. (Fotografía 5-12).

Fotografía 5-12: Vista en afloramiento de la formación Palmichal.

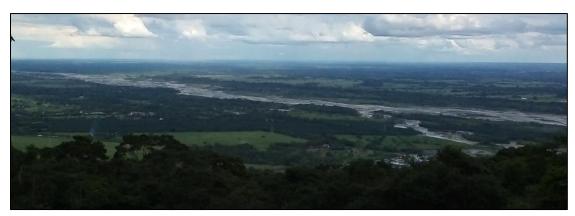
X:1.038.732, Y: 941.439

La muestra de campo analizada presenta un armazón arenoso con tamaños de arena fina a media, muy bien clasificado, de formas esféricas, subredondeadas, compuesto por cuarzo principalmente, algunas capas presentan laminación interna, presenta matriz lodosa de color café a anaranjado, lo que corresponde a un cuarzo arenita limosa (Fotografía 5-13 y Fotografía 5-14).

la formación Palmichal.

Fotografía 5-13: Muestra Macroscópica de Fotografía 5-14: Muestra Microscópica del grupo Palmichal en 50x.

Formación Arcillas del Limbo (Pgal)


Las Arcillas del Limbo fueron descritas inicialmente por Hubach, (1957), quien utilizo este término para referirse a una secuencia de arcillas esquistosas de color gris y verde con intercalaciones de areniscas y mantos de carbón.

La unidad se encuentra superponiendo de manera concordante al grupo Palmichal. En el sector del borde llanero suprayace a esta unidad los depósitos cuaternarios Aluviales. Se estima posee un espesor de 250 m para las arcillolitas grises, verdes y violetas, y de edad del Paleoceno (Ulloa y Rodríguez, 1976).

Depósitos Cuaternarios

Como unidad más reciente se encuentran los depósitos cuaternarios de origen aluvial, depositados de manera discordante sobre las unidades Cretácicas. Los sedimentos que se encuentran en mayor porcentaje en el área corresponden a depósitos de llanura aluvial, depósitos de cauce activo y depósitos coluviales.

Los depósitos cuaternarios se encuentran al sur de la zona de estudio, los cuales según Pulido González et al (2014), se encuentran cubriendo a la formación Arcillolitas del Limbo, se dividen principalmente en tres unidades que corresponden a: depósitos de cauce activo, deposito aluvial proximal y deposito aluvial antiguo. Estas unidades Se expresan geomorfológicamente como grandes planicies (ver fotografía 5-15), separadas por terrazas o escarpes.

Fotografía 5-15: Vista panorámica del Cuaternario

Coordenadas X: 1.036.373 Y: 941.251.

• El depósito aluvial antiguo (Qal2)

Está ubicado en la cercanía a la zona montañosa, geomorfológicamente corresponde a terrazas, compuesta por antiguos depósitos aluviales (Ver fotografía 5-16), sobre los cuales se depositan sedimentos aluviales más recientes, compuesto principalmente por

arenas gravosas según Morales (2010). Esta unidad tiene un espesor que varía entre los 80 y los 170 metros con base en Pulido González et al (2014), Ojeda & Alvarado (2000) y NATIVA LTDA & CEMEX (2018).

Fotografía 5-16: Depósito aluvial antiguo

X:1.039.486, Y: 940.236

• El depósito aluvial proximal (Qal)

Se localiza en la zona aledaña al río Guayuriba, está compuesto por arenas gravosas y gravas arenosas (Fotografía 5-17), con partículas que alcanzan el tamaño canto, muy pobremente clasificadas, de formas proladas redondeadas, con imbricación, mineralógicamente compuestos por fragmentos rocas metamórficas y sedimentarias de la cordillera oriental, con una capa de suelo y vegetación por encima, tiene espesores que varían entre los 30 y 90 metros, con base en Pulido González et al (2014), Ojeda & Alvarado (2000) y NATIVA LTDA & CEMEX (2018).

Fotografía 5-17: Vista en afloramiento de los depósitos aluviales proximales.

X: 1.038.390, Y: 939.893

• El depósito de Cauce activo (Qca)

Corresponde a los sedimentos más recientes que deja el río durante su trayecto, está compuesto por gravas arenosas y arenas gravosas, se diferencia por no presentar una cobertura de vegetación, y por tener una composición granulométrica más fina debido a la alta energía del río, que remueve el material más fino (limo, arcillas y materia orgánica) llevándolo aguas abajo. (Ver fotografía 5-18), su espesor varia ampliamente, debido a las características de depositación de los sedimentos , llegando a tener hasta aproximadamente 20 metros de profundidad, con base en Pulido González et al (2014), Ojeda & Alvarado (2000) y NATIVA LTDA & CEMEX (2018).

Fotografía 5-18: Depósito de cauce activo

X: 1.036.522, Y: 939.332

5.1.2. Geología Estructural Regional

Se ubica en la Provincia Geológica Oriental de Forero (1990) en Caballero, Parra, & Mora, (2010) y a su vez dentro de lo que Acosta (en Pulido y Gómez, 2001) denomina la región de Borde Llanero, que conforma la región montañosa y colinas próxima al piedemonte llanero, constituida por sedimentitas del Cretácico y del Terciario, un sistema de pliegues, y un sistema de Fallas del Piedemonte con una gran cantidad de fallas mayores y menores.

Los plegamientos se caracterizan por desarrollar estructuras anticlinales y sinclinales relativamente estrechas, asimétricas y de poca extensión, con dirección dominante norte-noreste. Se relacionan directamente por las cargas tectónicas que ejercen los cabalgamientos que representan en la zona la afectación por el trazo del grupo de fallas de Guaicáramo y otras (Pulido y Gómez, 2001).

Las fallas presentes en la zona y que se muestran en la figura 5-2 se incluyen dentro del sistema de fallas de Guaicáramo, que agrupa las mayores estructuras de fallas de cabalgamiento del borde llanero con dirección preferencial NNE, conformando un patrón

de cola de caballo con un trazo rectilíneo de gran continuidad regional que conecta las fallas de Altamira y Algeciras, que van desde el Departamento del Huila, extendiéndose hasta la República de Venezuela, siendo una de las Fallas más importante de Colombia. Se caracteriza como un sistema de fallas de cabalgamiento con buzamiento de alto grado de vergencia hacia el occidente principalmente, donde se han identificado algunos sectores donde pone a cabalgar al bloque Precámbrico del grupo Quetame sobre los sedimentos del Paleógeno, Neógeno y hasta Reciente, siendo este su rasgo de mayor relevancia, ya que presenta rasgos de actividad neotectónica en varias partes de su trazo (Paris, 1994 en CIDAF, 2017).

Otros sistemas de menor magnitud son el sistema de fallas Colepato-Villavicencio y la falla San Pablo. A partir de estas se genera una serie de estructuras en forma de flor con fallas en dirección norte sur, con componente de rumbo sinestral que en la literatura no presentan nombres individuales y hacen parte de los sistemas de fallas anteriormente mencionados. Sin embargo, los procesos de cabalgamiento y retrocabalgamiento, dan lugar a una serie de distenciones en la corteza superior, como parte de la respuesta física que se genera ante los empujes tectónicos, que ha desarrollado fallas normales que se presentan en varios sectores (CIDAF, 2017).

• Falla de Colepato

Es una falla de cabalgamiento de ángulo bajo y vergencia hacia el Este, se evidencia al sur de Villavicencio, donde pone en contacto las formaciones Une y La Corneta. Tiene una longitud total de 40 km, 45% de su longitud está catalogada como activa con una tasa de actividad intermedia entre 0,01 a 0,1 cm/año. En la zona de campo la falla se encuentra cubierta por depósitos cuaternarios y se une con la falla Villavicencio (O Pulido et al.,

1998), en superficie no se observa evidencia clara de la misma, aparte de sedimentos aluviales antiguos levantados, muy típicos de la región del piedemonte llanero.

• Falla de Villavicencio

Registra continuidad en su trazo hacia el sector de las veredas La Unión y La Cumbre donde pone en contacto a la formación Une con la Formación Chipaque también cretácica. Sin embargo, en la mayor parte de la zona está cubierta por sedimentos del Cuaternario y se reconoce básicamente mediante la interpretación de rasgos geomorfológicos en imágenes de radar.

Falla San Pablo

Es una falla de Cabalgamiento con vergencia hacia el este y una longitud de 17,5 km. Divide la zona en dos partes, poniendo en contacto fallado a la formación Une sobre la formación Chipaque, muestra una clara evidencia geomorfológica, un amplio fracturamiento de la roca y verticalización de estratos.

Falla Palermo

De dirección N 70-50°W, con su bloque noreste hundido y desplazamiento lateral destral, de longitud mayor a los 20 km. En la zona Pone en contacto la formación Fomeque con el Grupo palmichal, con un desplazamiento vertical superior a los 1.000 m. La prolongación hacia el sureste está cubierta por material cuaternario.

Secología estructural de la zona

Villavicencio, Meta, Colombia 2020

Escala 150000

Secología 150000

Figura 5-2: Geología estructural del área de caracterización hidrogeológica.

Elaboración propia.

5.2. Ilustración Vectorial

La ilustración vectorial de la geología permite tener un mayor entendimiento de la información recolectada en campo dándole a su vez mayor sentido a las descripciones elaboradas. Esta etapa se realiza mediante la generación de un mapa geológico escala 1:25.000, de cinco perfiles y un bloque diagrama, estos últimos con una profundidad de 200 metros.

De este modo el mapa geológico vislumbra el tipo de contacto entre las unidades y su distribución a lo largo del área, los perfiles geológicos, tanto longitudinales como transversales, muestran las relaciones entre las unidades y las estructuras que conforman, y

la combinación de estos elementos permite generar el bloque diagrama que brinda información de la geometría de estas unidades.

La interpretación y análisis de la geología de la zona presenta una gran dificultad debido a la complejidad geológica y estructural típica del flaco oriental de la cordillera oriental, donde las unidades cretácicas presentes tienen grandes similitudes texturales y composicionales, y gran deformación evidenciada en un alto grado de fracturamiento de las unidades más masivas y pliegues recumbentes de las unidades más fisiles. Estas características junto con las condiciones climáticas, el estado de meteorización de la roca y la densidad de vegetación, dificulta mucho la identificación e interpretación en campo de las formaciones, no permitiendo la diferenciación adecuada por miembros de las mismas. Sin embargo, se pudo precisar e identificar los contactos de las unidades geológicas y estructurales a escala de formación, esta información es mostrada en el mapa geológico generado a escala 1:25000 que se muestra en la figura 5-3.

En el mapa geológico (Figura 5-3) se muestran de manera gráfica la distribución de las unidades a lo largo del área teniendo todas estas una orientación preferencial SW-NE tal como lo proponen Pulido et al. (2014), esta misma orientación la poseen la falla San Pablo, la falla que pasa por el caño San Luciano y un anticlinal propuesto en este estudio que explica los buzamientos opuestos de la formación Chipaque y el Grupo Palmichal.

En la parte media norte del área de estudio se reconoce el sinclinal cerrado que Pulido et al. (2014) cartografía en la zona, cuyo eje posee una orientación NNE-SSW (orientación casi perpendicular a la orientación de las unidades en la zona). Este sinclinal está cortado por la falla San Pablo al sur y la falla que pasa por el caño San Luciano hacia el norte, por lo que a pesar que sea principalmente la formación Une la que compone este sinclinal su distribución en el área sigue siendo en una franja con orientación SW-NE.

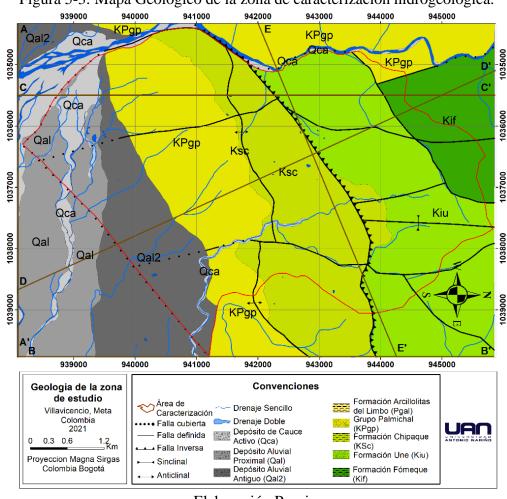
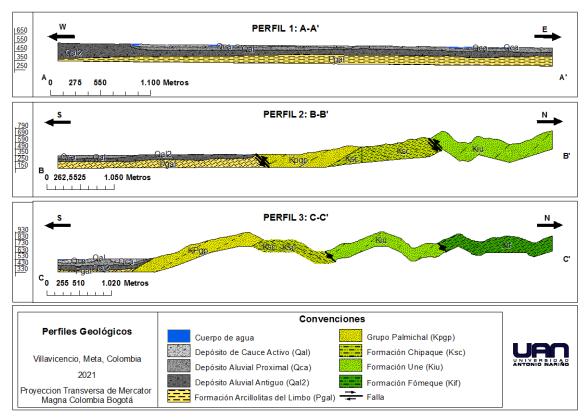


Figura 5-3: Mapa Geológico de la zona de caracterización hidrogeológica.

Elaboración Propia.

En la parte media sur de la zona la formación Chipaque y el grupo Palmichal están en contacto concordante formando un anticlinal asimétrico con orientación SW- NE, la formación Arcillolitas del Limbo cartografiada por Pulido et al. (2014) que debería estar hacia el sur en contacto con los depósitos cuaternarios, no fue encontrada durante la campaña de campo, por se deduce que en su lugar afloran lodolitas arenosas del grupo Palmichal correspondientes a la parte media de este. Con esto se considera que la formación Arcillolitas del limbo se encuentra cubierta por los depósitos cuaternarios. Estos depósitos se encuentran en la parte más sur de la zona, y se distribuyen según la dinámica

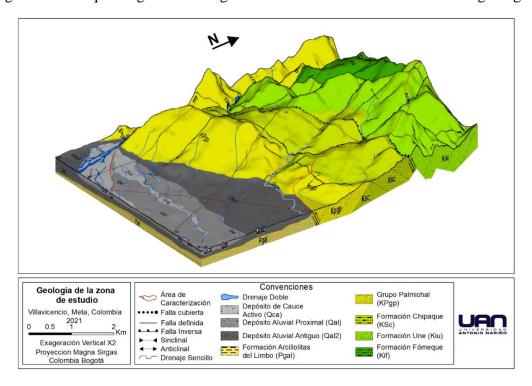

fluvial propia del pie de monte y de llanura aluvial, siguiendo la corriente del río Guayuriba.

Los perfiles geológicos se realizaron con una profundidad de 200 metros, dado que la geología realizada en campo no permite determinar de manera precisa las unidades a mayor profundidad, debido a las características geomorfológicas y la diferencia de las variaciones topográficas en el área, además de esto se espera que las unidades acuíferas viables para su aprovechamiento, se encuentren a profundidades menores de 200 metros ya que los únicos pozos de agua encontrados no superan los 40 m de profundidad. Igualmente para la identificación de las profundidades de los depósitos aluviales se tomó como base 5 sondeos eléctricos verticales tomados por NATIVA LTDA & CEMEX (2018) y la zonificación sismogeotécnica indicativa de la ciudad de Villavicencio (Ojeda & Alvarado, 2000).

Las relaciones estructurales de las unidades geológicas son mostradas mediante los perfiles geológicos (Figura 5-4 y Figura 5-5), en el perfil 1 se observa la disposición seudoparalela de las unidades cuaternarias, suprayaciendo a la formación Arcillolitas del Limbo tal como sugiere Pulido et al. (2014). Los perfiles 2 y 3 muestran los buzamientos predominantes hacia el sur de las unidades geológicas, la formación Chipaque es la única con buzamiento contrario gracias a que forma un anticlinal asimétrico con orientación SW-NE y menor grado de inclinación hacia el norte. También se muestran los desplazamientos de las fallas inversas encontradas.

El perfil 4 es perpendicular a la orientación preferencial de las unidades mostrando los buzamientos más aproximados a los reales de las unidades. Por último, el perfil 5 muestra la relación entre la falla San Pablo con el sinclinal, donde la formación Une se monta sobre la formación Chipaque.

Figura 5-4: Perfiles geológicos de la zona de caracterización hidrogeológica


Elaboración propia.

PERFIL 4: D-D' 0 250 500 1.000 Metros SW PERFIL 5: E-E' 650 550 450 350 250 280 560 1.120 Metros Convenciones Perfiles Geológicos Grupo Palmichal (Kpgp) Cuerpo de agua Villavicencio, Meta, Colombia 2021 Depósito de Cauce Activo (Qal) Formación Chipaque (Ksc) Depósito Aluvial Proximal (Qca) Formación Une (Kiu) Escala Vertical 1:1 Depósito Aluvial Antiguo (Qal2) Formación Fómeque (Kif) Proyeccion Transversa de Mercator Formación Arcillolitas del Limbo (Pgal) Falla Magna Colombia Bogotá

Figura 5-5: Perfiles geológicos de la zona de caracterización hidrogeológica

Elaboración propia.

Figura 5-6: Bloque diagrama Geológico de la zona de Caracterización hidrogeológica

Elaboración Propia.

Perfiles Geológicos
Villavicencio, Meta, Colombia
2021
0 0.5 1 2 km
Exageración Vertical X2
Proyección Magna Sirgas
Colombia Bogolá
Ciónmbia Bogolá

Figura 5-7: Sobreposición de los perfiles geológicos.

Elaboración Propia.

A partir de las descripciones y análisis mencionados anteriormente, se realiza la construcción de un bloquediagrama geológico (Figura 5-6 y figura 5-7), que muestra de manera esquemática la geometría de las unidades, así mismo este modelo servirá como insumo para la caracterización hidrogeológica de la zona.

6. Balance Hídrico

La ecuación del balance hídrico permite determinar la cantidad de agua atmosférica y superficial que ingresa a un sistema hidrogeológico a partir de los componentes de precipitación, evapotranspiración y escorrentía superficial. A su vez, los análisis de estos componentes permiten caracterizar meteorológica e hidrológicamente la zona de estudio.

A nivel regional las características hidrometeorológicas están acotadas por las grandes regiones meteorológicas e hídricas del país, entre dichas regiones la zona de caracterización hidrogeológica hace parte de la región del Pie de Monte Llanero, esta región presenta unas características propias de la relación entre la cordillera oriental y los llanos orientales.

6.1. Precipitación

La determinación de la precipitación para la zona de caracterización hidrogeológica se realiza a partir del análisis estadístico de la metodología de Quishpe (2017), la información base utilizada para este análisis fue suministrada por el IDEAM y corresponde a los datos diarios de precipitación en las estaciones meteorológicas cercanas al área de estudio listadas en la tabla 6-1.

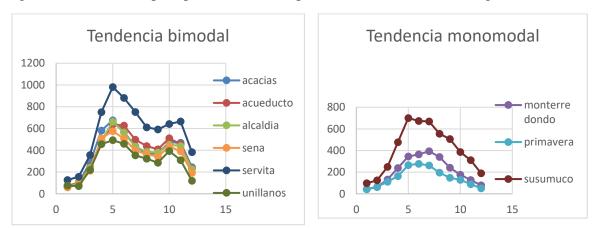
Tabla 6-1 Estaciones meteorológicas del IDEAM de las que se extrajo información para el cálculo de la precipitación.

Estación Meteorológica	Nombre de la estación meteorológica	X	Y	Tipo de Información	Periodo de registro
[35010020]	ACACIAS	1034640	933486	Precipitación	1989-2021
[35030040]	ACUEDUCTO LA ESMERALDA	1047719	952180	Precipitación	1986-2021
[35030100]	ALCALDIA	1049317	950673	Precipitación	1995-2021

[35020010]	MONTERREDONDO	1028217	962213	Precipitación	1989-2021
[35020340]	PRIMAVERA LA	1003054	948816	Precipitación	1989-2020
[35030030]	SENA	1048628	948169	Precipitación	1985-2021
[35030290]	SERVITA	1042678	954960	Precipitación	1995-2021
[35020020]	SUSUMUCO	1033928	955771	Precipitación	1989-2021
[35035070]	UNILLANOS	1055022	942573	Precipitación	1992-2021
[35035070]	UNILLANOS	1050798	949568	Temperatura	1995-2021
[35030370]	ICA V/CIO	1048374	950018	Precipitación	2006-2021
[35030380]	IDEAM V/CIO	1030813	946978	Precipitación	2006-2021
[35020030]	MANZANARES	1034640	933486	Precipitación	1989-2002

Elaboración propia

Para un adecuado análisis de datos se seleccionaron las estaciones con datos de mínimo 30 años de longitud y un porcentaje de faltantes menor al 30% como lo indica la Organización Meteorológica Mundial (2008). El número de datos existentes por estación y el porcentaje de datos faltantes se muestran en la tabla 6-2, se resaltan las estaciones que fueron eliminadas, ya que tienen un porcentaje de datos faltantes mayor al 30%.


Tabla 6-2: Número total de datos y porcentaje de datos faltantes de las estaciones meteorológicas analizadas.

Nombre de la estación meteorológica	Tipo de Información	Periodo de registro	Total, datos (11897)	% Datos faltantes
Acacias	Precipitación	1989-2021	11705	1,6
Acueducto La Esmeralda	Precipitación	1986-2021	8616	27,6
Alcaldía	Precipitación	1995-2021	9134	23,2
Monterredondo	Precipitación	1989-2021	11693	1,7
La Primavera	Precipitación	1989-2020	9292	21,9
Sena	Precipitación	1985-2021	9890	16,9
Servita	Precipitación	1995-2021	9488	20,2

Susumuco	Precipitación	1989-2021	11795	0,9
Unillanos	Precipitación	1992-2021	9550	19,7
Ica V/cio	Precipitación	2006-2021	4404	63,0
Ideam V/Cio	Precipitación	2006-2021	3889	67,3
Manzanares	Precipitación	1989-2002	3903	67,2

Una vez se seleccionan las estaciones con las que se determinará la precipitación se procede a agruparlas de acuerdo a su régimen. Para las estaciones meteorológicas analizadas se encontró que Monterredondo, Susumuco y Primavera presentan un régimen monomodal con su pico máximo de precipitación entre mayo y junio y su valor mínimo en enero, las demás estaciones presentan un régimen bimodal con picos de precipitaciones altas en abril y octubre y bajas en septiembre y enero como se muestra en la figura 6-1.

Figura 6-1: Gráfica de precipitación mensual para las estaciones meteorológicas analizadas.

Elaboración propia.

Ya agrupadas las estaciones se procede a hacer la correlación entre estas para determinar los datos faltantes, esta correlación solo se hace entre las estaciones que presentan el mismo régimen de precipitación. Las gráficas utilizadas para la realización de las correlaciones se muestran en el anexo B, las ecuaciones de correlación resultantes y su coeficiente de correlación se muestran en la tabla 6-3.

Tabla 6-3: Ecuaciones de Correlación entre pares de estaciones meteorológicas.

Estación base	Estación a rellenar	Ecuación de correlación	Grado de correlación (R²)	
Sena	Acacias	1,0825x	0,7537	
Acacias	Acueducto	0,8445x+82,731	0,7502	
Acacias	Alcaldía	0,8431x+41,657	0,8024	
Susumuco	Monterredondo	0,5159x+0,5059	0,8279	
Monterredondo	Primavera La	0,6908X+30,416	0,6723	
Unillanos	Sena	0,9814X+55,051	0,7891	
Acueducto	Servitá	1,1927X+107,76	0,7621	
Monterredondo	Monterredondo Susumuco		0,8279	
Sena	Unillanos	0,8045X+19,454	0,7881	

La correlación de estaciones para el relleno de datos se hace entre las que presentan mismo régimen de precipitación y su coeficiente de correlación (R²) sea mayor a 0,7, este coeficiente es el que define el grado de asociación lineal o dependencia entre dos variables, por lo que entre más se acerca a 1, mayor es la relación entre pares de estaciones y el dato de relleno será más cercano al real. El relleno de datos se realiza aplicando la ecuación en los vacíos de información de las estaciones correlacionadas, la estación Primavera tiene un coeficiente de correlación menor a 0,7 por lo que el relleno de datos para esta no es posible y sus promedios de precipitación mensual multianual se harán únicamente con la información disponible, los datos existentes y los rellenados se muestran en el anexo C.

Una vez se tienen las series de datos completas para cada una de las estaciones, se determina la precipitación media anual y la precipitación media mensual para cada una de estas, los resultados se muestran en la tabla 6-4.

Tabla 6-4: Precipitación mensual multianual de las estaciones meteorológicas del IDEAM en milímetros

Estación Meteorológica	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	P. Anual
Acacias	76	101	288	581	678	566	442	374	373	470	468	245	4660
Acueducto la Esmeralda	94	118	268	536	665	611	487	428	411	499	457	253	4827
Alcaldía	78	102	254	508	645	552	427	381	379	445	432	220	4425
Monterredondo	44	63	132	238	343	364	393	341	241	177	127	79	2542
Primavera La	41	64	112	163	265	278	269	196	148	129	88	51	1796
Sena	67	92	224	490	583	496	397	370	339	423	403	194	4079
Servita	150	168	381	745	957	859	722	603	594	646	658	368	6852
Susumuco	98	124	248	477	700	674	669	556	506	387	311	191	4942
Unillanos	80	77	220	441	488	452	355	314	285	380	310	150	3553

Posterior a estos resultados se realiza la interpolación de la precipitación mensual multianual en el software ArcGIS 10.5 con el método Natural Neighbor y se determinan los valores máximos, mínimos y el promedio de la precipitación mensual dentro de la zona de caracterización hidrogeológica. Los valores de precipitación mensual promedio para la zona de caracterización hidrogeológica hallados se muestran en la Tabla 6-5.

Tabla 6-5: Precipitación mensual promedio de la zona de caracterización hidrogeológica.

Precipitación	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
en la zona													
(mm)	83	108	271	546	676	591	500	426	407	447	425	228	4708

La zona de caracterización hidrogeológica se encuentra en la Región por estacionalidad de Piedemonte Llanero, en esta se presenta un carácter monomodal, con época de lluvias de abril a noviembre y época seca de diciembre a abril, atribuyéndose este comportamiento a la presencia y ausencia de la Zona de Convergencia Intertropical (ZCIT) (Guzmán, Ruíz, & Cadena, 2014). En las partes más cercanas a la cordillera se generan procesos de formación de lluvias orográficas muy pronunciados y destacables por el

ascenso de las masas de aire húmedo advectadas desde la Orinoquía y la Amazonía, provocando acumulados anuales de hasta 4500 mm/año.

El régimen de precipitación de la zona es bimodal con tendencia monomodal presentando un pico alto entre los meses de abril, mayo y junio, un bajo en enero y febrero, con un aplanamiento de la curva en septiembre y un ligero incremento entre octubre y noviembre como se muestra en la figura 6-2 (A). El promedio anual de precipitación para la zona de estudio es de 4708mm, este alto acumulado de precipitación es característico de la zona de piedemonte, donde la cordillera favorece el ascenso de las masas de aire húmedo provenientes de la Orinoquia y la Amazonia.

6.2. Evapotranspiración

La evapotranspiración se determina a partir de las ecuaciones de Thornthwaite (1948), Para lo cual es necesario determinar la temperatura y almacenamiento del agua en el suelo. La determinación de la temperatura se calcula mediante la ecuación 4-1 la cual varia con la altitud como se muestra a continuación:

$$T(z) = b + mZ$$

Donde: *m* es el gradiente de temperatura (°C/m.s.n.m), *b* corresponde a la temperatura base (°C), y *Z* es la altura sobre el nivel del mar de la estación (m.s.n.m).

La temperatura base (b) utilizada en este estudio, corresponde a la temperatura media mensual de la estación Unillanos calculada a partir de los datos de temperatura media diaria brindados por el IDEAM, el tratamiento de estos datos y el cálculo de dichas temperaturas se encuentra en el Anexo D dando como resultado los valores de cada mes que se muestran en la tabla 6-6. Los gradientes de temperatura (m) utilizados para la resolución de la ecuación 4-1 se muestran en la tabla 6-6, y corresponden a los calculados

por UT Guayuriba Sostenible (2018) para la cuenca del río Guayuriba. Por último, el parámetro de altura (Z), corresponde a la diferencia altitud entre la estación Unillanos y el promedio de altitud del área de caracterización hidrogeológica.

Tabla 6-6: Parámetros de cálculo y valor de la temperatura promedio en la zona de caracterización hidrogeológica.

Delta d	e Altura Promedio (Z)	410	
	Temperatura media mensual (b) (°C)	Gradiente (m)	Temperatura Promedio
Ene	26,7	-0,006	24,2
Feb	27,2	-0,0061	24,7
Mar	26,7	-0,0059	24,3
Abr	25,9	-0,0055	23,6
May	25,5	-0,0053	23,3
Jun	24,7	-0,0053	22,5
Jul	24,6	-0,0055	22,3
Ago	25,1	-0,0057	22,8
Sep	25,8	-0,0057	23,5
Oct	26	-0,0056	23,7
Nov	26	-0,0055	23,7
Dic	26,2	-0,0057	23,9

A partir de los datos de temperatura media mensual se resuelven las ecuaciones de Thornthwaite (1948), para el cálculo de la evapotranspiración real descritas en la sección 4.2.2 Cálculo del Balance Hídrico, los valores obtenidos de cada uno de los parámetros de las ecuaciones se muestran en la tabla 6-7.

El valor de *CC* se extrajo de los valores propuestos por Alfani en Calvache (2013), para lo cual se tomó el tipo de suelo más representativo de la zona (franco arenoso),

obteniendo así un valor de 10% de capacidad de campo a partir del cual se determina el almacenamiento.

Tabla 6-7: Calculo de evapotranspiración real (ETR).

	T									
Mes	(°C)	i	e	N	d	ETP	P	alm	∆alm	ETR
Ene	24,2	10,9	121,5	11,9	31	124,6	83	0	-100	124,6
Feb	24,7	11,2	129,5	12	28	120,8	108	0	0	108,0
Mar	24,3	11,0	123,1	12,1	31	128,3	271	100	100	128,3
Abr	23,6	10,5	112,5	12,2	30	114,4	546	100	0	114,4
May	23,3	10,3	108,1	12,3	31	114,5	676	100	0	114,5
Jun	22,5	9,7	97,1	12,4	30	100,3	591	100	0	100,3
Jul	22,3	9,6	94,5	12,3	31	100,1	500	100	0	100,1
Ago	22,8	9,9	101,2	12,3	31	107,1	426	100	0	107,1
Sep	23,5	10,4	111,0	12,1	30	112,0	407	100	0	112,0
Oct	23,7	10,5	114,0	12	31	117,8	447	100	0	117,8
Nov	23,7	10,5	114,0	11,9	30	113,0	425	100	0	113,0
Dic	23,9	10,7	117,0	11,9	31	119,9	228	100,0	0	119,9
I	125,3	а	3,08	316	CC	10%			Total	1360

Donde T es la temperatura media mensual, i corresponde al índice mensual del aire, I es el índice de calor anual, e indica la evapotranspiración media, N es el número de horas de luz de cada día en función de la latitud, 'd' el número de días por mes, P la precipitación, alm el almacenamiento, Δalm el delta de almacenamiento (alm(j)-alm(j-1)) y ETR la evapotranspiración real.

Según UT Guayuriba Sostenible (2018) la evaporación presenta un comportamiento inverso a la precipitación y en concordancia con el brillo solar, correspondiendo con la física del proceso y los fenómenos atmosféricos, siendo los meses de enero, julio, agosto y

septiembre los de mayores valores mensuales y el mes de abril el de más baja evaporación. Según IDEAM (2013), para la Orinoquia la evapotranspiración presenta grandes oscilaciones, que van de 1400 a 1600 mm y llegan a ser 1000mm o incluso menos en el sector del piedemonte, con valores máximos en los meses de enero que llegan a los 170 mm y los valores mínimos en los meses de mayo y junio que llegan a ser de 90 mm.

La evapotranspiración real calculada en la zona de caracterización hidrogeológica es de 1360mm anuales con un promedio mensual de 113 mm. Estos valores son concordantes con los valores teóricos dados por IDEAM (2013) para la región de la Orinoquia y la región del Piedemonte Llanero, esto debido a la ubicación de la zona entre ambas regiones siendo un valor intermedio. Para los valores máximos y mínimos encontrados en la zona de 128 y 100 respectivamente, se encuentran dentro de los rangos esperados.

Dentro de las variaciones importantes de la evapotranspiración real durante el año hidrológico, se tiene que los meses de enero y marzo son los que presentan los mayores valores, esto coincide con las mayores temperaturas. Sin embargo, en el mes de febrero que es el mes más caluroso, su evapotranspiración real es menor por las bajas precipitaciones, ya que no hay disponibilidad de agua suficiente. Los meses de menor valor de evapotranspiración son junio y julio, coincidente con la fase final de la primera época de lluvias y las temperaturas mensuales más bajas, en base a esto se presume que la nubosidad que generan las lluvias disminuye notablemente la temperatura y por lo tanto también la evapotranspiración, como se observa en la figura 6-2 (B).

6.3. Escorrentía Superficial y Recarga

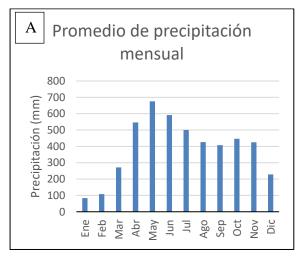
En la tabla 6-8 se muestran el resumen de los resultados del balance hídrico de la zona de caracterización hidrogeológica. Para los valores de escorrentía superficial se puede

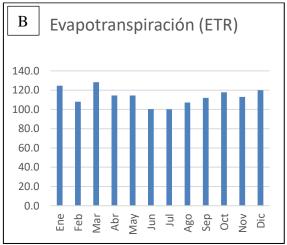
observar los picos mensuales máximos en 202,8 mm y mínimos en 24,9 y el valor un anual de 1412 mm, así mismo para los datos de recarga se muestran valores máximos mensuales de 358 y mínimos de -38,6 mm, y un valor anual de 1936 mm.

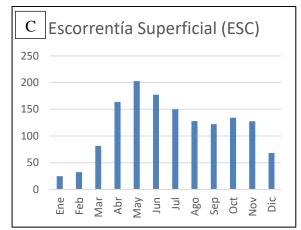
Tabla 6-8: Balance hídrico de la zona de caracterización hidrogeológica.

Mes	P	alm	ETR	Esc	R
Ene	83	0	124,6	24.9	33,5
Feb	108	0	108,0	32.4	-32,4
Mar	271	100	128,3	81.3	-38,6
Abr	546	100	114,4	163.8	267,8
May	676	100	114.5	202,8	358,7
Jun	591	100	100.3	177,3	313,4
Jul	500	100	100.1	150	249,9
Ago	426	100	107.1	127,8	191,1
Sep	407	100	112.0	122,1	172,9
Oct	447	100	117.8	134,1	195,1
Nov	425	100	113.0	127,5	184,5
Dic	228	100	119.9	68,4	39,7
Total (mm)	4708		1360	1412	1936

Vargas et al. (2013) afirma que en Colombia la escorrentía superficial corresponde al 61% del total de la precipitación anual en el país (Aproximadamente 2.265 km3), este volumen fluye por las diferentes regiones, siendo la escorrentía total anual en la región del Piedemonte Llanero el equivalente a un caudal medio de 71.800 m3/s.


Es importante resaltar que a nivel nacional la oferta hídrica duplica el rendimiento promedio de Latinoamérica "estimado en 21 l/s-km2. Así la oferta hídrica de escorrentía superficial per cápita total es de 59000 m3 / hab/año; sin embargo, la oferta per cápita


accesible anual, bajo condiciones naturales es de 12000 m3 / hab/año (Ibíd.)" (IDEAM, 2013).


El balance hídrico de la zona de caracterización hidrogeológica muestra como en general durante los meses de menor precipitación y mayor temperatura que van de diciembre a marzo hay un aporte prácticamente nulo de la precipitación a la escorrentía superficial, con valores negativos en la recarga que afecta la humedad de la zona no saturada y los niveles del agua subterránea, llegando incluso a superar la evapotranspiración a la precipitación en los meses de enero y febrero.

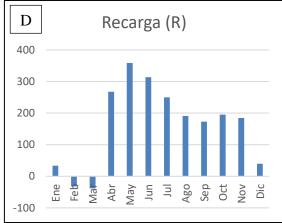

A partir del mes de marzo hay un aumento de la precipitación que se refleja en una mayor cantidad de agua almacenada en el suelo, aumentando la humedad de la zona no saturada y los niveles de la zona saturada. A partir de marzo y hasta el mes de diciembre la precipitación es mayor a la evapotranspiración real, lo que genera un exceso hídrico, aumentando así los valores de escorrentía superficial y de recarga. Llegando a ser la recarga hasta el 50% de la precipitación.

Figura 6-2: Gráficas de precipitación promedio mensual, evapotranspiración real, escorrentía superficial y recarga de la zona de caracterización hidrogeológica

7. Hidrogeoquímica

Para el análisis hidrogeoquímico se realizó un análisis fisicoquímico *in situ* básico de 8 puntos y se tomaron 4 muestras de agua para la determinación de iones mayoritarios presentes en el agua.

Los datos fisicoquímicos fueron obtenidos in situ, tomados con el multiparámetro Portátil (HI98129) HANNA. Este equipo fue calibrado a un punto, con soluciones de 7,01 de pH para el pH y 1413 µs/cm para la conductividad, midiendo el pH con una resolución de 0,1 pH, la temperatura con una resolución de 0,1°C y los sólidos disueltos (TDS) con una resolución de 1 ppm.

En la tabla 7-1, se encuentran los datos que fueron tomados en campo, para el análisis y comparación de los datos de pH y conductividad eléctrica se tomó sus relaciones teóricas, para diferentes tipos de agua, que se muestran en metodología.

Tabla 7-1: Parámetros fisicoquímicos *in situ* básicos tomados en el área de caracterización hidrogeológica

Código	PH	Conductividad Eléctrica (us)	Temperatura (°C)	SDT (ppm)
M6	4,64	13	23,2	6
A3	4,64	9	22,4	5
A4	4,64	9	22,4	5
A5	4,65	9	22,6	5
A7	4,27	11	22,7	8
A9	4,48	12	22,2	6
M13	4,7	8	22,3	4
M17	4,95	5	20,1	3

Los datos de pH obtenidos muestran una variación entre 4,27 y 4,95 (pH), estas aguas se pueden considerar como medianamente acidas. Esta acidez puede estar asociada a la ausencia de minerales carbonaticos presentes en las rocas, lo que produce una menor capacidad de neutralización del agua lluvia, además de la presencia de sustancias húmicas

en solución producto de las condiciones climáticas y a la gran densidad de flora que se encuentra en la zona.

La conductividad eléctrica determinada se encuentra en valores entre 5 y 13 (us), los cuales corresponden según Otálvaro & Victoria (1992), corresponden a aguas lluvias, esto puede ser indicativo de aguas de muy poco tránsito, que no han tenido suficiente tiempo para disolver la roca circundante.

Los sólidos disueltos de 3 a 8 (ppm) muestran que el agua tiene la misma tendencia mencionada anteriormente.

Las cuatro (4) muestras que se tomaron para el análisis de iones mayoritarios cumplen con la intención de cubrir la mayor parte de unidades del área de estudio, siendo los puntos de agua más representativos o con mayor importancia socioeconómica, teniendo en cuenta el inventario de puntos de agua subterránea.

La muestra M-1 fue tomada en un manantial naciente en la formación Une, este manantial alimenta uno de los afluentes del caño Colorado, el cual es de gran importancia porque suministra agua a gran parte de la población aguas abajo del caño.

La muestra P-2, es un pozo profundo de aproximadamente 30m de profundidad construido sobre la formación Chipaque, esta formación es la única que contiene pozos en la zona con configuraciones similares. A pesar que no fue posible analizar a detalle las características hidráulicas del pozo, esta evidencia el potencial acuífero de esta formación.

La muestra M-3, fue tomada en un manantial aguas arriba de la bocatoma del acueducto que suministra este recurso al barrio la Cuncia a aproximadamente 420 personas.

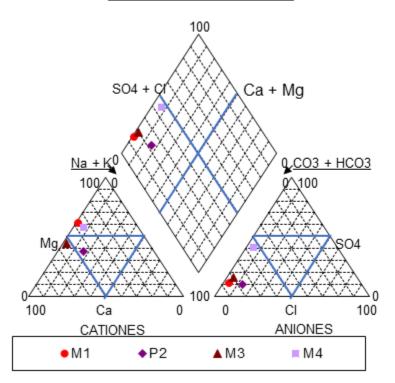
La muestra M-4, fue tomada en un manantial cercano a la carretera principal

Villavicencio - Acacias, en el sector conocido como "Las mangueras", en este punto

muchas familias recogen agua para el consumo, y entre la población es reconocido por las

excelentes características organolépticas del agua, se asume que más de 100 personas al día se benefician de este manantial.

La determinación de la concentración de los aniones principales en las muestras para monitoreo hidrogeoquímico (bicarbonatos (HCO₃-), sulfatos (SO₄), cloruros (Cl⁻), nitratos (N – NO₃), sodio (Na⁺), potasio (K⁺), magnesio (Mg²⁺) y calcio (Ca²⁺)), fue realizada por el laboratorio certificado de Ingeniería Ambiental de la Universidad Nacional de Colombia, los resultados de dicha determinación y del método utilizado se encuentran resumidos en la tabla 7-2.


Tabla 7-2:Concentración de los principales iones en las muestras de monitoreo hidrogeoquímico.

Parámetro	Unidad de medida	Método	M-1	M-2	M-3	M-4
Alcalinidad total	mg/L	Titulación	3	5	6	4
Alcalinidad bicarbonatos	mg/L	Titulación	3	5	6	4
Calcio	mg/L	Titulación	1	2	2	<1
Magnesio	mg/L	Cálculo	1	1	1	<1
Nitratos	mg/L	Cromatografía iónica	0,2	4,5	1,2	0,6
Cloruros	mg/L	Cromatografía iónica	0,1	0,5	0,2	0,2
Sulfatos	mg/L	Cromatografía iónica	0,3	0,5	0,9	2,4
Potasio	mg/L	Absorción atómica	0,73	0,85	0,34	0,2
Sodio	mg/L	Absorción atómica	0,06	0,84	0,11	0,11
	Balance Iónio	co	42,8%	14%	16%	4%

A partir de estos datos se realizaron los diagramas Piper y Stiff de las muestras para su clasificación y análisis (Figura 7-1 y Figura 7-2). Todas las muestras corresponden al tipo bicarbonatadas, siendo las muestras 1 y 4 de tipo Magnésicas, la muestra P2 cálcica – Magnesica y la muestra 3 Cálcica.

Figura 7-1: Diagrama Piper para la clasificación de las muestras de monitoreo hidrogeoquímico.

DIAGRAMA DE PIPER

940000 939000 941000 942000 943000 944000 945000 Cuenca del río Guayuriba 1036000 1037000 1038000 1038000 Cuenca del río Gua 1039000 939000 940000 941000 942000 943000 944000 945000 Monitoreo Convenciones Hidrogeoquímico Villavicencio, Meta Área de Colombia Barras de arena Caracterización 2021 0.3250.65 Drenaje Sencillo Proyeccion Magna Sirgas Drenaje Doble Colombia Bogotá

Figura 7-2: Diagramas Stiff para cada muestra de agua.

Esta composición iónica nos permite inferir con base en la secuencia de Chevotareb, que todos estos tipos de agua son de poco tránsito. Sin embargo, analizando los cationes se pudo inferir unas diferencias composicionales que pueden estar asociadas a diferentes tiempos de tránsito, donde la muestra 3 da las características de menor tiempo de flujo, seguida por la 2 y finalmente la 1 y 4 muestran características de mayor tránsito. A pesar de esto hay que tener en cuenta que estos cationes están en mayor abundancia en los suelos y los cambios en sus concentraciones pueden corresponder también a la composición de la roca por la que transita el agua subterránea.

Haciendo la revisión del porcentaje de error se tiene el error más alto dentro del balance iónico en la muestra número 1 (42,8%) por lo cual el resultado del mismo no es confiable. Las muestras 2 y 3 también poseen valores de error más altos que el recomendado en el decreto1076 del 2015 (10%), pero para los alcances de este estudio se asumen como datos confiables.

Por lo tanto, aunque los datos analizados no permiten hacer una diferenciación clara entre los diferentes tipos de acuíferos en la zona, tanto el pH medianamente ácido (4,27 y 4,95), la conductividad eléctrica baja (5 - 13 us), los sólidos disueltos con rangos de agua lluvia (3 - 8 ppm) y la clasificación por iones mayores de tipo bicarbonatada para todas las muestras incluyendo la muestra tomada en pozo (P-2), están dando como resultado aguas de muy poco transito que indican un carácter de zona de recarga a las unidades acuíferas aflorantes en el área de caracterización hidrogeológica.

8. Inventario de Puntos de Agua Subterranea

Dentro del área de caracterización hidrogeológica, fueron registrados nueve (9) aljibes, cuatro pozos (4), cuarenta y cinco (45) manantiales y siete (7) captaciones superficiales pertenecientes a la comunidad, esta información se obtuvo mediante trabajo de campo e información bibliográfica del EIA Consorcio Ingedisa Dessau Antea San Fernando (2017), la localización del inventario de puntos de agua se presenta en la figura 8-1.

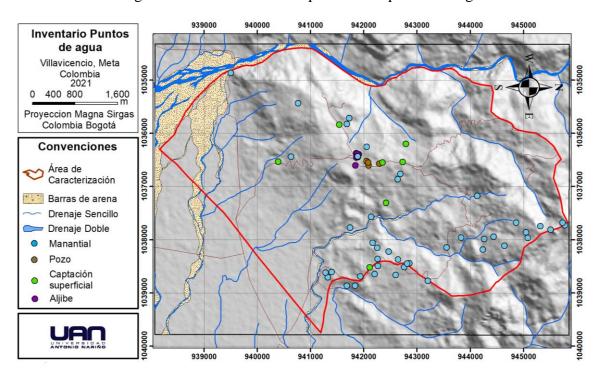


Figura 8-1: Ubicación de los puntos de captación de agua.

Dentro del área de caracterización hidrogeológica la mayoría de los puntos inventariados se encuentran sobre la formación Chipaque (39), dentro de los cuales se encuentra la totalidad de aljibes y pozos, esto se debe a las características litológicas de la formación, siendo esta la formación menos competente. Lo que da una geomorfología de lomeríos, permitiendo así un mejor acceso y facilitando la perforación de la misma. Además de esto, las intercalaciones de arcillas con arenitas confinan el agua y la aísla de posibles contaminantes en la superficie.

Para el caso de la formación Une, solo se encontraron 11 manantiales, los cuales pueden estar asociados a fracturamiento generado por la falla de San Pablo y a las intercalaciones con el miembro lodoso de la misma.

El grupo Palmichal presenta 12 manantiales, los cuales están asociados a el contacto entre estratos arenosos y estratos lodosos, y dos captaciones superficiales, de las cuales una corresponde a la red de acueductos comunitarios de la vereda la Concepción ("Caserío la Cuncia") con aproximadamente 420 usuarios.

La relación entre el tipo de captación y las unidades litológicas se puede observar en la figura 8-2, así mismo el resumen de la información obtenida en el inventario de puntos de agua subterránea se presenta en la tabla 8-1 y la información completa obtenida en los formatos FUNIAS se muestra en el Anexo E.

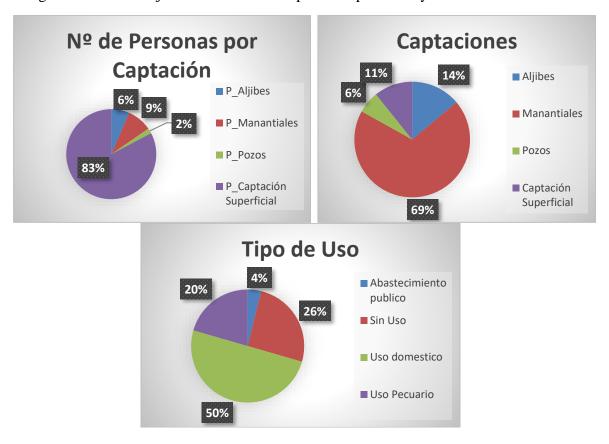


Figura 8-2:Tipo de captaciones por unidad litológica.

Elaboración Propia

Tabla 8-1: Inventario de puntos de agua subterránea analizados en el área de caracterización hidrogeológica.

Código	Х	Υ	Z	Litología	NE	Elevación NE	Adquisición
A1	1036395	941907	857	Ksc	0,5	856,5	Propia
A2	1036375	941857	851	Ksc	1	850	Propia
А3	1036387	941879	852	Ksc	0,5	851,5	Propia
A4	1036385	941881	852	Ksc	2	850	Propia
A5	1036385	941881	852	Ksc	2	850	Propia
A6	1036457	941855	859	Ksc	2	857	Propia
A7	1036436	941882	857	Ksc	0	857	Propia
A8	1036442	941888	857	Ksc	0,5	856,5	Propia
A9	1036604	941842	862	Ksc	0	862	Propia
C1	1035833	941536	816	Ksc		816	Propia
C2	1036547	942350	859	Ksc		859	Propia
C3	1036536	942730	850	Ksc		850	Propia
C4	1036195	942789	791	Ksc		791	Propia
C5	1038518	942110	689	KPgp		689	Propia
C6	1037308	942414	692	Ksc		692	Propia
C7	1036530	940390	618	KPgp		618	Propia
M1	1037177	944131	794	Kiu	0	794	Propia
M10	1038770	943199	727	Ksc	0	727	Propia
M11	1038511	942759	726	Ksc	0	726	Propia
M12	1036862	942638	817	Ksc	0	817	Propia
M13	1036761	942686	819	Ksc	0	819	Propia
M14	1037568	942135	569	Ksc	0	569	Propia
M15	1037771	941743	572	KPgp	0	572	Propia
M16	1038862	941681	537	KPgp	0	537	Propia
M17	1035434	940764	871	KPgp	0	871	Propia
M2	1035826	941679	806	Ksc	0	806	Propia
M3	1037178	940631	853	KPgp	0	853	Propia
M4	1034863	939504	553	KPgp	0	553	Propia
M5	1035716	941724	808	Ksc	0	808	Propia
M6	1035826	941680	848	Ksc	0	848	Propia
M61	1037730	945775	1202	Kiu	0	1202	EIA
M62	1037679	945729	1212	Kiu	0	1212	EIA
M63	1037809	945504	1194	Kiu	0	1194	EIA
M64	1037743	945316	1170	Kiu	0	1170	EIA
M65	1037964	945078	1132	Kiu	0	1132	EIA
M66	1037858	945046	1129	Kiu	0	1129	EIA
M67	1037681	944858	1058	Kiu	0	1058	EIA


Código	х	Υ	Z	Litología	NE	Elevación NE	Adquisición
M68	1038112	944637	1027	Kiu	0	1027	EIA
M69	1037945	944438	935	Kiu	0	935	EIA
M7	1036436	941882	857	Ksc	0	857	Propia
M70	1037987	944260	856	Kiu	0	856	EIA
M71	1038186	944233	875	Kiu	0	875	EIA
M72	1037958	943825	813	Ksc	0	813	EIA
M73	1038144	943551	709	Ksc	0	709	EIA
M74	1038440	942853	760	Ksc	0	760	EIA
M75	1038446	942813	754	Ksc	0	754	EIA
M76	1038372	942642	715	Ksc	0	715	EIA
M77	1038662	942599	702	Ksc	0	702	EIA
M78	1038224	942464	684	Ksc	0	684	EIA
M79	1038152	942252	706	KPgp	0	706	EIA
M8	1036436	941882	857	Ksc	0	857	Propia
M80	1038360	942259	701	Ksc	0	701	EIA
M81	1038490	942262	690	Ksc	0	690	EIA
M82	1038060	942163	651	KPgp	0	651	EIA
M83	1038644	942204	668	Ksc	0	668	EIA
M84	1038691	941934	665	KPgp	0	665	EIA
M85	1038862	941834	611	KPgp	0	611	EIA
M86	1038606	941395	564	KPgp	0	564	EIA
M87	1038704	941325	557	KPgp	0	557	EIA
M88	1038615	941282	540	KPgp	0	540	EIA
M9	1036253	942053	864	Ksc	0	864	Propia
P1	1036521	942050	866	Ksc		866	Propia
P2	1036548	942082	853	Ksc		853	Propia
Р3	1036606	942087	857	Ksc		857	Propia
P4	1036569	942292	857	Ksc		857	Propia

Finalmente, y a modo de resumen se muestra la figura 8-3, que muestra el porcentaje de las personas que se beneficia de las diferentes captaciones, donde cabe resaltar que el 83% de la población analizada toman agua de fuentes superficiales. Esto se debe al acueducto de la vereda la Concepción que alimenta el caserío más grande. Esto se contrasta con el número de captaciones que se encuentra en el área de estudio, las cuales corresponden a manantiales en un 69%.

Sin embargo, tanto las captaciones superficiales como los aljibes y manantiales han presentado problemas de abastecimiento en las épocas de bajas precipitaciones, y son susceptibles a contaminaciones superficiales, esto se agrava dado el aumento poblacional que se está presentando en la vereda, por lo que es importante la creación de un sistema de abastecimiento complementario.

Además, el principal uso de agua es el doméstico en un 50%, ya que la principal actividad económica de la zona es el turismo y la actividad residencial, seguida de una 26% de manantiales sin aprovechamiento directo, un 20% de uso pecuario y un 4% para el abastecimiento público.

Figura 8-3: Porcentajes de los diferentes tipos de captaciones y uso del recuro hídrico.

9. Hidrogeología

La hidrogeología nacional es divida por IDEAM (2013), con base en las unidades tectónicas y cuencas sedimentarias del país, en 40 provincias. La zona de caracterización hidrogeológica se ubica en el límite entre la Provincia hidrogeológica de la Cordillera Oriental y los Llanos Orientales.

En las provincias hidrogeológicas, entre las que se encuentra la zona de caracterización hidrogeológica, se han realizado estudios muy focalizados en lugares con mayor densidad poblacional, dejando la mayor parte del área con una alta carencia de información en este aspecto. Los modelos hidrogeológicos realizados para la ciudad de Villavicencio han explorado principalmente los acuíferos libres de los llanos orientales como lo mostrado por Briceño Amarillo (2018), Luengas Fajardo & Briceño Amarillo (2015), Leal Sierra (2013), Parrado (2014), Hernández Cadena & Morales Parrado (2014) y Consorcio hidrogeología del llano (2009), pero muy poco se ha explorado de los acuíferos de las formaciones cretácicas del flanco oriental de la cordillera oriental siendo uno de los principales trabajos en esta zona el POMCA del río Guayuriba realizado por UT Guayuriba Sostenible (2018), este trabajo define 37 unidades hidrogeológicas a partir de la agrupación de unidades geológicas de acuerdo con sus características geohidráulicas.

En el presente estudio la definición de las unidades hidrogeológicas se hace a partir de las características litológicas, estructurales e hidráulicas encontradas en el área de estudio, siendo estas mutuamente asociables, diferenciándose cinco (5) unidades hidrogeológicas, de las cuales dos son acuitardos (Acuitardo de Fómeque y Acuitardo de Arcillolitas del Limbo) y tres son acuíferos (Acuífero Une, Acuífero Chipaque – palmichal y acuífero depósitos aluviales). Para su descripción se clasificaron según su capacidad de

almacenar y trasmitir agua, pudiendo corresponder a rocas o sedimentos con limitado a ningún recurso de aguas subterráneas (Tipo C), rocas con flujo esencialmente a través de fracturas (Tipo B) o, rocas o sedimentos con flujo esencialmente intergranular (Tipo A).

9.1. Tipo A. Rocas y Sedimentos con Flujo Esencialmente Intergranular

Las unidades hidrogeológicas clasificadas en este tipo se consideran como rocas o sedimentos detríticos que permiten el flujo del agua a través de poros interconectados entre sí.

9.1.1. Acuífero Une (A1)

Corresponde a las rocas de la formación Une, compuestas por dos miembros cuarzo areníticos de grano fino a grueso, que forman estratos masivos de hasta 3 metros de espesor, separados por un miembro intermedio de lodolitas intercaladas con arenitas de grano fino, su espesor es de 500m según Pulido, Gómez, & Marín (1998). Hacia el tope de la unidad se encuentra limitada por la falla San Pablo con el acuífero Chipaque, y hacia la base en contacto fallado con el acuitardo Fomeque.

Para la interpretación hidráulica no fue posible encontrar información bibliográfica especifica de esta formación, debido a esto la caracterización se realiza a partir de las características teóricas de la litología de la unidad. Por lo tanto, la unidad tiene conductividades hidráulicas de aproximadamente $10^{-4}m/s$, que el limite mas bajo de una buena permeabilidad, siendo un tipo de formación permeable. Hay que agregar que en base a lo observado en campo la unidad se encuentra muy fracturada y diaclazado, lo que puede mejorar las características hidrogeológicas de la misma mediante porosidad secundaria, sin embargo, es necesario hacer estudios más detallados.

Además, el acuífero Une, presenta múltiples manantiales afluentes de drenajes importantes como el caño Colorado, caño Blanco y Caño la Unión, siendo una unidad de gran importancia turística por las series de cascadas "La Golondrina". Esto se debe a la geomorfología de laderas abruptas que genera su litología al ser fracturada por la Falla San Pablo. Con base en esto se deduce que la unidad es un acuífero con unas características hidrogeológicas buenas, que gracias a su espesor y la importancia aun no explorada de la porosidad secundaria pueden ser muy buenas.

9.1.2. Acuífero Chipaque-Palmichal (A2)

Esta se compone de la formación Chipaque y el grupo Palmichal, que se encuentran en contacto concordante formando una estructura anticlinal y afloran en la zona de estudio, se encuentran conformados por una secuencia de intercalaciones de lodolitas arenosas negras carbonosas con cuarzo arenitas de grano fino a medio, hacia la parte superior de la unidad los estratos de arenitas son más gruesos llegando a ser de hasta 3 metros de espesor correspondientes a la formación Chipaque y cuarzoarenitas de color blanco amarillento a anaranjado, de grano medio a conglomerático, medianamente deleznables, con una capa de lodolitas grises hacia el medio de la unidad, y por ultimo una capa de arenitas que se encuentran cubiertas por depósitos aluviales que correspondientes al grupo Palmichal. Las arenitas de palmichal hacia la falla de San Pablo se encuentran bituminosas, lo cual modifica las propiedades organolépticas de algunos drenajes, dándoles un claro olor a hidrocarburos. El espesor completo de la unidad hidrogeológica se estima en 1165m, 565m de la formación Chipaque (Guerrero & Sarmiento, 1996)y 600m del grupo Palmichal (Pulido et al., 1998).

En su base se encuentra suprayaciendo en contacto fallado (impermeable) al acuífero Une, y su parte superior se encuentra en contacto concordante con el acuitardo arcillolitas del limbo.

Los análisis de iones mayores realizados en esta unidad muestran un agua de magnésico cálcica, de poco tránsito, lo que evidencia que la zona en la que aflora es zona de recarga.

Esta unidad no presenta una caracterización hidráulica en la literatura, por lo que se analizaran sus propiedades de forma teórica según Vélez Otálvaro (1999),

De manera teórica las características hidráulicas de la unidad tienen valores aproximados de 10⁻⁸para las capas de lodolitas arenosas y 10⁻⁴para las capas de arenitas (Vélez Otálvaro, 1999). Estas características indican capas de buena permeabilidad intercaladas con capas de baja permeabilidad y permite identificar esta unidad como un acuífero multicapa semiconfinado a confinado. Sin embargo, se espera que la unidad tenga un grado de porosidad secundaria debido a las evidencias de fallamiento identificadas como pliegues recumbentes y desclasamiento, debido a esto es muy probable que exista una confección entras las diferentes capas de roca, permitiendo que se comporte como un solo acuífero.

En esta unidad se encuentra la mayor parte de los puntos de agua inventariados, con la totalidad de los aljibes y pozos encontrados en la zona de estudio, además de presentar múltiples lagos naturales además de manantiales que son afluentes de drenajes importantes para las comunidades, como el caño la candelaria sobre el cual se encuentra el acueducto de la vereda la Concepción que suministra agua al casería la Concepción ("La Cuncia"), donde se encuentra la mayor densidad poblacional de la zona de estudio con 420 personas.

. Debido a esto se considera que la unidad es de gran importancia hidrogeológica, con buenas posibilidades acuíferas. Además de esto al ser un acuífero multicapa se previenen posibles contaminaciones superficiales, y la existencia de pozos de caudales de aproximadamente 1m/s y profundidades de más de 30m, permite inferir unas buenas propiedades hidráulicas.

9.1.3. Acuífero Depósitos Aluviales (A3)

Este acuífero se compone de los depósitos aluviales antiguos (Qal2), depósitos aluviales proximales (Qal) y depósitos de cauce activo (Qca), los cuales están compuestos principalmente por gravas arenosas y arenas gravosas, con imbricación. Su espesor varia y puede llegar hasta los 170m y niveles estáticos en valores de aproximadamente 4 a 5m con base en los 5 sondeos eléctricos verticales tomados por NATIVA LTDA & CEMEX (2018), y reanalizados en este estudio. Estos depósitos suprayacen el acuitardo arcillolitas del limbo, el cual de forma local funciona como basamento hidrogeológico. (Briceño Amarillo, 2018).

Según Consorcio hidrogeología del llano (2009), las características hidráulicas del acuífero libre de Villavicencio, cuyos datos se tomaron muy cerca del área de estudio, los valores de transmisividad varían de 6,35 a 1,53 m2/día, y la conductividad hidráulica de 0,079 a 0,019m/día. Estos valores indican que la unidad tiene una productividad baja a moderada del acuífero, sin embargo, en la zona de estudio los sedimentos se encuentran muy próximos a la zona montañosa y al rio Guayuriba por lo que se esperarían valores de productividad mejores, sin embargo, es necesario realizar más estudios. En base a lo anterior se clasifica como un acuífero de baja productividad.

En la zona en la que se encuentra este acuífero no se encontró ningún punto de captación, esto se debe a que toda la población toma agua del acueducto de la vereda La Concepción, a pesar de esto y en base a su espesor, se considera un acuífero con una gran importancia hidrogeológica, que puede servir como complemento al abastecimiento en época de sequía.

9.2. Tipo C. Sedimentos y Rocas con Limitado a Ningún Recurso de Agua Subterránea.

Las unidades hidrogeológicas clasificadas en este tipo se consideran como rocas o sedimentos con muy baja a ninguna productividad, muy compactadas o con poros sin interconexión.

9.2.1. Acuitardo Fómeque (C1)

Este acuitardo se establece en las rocas de la formación Fomeque, compuestas por lodolitas y arcillolitas intercaladas con cuarzoarenita de tamaño de grano fino, con matriz arcillosa y un espesor de 800 metros según lo reportado por Ulloa & Rodríguez (1979). Se encuentra en contacto fallado sobre el Acuífero Une, este contacto para los alcances de este estudio se asume como impermeable en base a lo mencionado en (IDEAM, 2013).

Debido a la falta de información hidráulica, la caracterización de la unidad se hará de forma teórica con base en su litología y a las tablas presentadas en Otálvaro & Victoria (1992). De esta manera la unidad presenta valores teóricos de conductividad hidráulica de aproximadamente $10^{-8}m/s$ y una permeabilidad mala lo que indica que la unidad es semi impermeable, estas características estas asociadas a un acuitardo.

Esta unidad presenta una gran complejidad geológica y de difícil acceso, además de en la zona estar despoblada en su totalidad, por lo que no se encontró ningún punto de agua,

debido a esto se desconoce el nivel estático y la importancia hidrogeológica asociada a los manantiales afluentes, debido a esto se considera de baja importancia hidrogeológica, sin embargo según lo mencionado en UT Guayuriba Sostenible (2018), es posible que la unidad tenga cierto grado de porosidad secundaria, por lo que se requiere más investigación.

9.2.2. Acuitardo Arcillolitas del Limbo (C2)

Esta unidad no aflora en la zona sin embargo según Hubach, (1957), corresponde a una secuencia de arcillas esquistosas de color gris y verde con intercalaciones de areniscas y mantos de carbón. Se encuentra suprayaciendo de manera concordante al acuífero Palmichal-Chipaque e infrayaciendo los depósitos cuaternarios.

Sue espesor es de aproximadamente 250 m (Ulloa y Rodríguez, 1976), sin embargo en los perfiles presentados en Orlando Pulido & Gómez (2001), se muestran fallados por la falla colepato-Villavicencio, que repite la unidad.

Debido a las características litológicas la unidad se asocia a un acuitardo de baja permeabilidad, y toma como basamento hidrogeológico del acuífero libre de los depósitos aluviales.

9.3. Direcciones de flujo

Para la interpretación de las direcciones de flujo se tuvo en cuenta los límites hidrogeológicos de la zona de estudio, la cual está limitada hacia el norte por la formación fomeque que para los alcances del presente estudio se asume como impermeable, por lo tanto, se toman como despreciables los flujos de agua provenientes del norte. Hacia el oeste se encuentra el rio Guayuriba que fluye sobre una zona de falla, y se comporta como una

zona de descarga a nivel regional lo que direcciona el agua subterránea hacia su dirección.

Al este el agua subterránea se encuentra en una zona de tránsito hacia el sur este.

Finalmente, el sur de la zona se limita por la falla Colepato- Villavicencio que según

IDEAM, (2013), funciona como impermeable. (Ver Figura 9-2).

A partir de la figura 9-1se puede identificar que la dirección preferencial del flujo es norte sur, sin embargo, hacia la parte central de la zona se observa una divisoria de aguas subterráneas, que separa las direcciones de flujo entre el caño la Unión y el caño la Candelaria, que son parte de la cuenca del río Guatiquía y del río Guayuriba respectivamente.

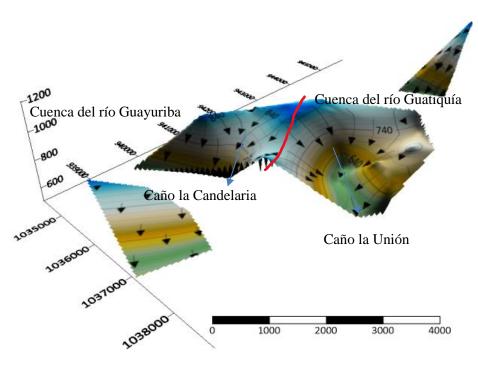


Figura 9-1 Direcciones de flujo del área de caracterización hidrogeológica

Elaboración Propia

9.4. Modelo Hidrogeológico Preliminar

Las representaciones esquemáticas de la hidrogeológica en mapas, perfiles y bloquediagrama temáticos, permite un mejor entendimiento del comportamiento de las

aguas subterráneas, lo que cobra una gran importancia por el conocimiento y entendimiento que se les brinda las comunidades sobre el recurso hídrico, con lo cual puedan solucionar problemáticas locales y concientizar a la comunidad para el manejo y uso adecuado del mismo.

Las representaciones esquemáticas se elaboran a partir de la integración de la información recopilada en este estudio, y corresponden a un mapa hidrogeológico a escala 1:25000, 5 perfiles y 2 bloque diagramas que buscan representar el comportamiento hidrogeológico del área.

9.4.1. Mapa hidrogeológico

El mapa hidrogeológico representado en la figura 9-2, muestra las direcciones de flujo, los niveles piezométricos del agua subterránea y el inventario de puntos de agua subterránea tomados en campo y de manera bibliográfica.

939000 940000 944000 945000 1035000 C 1036000 1038000 D 1039000 939000 940000 941000 942000 943000 944000 945000 Convenciones Мара Hidrogeológico Área de Caracterización Manantial Acuitardo Hidrogeológica Fómeque (C1) Pozo Villavicencio, Meta Drenaje Doble Falla cubierta Captación superficial Colombia Drenaje Sencillo Aljibe Falla definida 2021 Dirección de flujo Acuífero Une (A1) 300 600 1,200 Sinclinal Nivel piezométrico Acuifero Chipaque-Palmichal (A2) Anticlinal Divisoria de agua Proyeccion Magna Sirgas subterránea Acuifero Depositos Perfiles Colombia Bogotá Aluviales (A3)

Figura 9-2: Mapa hidrogeológico

Elaboración Propia

Las zonas de recarga del área de estudio indicadas en el mapa con una letra (R), se encuentran sobre el acuífero Une y Chipaque-Palmichal. Las zonas de descarga se ubican sobre la falla San Pablo que funciona como la principal zona de descarga del acuífero Une, y en menor medida del acuífero Chipaque-Palmichal. Para este ultimo las principales zonas de descarga corresponden a el caño la Candelaria, El Caño la Unión y el río Guayuriba.

Por lo tanto, los flujos de agua parecen estar influenciados principalmente por la topografía de la zona y en segunda medida por la geología de las unidades. Siendo concordante con la litología, la cual es muy homogénea variando entre unidades mayoritariamente arenosas con otras mayoritariamente lodosas, además del casi nulo bombeo de agua subterránea por la comunidad y al gran flujo evidenciado por la recarga (1936 mm/año), la densidad de manantiales y el caudal de los mismos con un promedio de 0.22 l/s, llegando a ser de hasta 2 l/s. Además, La recopilación de información primaria realizada para este estudio, se realizó posterior a la mayor época de lluvias, por lo que se espera que los niveles piezométricos se encuentren próximos los más altos del año.

9.4.2. Perfiles hidrogeológicos

Los perfiles hidrogeológicos (Figura 9-3 y Figura 9-4) muestran los contactos entre las unidades hidrogeológicas y como estos afectan las líneas de flujo en profundidad. El perfil 1 muestra cómo, en el acuífero Depósitos Aluviales (A3), el flujo es principalmente horizontal hacia el oriente, esta orientación es concordante con el flujo regional de las aguas superficiales, los cuales en los llanos orientales varían su flujo de norte a sur, a la dirección oeste a este. Además, muestra como los limites hidrogeológicos son al sur la Colepato Villavicencio, y en profundidad el acuitardo Arcillolitas del Limbo (C2) que funciona como basamento hidrogeológico.

Figura 9-3: Perfiles hidrogeológicos 1, 2 y 3

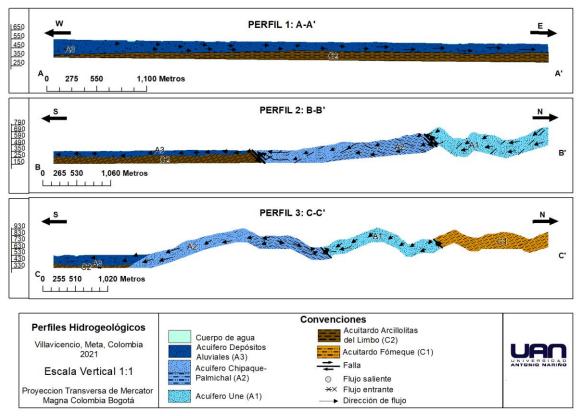
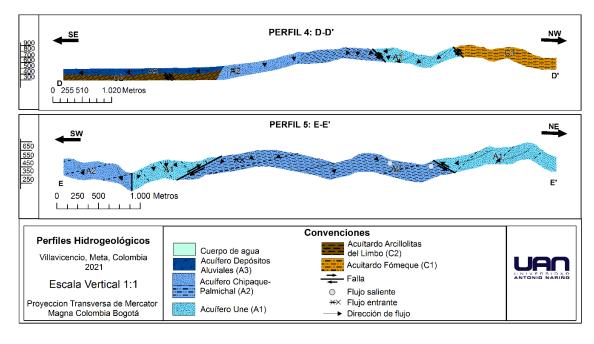
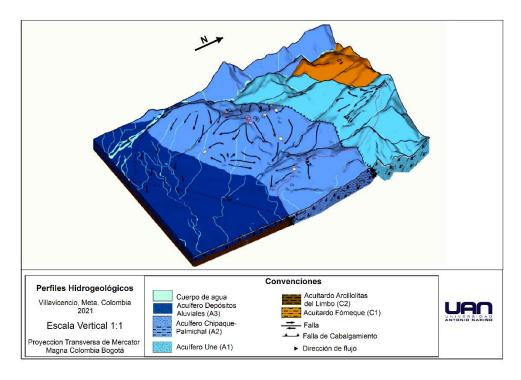



Figura 9-4: Perfiles hidrogeológicos 4 y 5

Elaboración Propia


Los perfiles 2, 3 y 4 muestran una predominancia del flujo en la zona de estudio hacia el sur concordante con la disminución en la elevación topográfica, con componente hacia lo profundo debido a los espesores de los acuíferos Une (A1) y Chipaque-Palmichal (A2) y la no identificación de basamento hidrogeológico debajo de estos que permite el descenso del agua por gravedad. Sin embargo, en el contacto hidrogeológico entre ambos acuíferos que corresponde a la falla San Pablo, las direcciones de flujo convergen, esto se le atribuye a la zona de debilidad que genera esta misma falla y donde la geomorfología toma características de valles profundos y estrechos por los que fluyen algunos de los caños de la vereda, cuyos cauces pueden estar asociados a la descarga de las aguas subterráneas en conjunto con la escorrentía.

El perfil 5 muestra como la falla San Pablo al asumirse como contacto hidrogeológico impermeable hace emerger el agua subterránea del acuífero Une, mientras el agua subterránea del acuífero Chipaque-Palmichal sigue su tendencia hacia el sur de manera perpendicular a este perfil, con un componente vertical bajo.

9.4.3. Bloque diagrama hidrogeológico

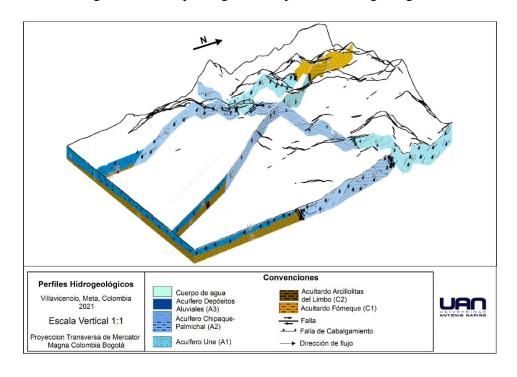

Los bloquediagramas de la figura 9-5 y la figura 9-6, muestran de manera integrada y simplificada los diferentes acuíferos y el comportamiento de los flujos subterráneos, con esto se busca mejorar el conocimiento hidrogeológico del sector, y se espera que esta información sirva como insumo en la toma de decisiones sobre el manejo y uso adecuado del recurso hídrico.

Figura 9-5: Bloquediagrama hidrogeológico

Elaboración Propia

Figura 9-6: Bloquediagrama de perfiles hidrogeológicos

Elaboración Propia

9.5. Viabilidad del agua Subterránea en la vereda la Cumbre y Alrededores

El análisis del agua subterránea obtenido gracias a la integración de la información analizada, permitió observar que en la vereda la Cumbre habitan de manera permanente 120 personas a las que se suma un gran número de turistas que a diario visita la zona y el rápido crecimiento poblacional, esta vereda se abastece principalmente a partir de aljibes, manantiales y agua lluvia, que en épocas de sequía se ven afectadas drásticamente. Sin embargo, el área de mayor densidad poblacional de la vereda, se encuentra sobre el la unidad acuífera Chipaque-palmichal, que por sus características multicapa puede aumentar el confinamiento y dificultar el ingreso de contaminantes, estas propiedades permiten que sirva como fuente de agua subterránea para el abastecimiento complementario del recurso hídrico, Evidencia de esto son los 4 pozos encontrados, los cuales tienen caudales de extracción de aproximadamente 11/s, profundidades de aproximadamente 30 m y excelentes características organolépticas.

Además de esto en la vereda más poblada corresponde a la vereda la concepción en el caserío de la Cuncia, esta comunidad conformada por aproximadamente 420 personas, capta o toma agua del caño La Candelaria con un caudal de captación de 7l/s, el cual se nutre del agua subterránea del acuífero Chipaque palmichal y presenta una importante disminución en la época de no lluvia, a pesar de esto no se han presentado problemas e escases en esta población, sin embargo debido al crecimiento poblacional es necesaria una fuente complementaria de agua. Este caserío se encuentra sobre el acuífero Depósitos Aluviales el cual se recarga a partir del agua lluvia y de los flujos superficiales y subterráneos del rio Guayuriba, este acuífero tiene una profundidad de 170 m en contacto con el acuitardo arcillolitas del Limbo que localmente funciona como basamento hidrogeológico.

Estos acuíferos se proponen como fuente suplementaria de agua para la comunidad, y suponen una fuente estratégica de agua subterránea, por lo que es necesario el uso y manejo adecuado del recurso, para evitar el ingreso de contaminantes que pueda afectar la calidad de agua.

10. Conclusiones

La identificación y correcta delimitación de las unidades geológicas e hidrogeológicas en la zona de caracterización es limitada por la gran complejidad estructural, asociada a los esfuerzos que generaron el sistema de fallas característico del flanco oriental de la cordillera oriental. Debido a esto, la importancia de la porosidad secundaria presente en las unidades hidrogeológicas se desconoce a detalle, presumiendo que puede representar un gran porcentaje de porosidad de las unidades, mejorando sus propiedades acuíferas, por lo que se recomienda realizar futuros estudios detallados en geología estructural dentro de la zona.

En la zona de caracterización hidrogeológica se identificaron siete unidades geológicas aflorantes, que corresponden a la formación Fómeque, compuesta por lodolitas y arcillolitas intercaladas con algunas arenitas, la formación Une conformada por dos unidades areníticas separadas por una intermedia de composición lodo arenosa, la formación Chipaque es principalmente lodolítica con intercalaciones de arcillolitas y arenitas, el grupo Palmichal se describe como intercalaciones de arenitas con lodolitas. Los depósitos aluviales antiguo, aluvial proximal y de cauce activo están compuestos por arenas gravosas y gravas arenosas de propiedades hidrogeológicas similares. Las diferencias litológicas descritas y el porcentaje de poros que pueden poseer teóricamente, permiten asumir una diferenciación de unidades hidrogeológicas considerando las unidades formación Une, Grupo Palmichal - formación Chipaque y los depósitos cuaternarios (aluvial antiguo, aluvial proximal y de cauce activo) como potenciales acuíferos limitados por las fallas y la formación Fómeque como acuitardo.

El cálculo del balance hídrico muestra una recarga en la zona de caracterización hidrogeológica de 1936 mm al año, con valores mensuales máximos de 358 mm en el mes de mayo, asociado a las precipitaciones altas que inician desde marzo y superan en gran medida (más del doble) la evapotranspiración real, aumentando la humedad de la zona no saturada, los niveles de la zona saturada del subsuelo y generando un exceso hídrico. El valor mensual mínimo de la recarga es de -38,6 mm en el mes de marzo por ser el último mes de la época de bajas precipitaciones y mayor temperatura media, alcanzando la precipitación a cubrir la evapotranspiración potencial y aportando al almacenamiento de agua en los suelos, siendo el aporte a la escorrentía casi nulo, lo que afecta la humedad de la zona no saturada y los niveles del agua subterránea, que mantienen los manantiales perenes de la zona.

Las características hidrogeoquímicas que se tomaron en la zona de estudio muestran una baja variación de los parámetros entre las diferentes unidades, siendo el pH medianamente ácido (4,27 y 4,95), los valores de conductividad eléctrica bajos (5 - 13 us) y los sólidos disueltos bajos (3 - 8 ppm). Además, la clasificación por iones mayores para todas las muestras es de tipo Bicarbonatadas. Todas estas características indican muy bajo tránsito del agua subterránea, interpretando el área de Caracterización hidrogeológica como zona de recarga de las unidades acuíferas aflorantes.

El agua que entra al sistema acuífero, fluye de manera general de norte a sur, guiado por el gradiente hidráulico generado principalmente por la topografía de la zona. Una parte del agua subterránea fluye en dirección de los sistemas de flujo locales, hacia las principales zonas de descarga, están conformados por una serie de pequeños drenajes sin nombre que fluyen hacia el río Guayuriba, además del caño la Candelaria, y el río en sí mismo, como también los drenajes que fluyen hacia el río Guatiquía como los caños la

Unión, Blanco y Colorado. Muchos de estos drenajes presentan un fuerte control estructural debido a la falla inversa San Pablo, y el sistema de fallas de rumbo característicos de la Cordillera Oriental. Parte de este flujo de agua funciona como recarga del acuífero conformado por depósitos aluviales de los llanos orientales, en el cual los flujos cambian su dirección hacia el este, siguiendo la tendencia regional.

Dentro del área de caracterización hidrogeológica se encuentran 2 comunidades con una población considerable de 120 personas para la vereda la Cumbre y 420 personas para la vereda la Concepción. La vereda la Cumbre se encuentra sobre el acuífero Chipaque-Palmichal, el cual se propone en este estudio como una fuente complementaria del abastecimiento de agua, la cual es principalmente captada de manantiales, drenajes superficiales, aljibes y agua lluvia, los cuales son muy susceptibles a las sequias. En el caso de la vereda la Concepción la población se abastece del caño La Candelaria, el cual se nutre del agua subterránea del acuífero sobre el que se encuentra la vereda La Cumbre, por lo que se propone como complemento el acuífero depósitos aluviales, sobre el que se encuentra el caserío La Cuncia, evitando así problemas futuros.

Por lo tanto, se considera fundamental que estos acuíferos tengan una gestión adecuada, ya que son de gran importancia estratégica para toda la comunidad y debe ser tratado y cuidado de manera adecuada para evitar contaminaciones y disminuciones en el nivel piezométrico. Así mismo, El potencial hidrogeológico detallado de estos acuíferos es desconocido, por lo cual se recomienda hacer estudios en este aspecto para la toma de decisiones y gestión del recurso hídrico por parte de las entidades competentes.

11. Referencias Bibliográficas

- Azagra, A. (2006). Particularización al método de los coeficientes de escorrentía. Valladolid, España.
- Briceño Amarillo, O. O. (2018). *Riesgo de contaminación de acuíferos en áreas urbanas*(Caso Villavicencio Meta). Retrieved from

 http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=tr

 ue&db=ir00238a&AN=unal.70749&lang=es&site=eds-live
- Calvache, A. (2013). Nutrimentos de Plantas. (U. C. del Ecuador, Ed.).
- Carvajal, J. H. (2012). Propuesta de estandarización de la cartografía geomorfológica en Colombia. *Bogotá: INGEOMINAS*.
- Consorcio Ambiental Chivor. (2010). Estudio de impacto ambiental proyecto UPME-03-2010, *3.2.1 Geol*, 1–38.
- Consorcio hidrogeología del llano. (2009). Determinación del Modelo hidrogeológico conceptual del acuífero del municipio de Villavicencio. Villavicencio.
- Consorcio Ingedisa Dessau Antea San Fernando. (2017). Capítulo 3.2 Medio físico. In Proyecto "construcción y operación de la línea de trasmisión A 230 kv La Reforma - San Fernando. Bogotá D.C.
- CORMACARENA, UAESPNN, & CAEMA. (2008). Fase Diagnostica Rio Guatiquia Geologia. In *Plan de Ordenación y Manejo de la Cuenca del Río Guatiquía*.
- Corredor, V., Terraza, R., & Etayo-Serna, F. (2015). Geología de la Plancha 228 Bogotá

 Noreste. Servicio Geológico Colombiano, Bogotá. Bogotá.
- Custodio, E., & Llamas, M. R. (1976). *Hidrología subterránea* (Vol. 2). Omega Barcelona. Domenico, P. A. (1972). Concepts and models in groundwater hydrology.

- Etayo-Serna, F., Laverde-Montaño, F., & Pava, A. (1985). *Proyecto Cretacico:* contribuciones (Vol. 16). Ministerio de Minas y Energía.
- Folk, R. L. (1974). Petrology of sedimentary rocks: Austin. Texas, Hemphill, 182.
- Guerrero, J., & Sarmiento, G. (1996). Estratigrafía física, palinológica, sedimentológica y secuencial del Cretácico Superior y Paleoceno del Piedemonte Llanero: Implicaciones en exploración petrolera. *Geología Colombiana*, 20, 3–66.
- Guzmán, D., Ruíz, J. F., & Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través Análisis de Componentes Principales (ACP). Subdirección de Meteorología IDEAM.
- Hernández Cadena, C. A., & Morales Parrado, L. (2014). Diagnóstico hidráulico de las captaciones de aguas subterráneas en el municipio de Villavicencio-departamento del Meta.
- Herraiz, A. S. (2009). La importancia de las aguas subterráneas. *Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales, 103*(1), 97–114.
- Hubach, E. (1957). Estratigrafía de la Sabana de Bogotá y alrededores. *Boletín Geología de Colombia*, 5(2):93-112.
- IDEAM. (2013). Aguas subterráneas en Colombia una visión general. *Bogotá*, *DC: IDEAM*, 284.
- Leal Sierra, J. A. (2013). "Versionamiento 2009-2010 de la vulnerabilidad intrínseca a la contaminación, y el modelo hidrogeológico matemático de Villavicencio para un área de 30.000 Ha, utilizando herramientas gis y visual-modflow "análisis 3d.""

 Colombia, South America: Universidad Militar Nueva Granada. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=tr ue&db=edsbas&AN=edsbas.A962BEA6&lang=es&site=eds-live

- Luengas Fajardo, J. S., & Briceño Amarillo, O. O. (2015). *Aproximación al modelo matemático del acuífero libre de Villavicencio*. Bogotá. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000862922&lang=es&site=eds-live
- Morales, C. J. (2010). Integración de la cartografía geológica de los Llanos Orientales:

 Departamento del Meta y sector suroccidental del departamento de Casanare.

 Planchas 248, 249, 250, 251, 252, 267, 268, 269, 270 y 271. Escala 1:100.000.

 Instituto Colombiano de Geología y Mineria. INGEOMINAS. Bogotá.
- NATIVA LTDA, & CEMEX. (2018). Informe final: Adquisición, procesamiento e interpretación geoeléctrica Municipio de Acacías-Río Guayuriba, (25).
- Nava, G. (2011). Manual de instrucciones para la toma, preservación y transporte de muestras de agua de consumo humano para análisis de laboratorio. *Bogotá: Instituto Nacional de Salud*, 95.
- Ojeda, J., & Alvarado, C. (2000). Zonificación sismogeotécnica indicativa de la ciudad de Villavicencio. Zonificación Integral Por Amenazas Naturales Para La Ciudad de Villavicencio (Meta). Villavicencio: Ingeominas-Alcaldía de Villavicencio, Convenio Interadministrativo, 2.
- Organización Meteorológica Mundial. (2008). *Guía de prácticas hidrológicas*. (Organización Meteorológica Mundial, Ed.) (6a ed.). Ginebra- Suiza.
- Otálvaro, V., & Victoria, M. (1992). *Hidráulica de aguas subterráneas*. Universidad Nacional de Colombia Sede Medellín. Facultad de Minas. Escuela
- Pulido González, O., Gómez Villalba, L. S., & Marín R., P. (2014). Mapa Geológico de la Plancha 266 Villavicencio. In *Geología de la Plancha 266 Villavicencio*. Bogotá D.C.: Sevicio Geológico Colombiano.

- Pulido, O, Gómez, L. S., & Marín, P. (1998). Geologia de la Plancha 266 Villavicencio, scale 1: 100.000. *Ingeominas. Bogotá*.
- Pulido, Orlando, & Gómez, L. S. (2001). *Geología de la plancha 266 Villavicencio. Escala 1:100.000*. Bogotá, D.C.: INGEOMINAS.
- Quishpe, A. G. (2017). Caracterización hidrometeorológica y estimación del balance hídrico de la cuenca del río Chambo. Escuela Politécnica Nacional.
- Renzoni, G. (1967). Geologia del Cuadrángulo J-12, Tunja. Bogotá.
- Rodríguez, C., Vargas, N., Jaramillo, O., Piñeros, A., & Cañas, H. (2010). Oferta y uso de agua subterránea en Colombia. *Estudio Nacional Del Agua*, 112–168.
- Struckmeier, W. F., & Margat, J. (1995). Hydrogeological Maps A Guide and a standard legend. In *International Contributions to Hydrogeology* (Vol. 17). IAH.
- Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. *Geographical Review*, 38(1), 55–94. https://doi.org/10.2307/210739
- Ulloa, C., & Rodriguez, E. (1976). Mapa Geológico deColombia, plancha 211-Tauramena, scale 1: 100.000.-Ingeominas, Bogotá.(1979a): Geología del Cuadrángulo K-12 (Guateque). *Boletin Geológico Ingeominas*, 22(1), 5–55.
- Ulloa, C., & Rodríguez, E. (1979). Geología del Cuadrángulo K-12 Guateque, Colombia. *INGEOMINAS, Informe 1701, Boletín Geológico*, 22(1), 3–56.
- UT Guayuriba Sostenible. (2018). Climatología. In *POMCA Río Guayuriba Actualización*. Bogotá D.C.
- Vélez Otálvaro, M. V. (1999). Hidráulica De Aguas Subterráneas, 156.

Anexo A

Descripciones de campo de las estaciones de control geológico, estructural y de toma de muestra.

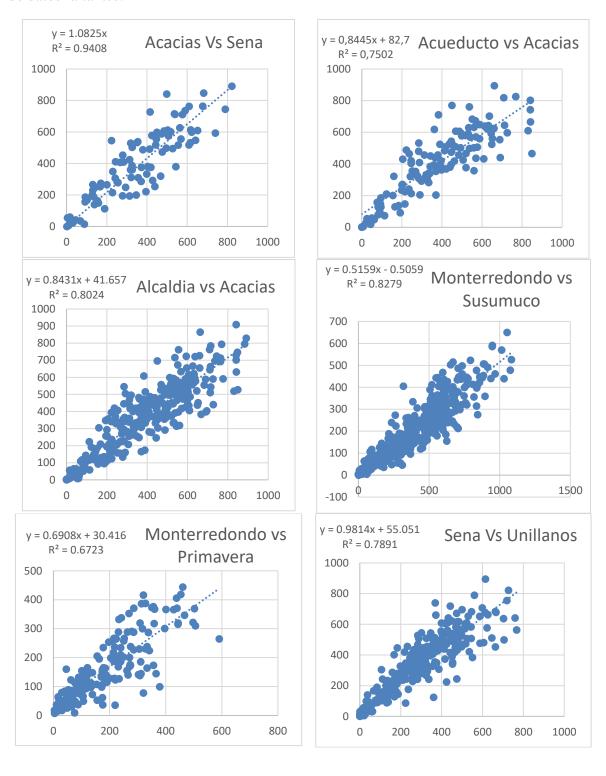
Núm.	Х	Υ	Z	Observaciones	Formación	Tipo de Estación			
1	1036338	943263		Lodolitas anaranjadas muy meteorizadas, con un plegamiento con orientación N30W- N14W.	Formación Une	Estación de control geológico.			
2	1036338	943273		Lodolita gris oscura con intercalaciones de arenitas con icnofósiles, hacia el norte se observa una "silleta" como evidencia de falla.	Formación Une	Estación de control geológico.			
3	1036373	943246	864	Arenita blanca de grano medio a fino deleznable, de composición cuarzoarenita bien seleccionada.	Formación Une	Estación de control geológico.			
4	1036594	943102	857	Lodolitas anaranjadas muy meteorizadas, con intercalaciones de arenitas blancas de grano medio a fino.	Formación Une	Estación de control geológico.			
5	1036603	942930	852	Lodolitas anaranjadas muy meteorizadas, con intercalaciones de arenitas blancas de grano medio a fino.	Formación Chipaque	Estación de control geológico.			
6	1036557	942730	857	Arenita gris bien compactada con tamo de grano de media a fino, compuesto por cuarzoarenita fosfática, los estratos se encuentran fracturados.	Formación Chipaque	Estación de control geológico.			
7	1036563	942302	866	Arenita gris bien compactada con tamo de grano de media a fino, compuesto por cuarzoarenita fosfática, intercalada con pequeñas capas de lodolitas negras de aproximadamente 1 cm.	Formación Chipaque	Estación de control geológico.			
8	1036200	941457	898	Arenitas de color blanco a anaranjado deleznable, con granos de tamaño medio a fino compuestos principalmente de cuarzo con un bajo porcentaje de lodo	Grupo Palmichal	Estación de control geológico			
9	1036534	941016	851	Lodolita gris oscura bien compactada.	Grupo Palmichal	Estación de control geológico.			
10	1036518	943596		Lodolita anaranjada intercalada con arenita blanca bien cementada.	Formación Une	Estación de control geológico.			
11	1036145	943581	788	Lodolita gris oscura laminada y bien compactada, intercalada con pequeñas láminas de arenitas de grano fino.	Formación Une	Estación de control geológico y punto de muestreo.			
12	1035994	943788	724	Depósitos aluviales del Caño San Luciano.	Formación Une	Estación de control geológico.			
13	1035889	943832	744	Lodolita anaranjada muy meteorizada.	Formación Une	Estación de control geológico.			

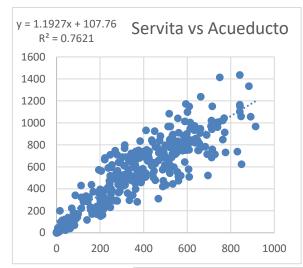
14 1035777 943965 798 tamaño medio a fino intercalados con capas de lodolita gris oscura bien compactada. 15 1035755 944042 851 Arenita blanca cementada con tamaños grano de medio a fino. 16 1035722 944208 883 Lodolitas negras fosilíferas 17 1036244 943368 Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación con estrugiente. 18 1035777 943965 798 tamaño medio a fino intercalados con capas de lodolita gris oscura bien compactada. 19 1035755 944042 851 Arenita blanca cementada con tamaños grano de medio a fino. 10 1035722 944208 883 Lodolitas negras fosilíferas 10 1035722 944208 883 Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación con contrator de medio a fino intercalados con capas de lodolita gris oscura bien compactada. 10 1035755 944042 851 Arenita blanca cementada con tamaños grano de medio a fino. 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ción de entrol lógico. ción de entrol lógico. ción de entrol uctural, co y punto uestreo.
15 1035777 943965 798 tamano medio a fino intercalados con capas de lodolita gris oscura bien compactada. 15 1035755 944042 851 Arenita blanca cementada con tamaños grano de medio a fino. 16 1035722 944208 883 Lodolitas negras fosilíferas 17 1036244 943368 Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación con con con con con con con con con co	lógico. ción de introl lógico. ción de introl uctural, co y punto
Arenita blanca cementada con tamaños grano de medio a fino. Formación Une Estac co geol 16 1035722 944208 883 Lodolitas negras fosilíferas Formación Fómeque Estac co estru geológic de mu Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación Fómeque Estac co estru geológic de mu	ción de entrol lógico. ción de entrol uctural, co y punto
15 1035755 944042 851 Arenita blanca cementada con tamaños grano de medio a fino. 16 1035722 944208 883 Lodolitas negras fosilíferas Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación con geológica de municipal con finamente laminadas intercaladas con Formación con geológica de municipal con geológica de mun	entrol lógico. ción de entrol uctural, co y punto
15 1035755 944042 851 grano de medio a fino. Une geol 16 1035722 944208 883 Lodolitas negras fosilíferas Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación Formación Estac geológic de mu 17 1036244 943368	lógico. ción de introl uctural, co y punto
16 1035722 944208 883 Lodolitas negras fosilíferas Formación Fómeque estrugeológico de mu Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación color	ción de introl uctural, co y punto
16 1035722 944208 883 Lodolitas negras fosilíferas Formación Fómeque estrugeológico de mu Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación col	ntrol uctural, co y punto
16 1035722 944208 883 Lodolitas negras fosilíferas Formación Fómeque estrugeológico de mu Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación color	uctural, co y punto
Lodolitas negras fosiliferas Fómeque geológic de mu Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación col	co y punto
Lodolitas de color gris a gris claro, finamente laminadas intercaladas con Formación Col	
Lodolitas de color gris a gris claro, Estado finamente laminadas intercaladas con Formación col	uestreo.
finamente laminadas intercaladas con Formación co	
1 1 / 11036 244 1943 3681 1 1	ción de
17 1036244 943366 arenitas de color blanco a gris de tamaño Une estru	ntrol
a. c	ictural y
de grano fino.	lógico.
Arenitas de color blanco a anaranjado, con	-:41-
I lato grado de meteorización y tamanos de l'Eormación I	ción de
grano de medio a fino, con intercalaciones Chinaque	ntrol
de lodolitas oscuras carbonáceas.	lógico.
Arenita blanca cementada y deleznable con	
tamaño de grano que varía de medio a	a: 4 .a. al a
l l grueso con presencia de cantos hien l	ción de
I IU IIII363 / /IU/I3 / //II X65 I radondaados da compliastos por cilarzo I	geológico
I I I I I I I I I I I I I I I I I I I	into de
evidencia de estratificación cruzada (Fm.	estreo.
Une).	
Arenitas de grano fino cementadas, con Estad	
	ción de
laminaciones que varían de 1 a 5 cm, Formación control	ción de geológico
1 /U 11U3h3hh1943/hX1 X5/ I	
20 1036366 943268 857 intercaladas con láminas de menos de un Une y pu	geológico
intercaladas con láminas de menos de un Une y pu centímetro de lodolitas negras. un mue	geológico ınto de
intercaladas con láminas de menos de un Une y pu centímetro de lodolitas negras. Arenitas muy meteorizadas de color Formación	geológico Into de estreo.
20 1036366 943268 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. Une y pu centímetro de lodolitas negras. 21 1036277 943313 857 Arenitas muy meteorizadas de color Formación color aparaniado claro.	geológico into de estreo. ción de
21 1036277 943313 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con	geológico into de estreo. ción de introl lógico.
20 1036366 943268 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. 21 1036277 943313 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente	geológico into de estreo. ción de entrol
21 1036277 943313 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Estac	geológico into de estreo. ción de introl lógico.
21 1036244 943335 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une Estactorio de lodolitas negras. Arenitas muy meteorizadas de color une Estactorio de lodolitas negras. Formación une Estactorio de lodolitas negras. Estactorio de lodolitas negras.	geológico into de estreo. ción de introl lógico.
21 1036244 943335 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une 1036244 943335 857 conglomeráticos con granos de tamaño Une 22 1036244 943335 857 conglomeráticos con granos de tamaño Une 23 1036244 943335 857 conglomeráticos con granos de tamaño Une 24 1036244 943335 857 conglomeráticos con granos de tamaño une congeolo de c	geológico into de estreo. ción de entrol lógico. ción de entrol
21 1036277 943313 857 Intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Intercalaciones de lodolitas grises con Intercalaciones de lodolitas grises con Intercalaciones de lodolitas grises con Une y pu mue py pu mue promación Une promación Un	geológico into de estreo. ción de entrol lógico. ción de entrol lógico.
21 1036277 943313 857 Intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une 1036244 943335 857 Conglomeráticos con granos de tamaño Une 22 1036244 943335 857 Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de 33 1038133 941411 615 Estac	geológico into de estreo. ción de introl lógico. ción de introl lógico.
21 1036277 943313 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une 21 1036244 943335 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une Estador Congeol Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano Pormación Une Estador Congeol Estador Congeol Estador Congeol Palmichal	geológico into de estreo. ción de introl lógico. ción de introl lógico.
21 1036247 943313 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une 21 1036244 943335 857 Conglomeráticos con granos de tamaño grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. 23 1038133 941411 615 Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina.	geológico into de estreo. ción de introl lógico. ción de introl lógico. ción de introl lógico.
21 1036247 943313 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une 21 1036244 943335 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño Une 22 1036244 943335 857 Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, Grupo Estado Grupo Palmichal geol	geológico into de estreo. ción de introl lógico. ción de introl lógico. ción de introl lógico.
intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de logalmichal con palmichal con palmicha	geológico into de estreo. ción de introl lógico. ción de introl lógico. ción de introl lógico.
intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de logalmichal con palmichal con palmicha	geológico into de estreo. ción de introl lógico. ción de introl lógico. ción de introl lógico.
21 1036366 943268 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. 21 1036277 943313 857 Arenitas muy meteorizadas de color anaranjado claro. 22 1036244 943335 857 Arenitas de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. 23 1038133 941411 615 Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de lodolitas oscuras y anaranjadas. Estac co geol Grupo Palmichal Grupo Palmichal Estac co geol Estac co	geológico into de estreo. ción de introl lógico. ción de introl lógico. ción de introl lógico. ción de introl lógico. ción de
intercaladas con láminas de menos de un centímetro de lodolitas negras. Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de lodolitas oscuras y anaranjadas. Formación Une Estac co geol Grupo Palmichal grupo Palmichal gropo Con gropo Co	geológico into de estreo. ción de introl lógico.
21 1036366 943268 857 Intercaladas con láminas de menos de un centímetro de lodolitas negras. Une mue mue centímetro de lodolitas negras. State con con tamaño de grano medio, localmente conglomeráticos con granos de tamaño de grano de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de lodolitas oscuras y anaranjadas. Grupo Palmichal geol con geo	geológico into de estreo. ción de introl lógico.
21 1036366 943268 857 intercaladas con láminas de menos de un centímetro de lodolitas negras. Une mue mue centímetro de lodolitas negras. Une mue mue centímetro de lodolitas negras. Seria con con tamaño de grano medio, localmente conglomeráticos con granos de tamaño de grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Intercalaciones de lodolitas grises con arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de lodolitas oscuras y anaranjadas. Grupo Palmichal geol con geol geol geol geol geol geol geol geol	geológico into de estreo. ción de introl lógico.
intercaladas con láminas de menos de un centímetro de lodolitas negras. 21 1036277 943313 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de lodolitas oscuras y anaranjadas. Estac co geol Formación Une Co geol Formación Une Estac co geol Formación Une Formación Une Formación Une Estac co geol Formación Une Formación Un	geológico into de estreo. ción de introl lógico. ción de introl ción de
intercaladas con láminas de menos de un centímetro de lodolitas negras. 21 1036277 943313 857 Arenitas muy meteorizadas de color anaranjado claro. Arenita de color blanco a gris claro con tamaño de grano medio, localmente conglomeráticos con granos de tamaño grava de hasta 2 cm de diámetro compuestos de cuarzo lechoso. Arenitas anaranjadas con presencia de estratificación ondulosa y tamaño de grano que varía de media a fina. Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de lodolitas oscuras y anaranjadas. Arenitas de color gris a anaranjado. Estac con geol Formación Une Grupo Palmichal Grupo Palmichal Grupo Palmichal Grupo Palmichal Estac con geol Estac con geol Con geol Estac con geol Arenitas de color gris a anaranjado, intercalada con pequeñas láminas de lodolitas oscuras y anaranjadas. Estac con geol Estac con geol Con geol Estac con geol Estac con geol Con geol Con geol Con geol Con geol Con geol Estac con geol Con ge	geológico into de estreo. ción de introl lógico.

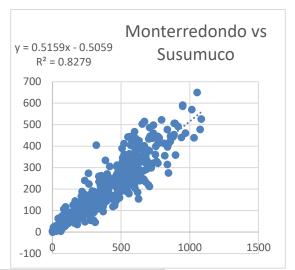
27	1037299	942417	712	Lodolitas laminadas fisiles de color gris oscuro carbonáceo, ubicadas en la Finca el Placer.	Formación Chipaque	Estación de control geológico.
28	1036922	942472	761	Arenitas de color blanco a gris claro de tamaño de grano medio a fino, intercalado con estratos de lodolitas que varían de 10cm a 1m de espesor.	Formación Chipaque	Estación de control geológico.
29	1036820	942160	834	Lodolitas negras finamente laminadas y plegadas. posiblemente Chipaque Afloramiento de quebrada 1pm. Icnofósiles en la parte superior de las arenas en contacto con las arcillas.	Formación Chipaque	Estación de control geológico.
30	1036833	942150	824	Intercalaciones entre arenitas y lodolitas. Las arenas están compuertas de cuarzoarenita bituminosa de grano medio, bien seleccionada y poco cementada y las lodolitas están compuestas de lodolitas negras arenosas en el tope del estrato y más arcillosas hacia su base, muy laminadas, plegadas y fracturadas.	Formación Chipaque	Estación de control geológico.
31	1036862	942133	819	Arenitas amarillentas intercalada con lodolitas.	Formación Chipaque	Estación de control estructural y geológico.
32	1035512	941601	831	Arenitas de medias a finas con capas de aproximadamente 10 cm de espesor, de color anaranjado rojizo, afloran en un corte de carretera, bajo una capa de suelo arcilloso, rojizo de aproximadamente medio metro de espesor.	Formación Chipaque	Estación de control estructural y geológico.
33	1035407	941495	838	Afloramiento de ladera, en este punto se observa un claro cambio en la coloración de la roca, de anaranjado rojizo a arena blanca a grisácea bituminosa, de grano medio a grueso bien seleccionada, muy parecida a la arena que se encuentra en Chipaque, sin embargo, no se ha encontrado la característica predominancia lodosa de la formación, pero se puede colocar como un contacto. Además de esto la formación tiene unas características hidrogeológicas muy buenas, con gran humedad y goteo constante.	Formación Chipaque	Estación de control geológico.
34	1035021	941565	680	Afloramiento de ladera, formado posiblemente por la falla, aparentemente de contra pendiente, se observan intercalaciones de arenas con lodolitas, las arenas tienen estratos que varían entre 3m a 1m y lodolitas de medio mero a 1 metro.	Formación Chipaque	Estación de control geológico.

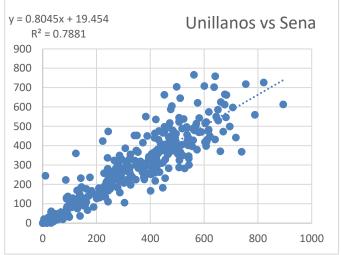
35	1035230	941246	865	Afloramiento de carretera, Arenitas medias fisiles de color grisáceo.	Formación Chipaque	Estación de control estructural y geológico.
36	1034893	941456	647	Afloramiento de quebrada, arenitas bituminosas intercaladas con lodolitas, la capa de lodolitas es gruesa de aproximadamente 2m, el agua tiene un fuerte olor a óxidos de hierro e hidrocarburos, sin embargo, no se ven manchas de estos.	Formación Chipaque	Estación de control geológico.
37	1034857	941436	663	Buzamiento del plano de diaclasa N40w40NE. afloramiento de borde de camino, dato estructural tomado sobre una capa de arenas de aproximadamente 10 cm, la diaclasa esta sobre las lodolitas.	Formación Chipaque	Estación de control estructural y geológico.
38	1034820	941328	659	Afloramiento de quebrada, capas gruesas de arenas bituminosas de grano medio a grueso intercaladas con pequeñas capas de lodos.	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
39	1036819	942151	836	Afloramiento de quebrada, capas gruesas de arenas bituminosas de grano medio a grueso intercaladas con pequeñas capas de lodos.	Formación Chipaque	Estación de control geológico.
40	1036879	942331	799	Sucesión de lodolitas anaranjadas láminas intercalada con una capa arenosa de grano fino.	Formación Chipaque	Estación de control estructural y geológico.
41	1037265	942467	708	Afloramiento de carretera. lolitas oscuras carbonáceas. el dato estructural fue tomado en el suelo de la carretera.	Formación Chipaque	Estación de control estructural y geológico.
42	1036906	942423	784	Estratos de arenita de color amarillo claro a anaranjado, por debajo de estratos de lodolitas oscuras.	Formación Chipaque	Estación de control estructural y geológico.
43	1035307	941016	909	Afloramiento de ladera, roca de arenisca blanca, cuarzo arenoso de tamaño de grano fino a medio con presencia local de granos de tamaño grueso. Las capas de arenisca son muy potentes y con laminación.	Grupo Palmichal	Estación de control geológico.

44	1035419	940796	881	Afloramiento de quebrada seca, compuesto por arcillas abigarradas intercaladas con pequeñas capas de arenita, la estratificación de bajo ángulo.	Grupo Palmichal	Estación de control geológico.
45	1035436	940760	870	Afloramiento de quebrada, arenitas blancas a grises de grano medio a fino, muy fracturado, con familia de diaclasas con orientación N85E, N40W.	Grupo Palmichal	Estación de control estructural y geológico.
46	1035435	940728	863	Afloramiento de quebrada, arenitas blancas a grises de grano medio a fino, muy fracturado.	Grupo Palmichal	Estación de control geológico.
47	1035454	940335	784	Afloramiento de quebrada, arenitas blancas a grises de grano medio a fino, muy fracturado.	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
48	1036370	941800	871	Lodolitas grises claras laminadas, intercaladas con pequeñas, capas de arenitas medias.	Formación Chipaque	Estación de control estructural y geológico.
49	1036316	941771	854	Afloramiento de carretera, tomado en el contacto de arenitas anaranjadas de grano medio, con lodolitas grises claras. posible plegamiento asociado a un cierre estructural.	Formación Chipaque	Estación de control geológico y punto de muestreo.
50	1036201	941647	842	Arenita de color blanco a grisácea de tamaño de grano medio a fino, muy competente y cementada, intercalada por lentes de lodolitas, sobre los lentes de lodolitas se encuentran arenas de grano medio de color grisáceo, bituminosas, deleznables.	Grupo Palmichal	Estación de control geológico y punto de muestreo.
51	1036209	941625	869	Arenita con laminación lenticular, muy fina, bien cementada.	Formación Chipaque	Estación de control geológico y punto de muestreo.
52	52 1035760 94		795	Intercalación de arenas de color gris oscuro de grano medio a grueso, cementada muy competente y masiva, con laminaciones de arena lodosa, gris y anaranjada. Las capas de arenas grises tienen un espesor de 40 cm aproximadamente. Entre las laminaciones de arenas lodosas se pueden encontrar lentes de arenas bituminosas medias a finas de color negro. estas laminaciones presentan plegamientos, y en las capas más gruesas de arena se	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.


63	1037763	944110	875	Arenitas de grano fino a medio intercaladas con fina capa de lodolitas negras carbonosas.	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
62	1037601	943931	830	Lodolitas fisiles de color gris, intercaladas con pequeñas láminas de arenita de grano fino, con presencia de concreciones calcáreas.	Formación Chipaque	Estación de control estructural y geológico.
61	1037328	943855	791	Composición principalmente cuarzoarenosa con arenitas claras a amarillentas.	Formación Chipaque	Estación de control geológico.
60	1037132	943937	770	Capas de arenitas con láminas de lodolitas negras con alto contenido de materia orgánica.	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
59	1037194	944020	776		Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
58	1036965	943797	767	Arenitas oscuras laminadas intercaladas con arenitas blancas de grano fino muy cementado, con laminaciones de lodo. Predominan las arenitas.	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
57	1036986	943733	774	Lodolitas intercaladas con arenitas, muy plegado, con plegamiento en forma de s, N25E 50NW, presencia de carbón, y arenitas negras carbonosas. rumbo N55E.	Formación Chipaque	Estación de control geológico y punto de muestreo.
56	1036925	943518	790	Arenitas intercaladas con lodolitas.	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
55	1036771	943275	820	Litología más arenosa, unidad compuesta por cuarzoarenita blanca, de tamaño de grano fino muy cementado.	Formación Une	Estación de control estructural y geológico.
54	1036787	943205	828	Lodolitas fisiles muy laminadas de la formación Chipaque en contacto con arenas, los estratos se encuentran verticalizados.	Formación Chipaque	Estación de control geológico y punto de muestreo.
53	1036723	943081	843	es fosfatica. Lodolitas grises oscuras, intercaladas con pequeñas capas de arenitas.	Formación Chipaque	Estación de control geológico y punto de muestreo.
				presentan diaclasas con orientación de N35W/4Ne, N77E/44SE. La capa de arenas es fosfática.		


64	1037681	944115	880	Contacto angular entre lodolitas de la formación une y arenitas de la formación Chipaque.	Formación Chipaque	Estación de control geológico.
65	1034801	939948	576	Arenitas con laminación ondulosa de 1 a 3 cm, de color blanco grisáceo. Las láminas corresponden a arenita fina intercalada con arenita media a gruesa. El Afloramiento se formó por un deslizamiento y está ubicado aproximadamente 1km aguas arriba del puente del río Guayuriba.	Grupo Palmichal	Estación de control estructural y geológico.
66	1038700	941962	670	Afloramiento de borde de carretera, en el que se observan, arenitas anaranjadas con laminación ondulosa.	Grupo Palmichal	Estación de control estructural y geológico.
67	1036395	941907		Cuarzoarenitas blancas de grano medio a fino, muy fracturado y diaclazado, intercaladas con lodolitas.	Formación Chipaque	Estación de control estructural y geológico.
68	1038770	943199	727	Estación de control geológico y toma de muestras, el buzamiento vario fuertemente, evidencia de varias estructuras anticlinales y sinclinales, intercalaciones de lodolitas negras carbonosas con arenitas de Estación de control geológico, Lomeríos suaves y lago natural característico de la Geomorfología de la formación Chipaque.	Formación Chipaque	Estación de control geológico y punto de muestreo.
69	1038576	943553	754	Lodolitas negras con laminación plano paralela, unos metros más adelante. N25°E 20°NW, posible anticlinal.	Formación Chipaque	Estación de control estructural y geológico.
70	1038524	943566	753	Estación de control estructural y toma de muestras, el buzamiento vario fuertemente, evidencia de varias estructuras anticlinales y sinclinales, intercalaciones de lodolitas negras carbonosas con arenitas de grano medio a fino de color blanco.	Formación Chipaque	Estación de control estructural, geológico y punto de muestreo.
71	1038714	941961	620	Contacto Chipaque palmichal, vía las mercedas hacia la vereda la Unión, Arenitas de color gris anaranjado con laminación ondulosa que varía en grosor de 1 a 3 cm, de tamaño de grano fino a medio, intercalado con pequeñas láminas de arcillolitas de aproximadamente 1mm.	Grupo Palmichal	Estación de control estructural y geológico.
72	1038732	941439	610	Afloramiento de borde de carretera, masivo con estratificación poco clara muy verticalizada. de color anaranjado claro a amarillo, compuesto arenitas de tamaño de grano fino, en algunos lugares se pueden observar laminaciones de 1 a 5 mm entre láminas de color gris claro y láminas de	Grupo Palmichal	Estación de control estructural y geológico.


				color anaranjado. El color gris claro puede estar dado por presencia de hidrocarburos típicos de la zona.		
73	1039499	940223	511	Vista Panorámica de la Formación Arcillolitas del Limbo, la cual muestra una geomorfología de montículos suaves, que se diferencian de las colinas del grupo Palmichal.	Cuaternario	Estación de control geológico.
74	1036385	943219	866	Estación de toma de muestra, Afloramiento de color blanco masivo, sin estratificación o bandamiento claro. La roca está compuesta por arenitas de tamaño de grano medio de color blanco, y compuesta principalmente de cuarzo, los habitantes del sector las utilizan como material de construcción.	Formación Une	Estación de control geológico.


Anexo B

Gráficas de correlación de precipitación entre las estaciones meteorológicas para el relleno de datos faltantes.

Anexo C

Información base de precipitación y relleno de datos faltantes, utilizados para la interpretación del balance hídrico. Los datos generados se resaltan de color amarillo.

Año	Año Mes ACACIAS		CIAS	ACUEDUCT O LA ESMERALDA		ALCA	LDIA	UNILL	ANOS	SEI	NA	SERV	ITA	MONTERRE DONDO		LA PRIMAVERA		susumuco	
		Días	P	Días	Р	Días	Р	Días	Р	Días	Días P		Р	Días	Р	Días	P	Días	P
1989	1	31	78	4	148		107		93		104		200	31	42	31	54	31	159
1989	2	28	96	9	164		123		105	10	119		222	28	80	28	111	28	195
1989	3	31	202	27	156		211		87	31	81		349	31	87	31	77	31	206
1989	4	30	288	30	313		284		227		268		452	30	187	30	140	30	308
1989	5	31	536		536		492		385		460		747		286	31	370	31	557
1989	6	30	564		559		515	20	752		482		781	30	286	30	288	30	594
1989	7	31	297		333		291	26	333		274		462	31	234	31	332	31	420
1989	8	31	415		433		390		308		366		603	31	240	31	186	31	637
1989	9	30	423		440		396		313		372		612	30	262	30	155	30	355
1989	10	31	513	29	538		472		370	25	419		720	31	205	31	199	31	599
1989	11	30	467	29	416		434		393	28	465		665	30	119	30	94	30	440
1989	12	31	81	30	188		110		190	31	211		205	31	28	31	33	31	56
1990	1	31	169	20	62		184		75	31	67		309	31	72	31	84	31	141
1990	2	28	191	23	163		203		166		193		336	28	36	28	49	28	180
1990	3	31	483		490		447		351	22	138		683	31	156	31	205	31	476
1990	4	30	659		639		595		622	29	751		894	30	250	30	202	30	440
1990	5	31	726		696		651		500	28	598		974	31	351	31	373	31	673
1990	6	30	505		509		465		365		436		710	30	401	30	366	30	619

1990	7	31	375		400	357		246	27	281	555	31	279	31	290	31	626
1990	8	31	195		247	206		222	31	251	340	31	306	31	229	31	416
1990	9	30	179		234	192		158	26	226	321	30	174	30	151	30	481
1990	10	31	353		381	338		268	24	186	529	31	135	31	98	31	230
1990	11	30	527		528	484		379	23	467	736	30	46	30	160	30	311
1990	12	31	244		289	247		199	22	174	399	31	82	31	94	31	258
1991	1	31	19		99	58		56		59	130	31	4	31	18	31	60
1991	2	28	99	28	84	125		85	28	79	225	28	92	28	80	28	159
1991	3	31	181		236	194		159	22	176	324	31	63	31	123	31	125
1991	4	30	654		635	590		459		551	887	30	163	30	195	30	431
1991	5	31	598	31	402	543		424	27	483	821	31	275	31	238	31	845
1991	6	30	599		589	544		425		509	822	30	321	30	416	29	767
1991	7	31	394		415	372		294		350	577	31	440	31	370	31	939
1991	8	31	258		300	258		208		244	415	31	445	31	319	31	561
1991	9	30	373		397	355		281		333	552	30	222	30	198	30	597
1991	10	31	370		395	352		279		331	549	31	126	31	145	31	326
1991	11	30	335		365	323		257		304	507	30	92	30	87	30	302
1991	12	31	109		174	133		113		128	237	31	23	31	53	31	32
1992	1	31	88		157	116		100	11	112	212	31	30	31	17	31	94
1992	2	29	66	12	4	98		86	26	10	187	29	17	29	64	29	50
1992	3	31	210	16	57	218		178	8	207	358	31	99	31	76	31	255
1992	4	30	302	11	149	295		236		278	468	30	224	30	265	30	265
1992	5	31	557	22	444	509		398	3	476	771	31	218	31	236	31	548
1992	6	30	577	30	541	526		410		491	796	30	253	30	266	30	586
1992	7	31	290		328	285		228		269	454	31	467	31	346	31	598
1992	8	31	603		592	548		427		512	827	31	317	31	300	31	530
1992	9	30	520		522	478	30	247		447	728	30	274	30	173	30	474
1992	10	31	310		345	302		241		285	478	31	154	31	107	31	451

1992	11	20	455	20	200	424		333	4	397	651	20	96	20	101	20	251
	11	30		20	200				4			30		30	101	30	-
1992	12	31	239	31	204	243		137	30	143	393	31	49	31	25	31	144
1993	1	31	144		204	163	31	795	30	145	279	31	88	31	37	31	257
1993	2	28	78		149	108		109	24	109	201	28	19	28	58	28	69
1993	3	31	399	31	420	376	30	271	31	359	583	31	231	31	168	31	390
1993	4	30	704		677	632		439	30	522	947	30	286	30	227	30	667
1993	5	31	657		638	593	30	334	31	390	891	31	270	31	352	31	585
1993	6	30	539		538	494		310	30	361	751	30	356	30	376	30	679
1993	7	31	544		542	499		481	31	575	757	31	429	31	366	31	774
1993	8	31	400		420	377		305	31	354	585	31	334	31	164	31	386
1993	9	30	542		541	497		389	23	375	754	30	179	30	165	30	557
1993	10	30	549		546	502		393	21	293	763	31	199	31	129	31	482
1993	11	28	483		491	447		241	28	274	684	30	134	30	112	30	164
1993	12	31	256		299	257		153	30	164	414	31	76	31	9	31	191
1994	1	31	93		162	120		98	31	95	219	31	38	31	45	31	74
1994	2	28	58		132	91		49	28	34	177	28	68	28	66	28	104
1994	3	29	458		469	426		335	14	399	654	31	118	31	117	28	95
1994	4	30	585		577	533	30	432	26	430	806	30	215	30	188	30	383
1994	5	31	763		727	682	31	334	31	543	101 8	31	439	31	405	31	103 1
1994	6	28	526		527	483	30	236	30	261	735	30	359	30	317	30	896
1994	7	31	518		520	476	31	446	28	468	725	31	506	31	310	31	886
1994	8	31	467		477	434	31	350	31	286	665	31	397	31	300	31	621
1994	9	30	446		459	416	30	380	30	573	639	30	175	30	158	30	464
1994	10	30	707		680	635	31	708	31	601	951	31	221	31	123	31	518
1994	11	29	334		365	322	30	226	30	378	506	30	90	30	132	30	268
1994	12	31	79		149	108	31	45	31	93	202	31	64	31	85	31	205
1995	1	31	153		212	170	31	126	31	89	290	31	48	31	65	31	237

1995	2	28	20	100		59	28	13	28	14		132	28	4	28	7	28	26
1995	3	31	211	261	31	210	31	233	31	142		359	31	108	31	145	31	191
1995	4	30	451	463	30	352	30	238	30	376		645	30	214	30	217	30	397
1995	5	31	596	586	31	655	31	551	31	645		819	31	311	30	185	31	713
1995	6	30	605	594	30	616	30	538	30	524		830	30	339	30	287	30	583
1995	7	31	359	386	31	248	31	245	21	10	31	599	31	178	31	234	31	397
1995	8	31	364	390	31	416	31	404	21	451	31	741	31	274	31	176	31	262
1995	9	30	397	418	30	394	30	300		349	30	739	30	234	30	127	30	676
	10	31	467	477	31	478	31					311	31	139	30	148	31	289
1995	_		_		_			381		428	31	_						
1995	11	30	361	388	29	342	30	239		289	30	449	30	56	30	44	30	298
1995	12	31	278	318	31	134	31	160		212	31	291	31	60	31	61	31	142
1996	1	31	20	99	31	44	31	21		75	31	68	31	14	31	34	31	43
1996	2	29	214	264	29	128		109		162	18	276	29	187	1	123	29	494
1996	3	31	143	204	31	165	31	76		129	29	285	31	53	31	89	29	158
1996	4	30	447	460	30	446	30	313		362	30	629	30	220	5	35	30	477
1996	5	31	715	686	31	784	31	574		617	30	115 1	31	321	7	78	31	731
1996	6	30	602	591	30	508	30	360		407	30	798	30	242	30	337	30	487
1996	7	31	592	582	31	427	31	374		421	31	826	31	498	31	321	31	735
1996	8	31	315	348	31	417	31	363		410	31	497	30	251	31	258	31	517
1996	9	30	359	386	30	481	29	194		245	30	648	30	312	30	144	30	559
1996	10	31	503	507	31	427	30	355	31	326	31	437	31	114	31	149	31	262
1996	11	30	626	612	30	666	30	480	30	563	30	844	29	121	30	165	30	320
1996	12	31	409	428	31	282	31	223	31	283	31	544	31	112	31	91	31	313
1997	1	31	139	200	31	118	31	37	31	139	31	118	31	36	31	26	31	64
1997	2	28	168	225	28	209	28	104	28	102	28	373	28	101	28	154	28	288
1997	3	31	163	221	31	106	31	91	31	153	31	171	31	106	31	66	31	169
1997	4	30	727	697	30	441	30	300	30	415	30	714	30	185	30	163	30	619

1997	5	31	593	4	584	31	724	31	369	31	739	31	117 3	27	444	31	315	31	878
1997	6	30	735	30	871	30	696	30	472	30	589	30	100 4	30	211	30	257	30	595
1997	7	31	320	31	541	31	495	31	360	31	468	31	690	30	503	31	369	31	653
1997	8	31	360	31	416	31	423	31	244	31	326	31	629	31	366	31	145	31	666
1997	9	30	518	30	578	30	529	30	523	30	608	30	670	30	215	30	127	30	461
1997	10	31	306	31	175	31	207	31	281	31	241	31	428	31	191	31	115	31	535
1997	11	30	545	30	255	30	314	30	424	30	223	30	750	30	79	30	79	30	192
1997	12	31	13	31	9	31	11	31	3	31	13	31	11	31	37	31	32	31	52
1998	1	31	23	31	53	31	50	31	1	31	31	31	25	31	11	31	37	31	23
1998	2	28	215	28	206	28	204	28	168	28	228	28	317	28	83	28	41	28	278
1998	3	31	248	31	147	31	328	31	330	29	293	20	310	31	94	31	122	31	256
1998	4	30	599	22	589	30	527	30	449	29	622	30	753	30	271	30	200	30	547
1998	5	31	547	25	530	25	466	31	759	31	641	31	824	30	328	31	387	31	636
1998	6	30	473	30	674	30	548	30	588	29	476	30	839	28	591	17	265	30	948
1998	7	31	411	31	446	31	484	31	474	18	244	31	932	30	454	31	418	31	885
1998	8	31	292	30	503	31	505	31	381	31	428	31	641	31	272	31	169	31	500
1998	9	30	361	30	419	30	391	30	214	30	318	30	520	29	118	30	130	30	369
1998	10	31	424	31	501	29	371	31	310	31	313	31	741	31	219	31	128	31	443
1998	11	30	554	30	546	30	397	30	183	30	446	30	555	30	175	30	62	30	312
1998	12	31	274	31	301	31	268	31	140	31	170	31	296	31	76	31	113	31	163
1999	1	31	156	30	121	31	93	31	79	31	92	31	211	28	101	31	69	31	182
1999	2	28	350	28	266	28	255	28	192	28	230	28	343	27	111	28	104	28	215
1999	3	31	149	29	193	30	183	31	96	30	158	29	324	31	114	31	106	30	184
1999	4	30	763	17	727	30	692	30	666	30	677	30	848	28	303	30	141	30	601
1999	5	31	577	27	425	31	484	31	366	31	424	31	748	28	342	31	224	30	538
1999	6	30	555	30	759	30	762	30	502	26	569	30	832	29	314	30	386	30	619
1999	7	31	312	31	541	31	360	31	273	31	322	31	770	31	309	31	319	30	577

										i		1	1		1	ı			1
1999	8	31	387	31	382	31	347	31	290	31	325	31	573	28	266	31	140	31	480
1999	9	30	407	30	497	28	431	30	324	30	266	30	723	30	221	30	189	30	477
1999	10	31	532	31	656	20	503	31	475	31	616	31	886	29	232	31	288	31	494
1999	11	30	254	30	428	30	407	30	376	30	439	30	619	30	139	30	72	30	376
1999	12	31	112	31	254	31	224	31	84	31	189	31	430	31	65	31	30	31	167
2000	1	31	36	31	66	31	65	31	50	31	68	31	82	31	40	31	84	31	46
2000	2	29	229	29	174	29	173	29	170	29	130	29	242	28	77	28	49	29	137
2000	3	31	186	31	103	31	95	31	139	31	93	31	171	30	145			31	165
2000	4	30	497	29	385	30	394	30	462	28	496	30	618	30	180	21	142	30	336
2000	5	31	841	28	818	31	908	31	705	25	498	31	143 7	30	461	31	443	31	968
2000	6	30	376	30	393	30	354	30	416	30	372	30	750	28	216	30	267	30	468
2000	7	31	310	29	350	31	338	31	287	31	356	31	529	30	334	31	238	31	524
2000	8	31	194	31	420	31	348	31	305	31	313	31	573	27	328	31	230	31	659
2000	9	30	283	30	203	30	226	30	178	30	251	30	439	27	240	30	209	30	574
2000	10	31	529	31	384	31	333	31	228	31	319	31	806	29	240	31	234	31	554
2000	11	30	487	30	436	30	401	30	262	30	379	30	687	27	156	16	53	30	293
2000	12	31	265	31	148	31	155	31	102	31	130	31	294	30	107	20	49	31	324
2001	1	31	59	31	7	31	9	31	10	31	16	31	72	31	15	31	15	31	36
2001	2	28	29	28	31	28	26	28	19	28	33	27	62	27	30	28	79	28	65
2001	3	31	250	31	197	31	158	31	187	31	144	31	352	30	100	31	124	31	222
2001	4	30	453	30	386	30	304	30	301	30	279	30	478	28	197	30	253	29	407
2001	5	31	847	31	819	31	746	31	547	31	681	31	106 0	24	361	30	367	31	749
2001	6	30	601	30	619	30	519	30	489	30	518	30	109 9	28	379	30	99	30	705
2001	7	31	380	31	556	31	471	31	301	31	543	31	739	30	308	31	138	31	472
2001	8	31	286	31	366	31	342	31	264	31	371	31	535	30	357	23	173	31	578
2001	9	30	612	30	537	30	486	30	356	30	503	30	846	27	264	30	288	30	637

2001	10	21	404	21	612	21	420	21	202	21	F27	21	700	20	172	21	00	21	220
2001	10	31	494	31	613	31	439	31	283	31	527	31	700	30	172	31	98	31	329
2001	11	30	333	30	424	30	312	30	260	30	398	30	537	29	171	30	133	30	427
2001	12	31	381	31	475	31	421	31	252	31	403	31	681	30	175	31	106	31	236
2002	1	31	6	31	11	31	7	31	7	31	9	31	45	31	14	31	35	31	52
2002	2	28	54	28	13	28	8	28	21	28	5	28	42	28	5	28	13	28	23
2002	3	31	533	31	264	31	334	31	454	31	350	31	444	30	176	31	37	31	311
2002	4	30	613	30	652	30	594	30	483	30	617	30	100 4	30	239			30	444
2002	5	31	891	31	892	31	829	31	727	31	822	31	105 6	30	399			31	752
2002	6	30	609	30	742	30	604	30	586	30	651	30	115 0	29	477			30	836
2002	7	31	517	31	675	31	562	31	397	31	555	31	780	29	321			31	680
2002	8	31	538	31	427	31	392	31	367	31	354	31	809	29	334			31	687
2002	9	30	375	30	454	30	436	30	367	30	419	30	546	30	245			30	476
2002	10	31	715	31	562	31	543	31	457	31	536	30	760	30	155			31	626
2002	11	30	265	30	278	30	223	30	127	30	201	30	492	29	171			30	307
2002	12	31	253	31	238	31	212	31	67	31	167	31	390	31	80			31	219
2003	1	31	0	31	1	31	1	31	1	31	1	31	0	31	0			31	2
2003	2	28	41	28	34	28	34	28	48	28	46	28	25	28	17	2	2	28	37
2003	3	31	202	31	112	31	113	30	169	31	128	31	153	30	105			31	194
2003	4	30	575	30	560	30	533	30	545	30	507	29	821	28	216			30	415
2003	5	31	491	31	521	31	422	31	333	31	412	31	732	30	270			31	594
2003	6	30	763	30	768	30	713	30	422	30	610	30	102 3	30	258			30	612
2003	7	31	278	31	390	31	283	30	264	31	255	31	710	30	436			31	606
2003	8	31	221	31	417	31	341	31	343	31	394	31	666	31	334			31	665
2003	9	30	588	30	604	30	498	30	518	30	472	30	644	29	265			30	470
2003	10	31	606	31	458	31	435	31	479	31	484	31	580	31	143			31	297
2003	11	30	518	30	635	30	497	30	310	30	443	30	618	30	113			30	264

	4.0		405	2.4	267		25.6	0.4	400	2.4	270		0.5.5						070
2003	12	31	195	31	267	31	256	31	183	31	278	31	357	30	55			31	278
2004	1	31	15	31	59	31	56	31	75	31	88	31	200	31	17			31	71
2004	2	29	200	29	353	29	293	29	225	29	346	29	396	28	116			29	305
2004	3	31	188	31	147	31	135	31	173	31	135	31	198	29	119			31	225
2004	4	30	712	30	526	30	511	30	425	30	539	30	685	29	203			30	503
2004	5	31	744	31	754	31	724	31	560	31	789	31	100 9	30	315			31	836
2004	6	30	711	30	677	30	645	30	622	30	576	30	102 2	29	650			30	105 2
2004	7	31	598	31	634	31	461	31	376	31	450	31	901	30	410			31	843
2004	8	31	310	31	393	25	256	30	212	26	236	31	610	31	331			31	561
2004	9	30	437	30	481	30	460	28	361	16	123	30	611	30	269	28	137	30	579
2004	10	31	408	31	515	31	400	31	338	25	241	30	686	31	172	31	157	31	427
2004	11	30	528	30	426	30	445	30	387	29	307	30	686	30	146	30	149	30	462
2004	12	31	488	31	359	31	291	31	181	28	209	31	422	31	33	31	24	31	67
2005	1	31	70	31	118	31	109	31	43	31	71	29	224	31	107	31	87	31	83
2005	2	28	224	19	272	28	236	28	135	22	233	28	302	28	87	28	82	28	167
2005	3	31	221	23	209	31	227	31	148	31	138	31	284	31	54			31	168
2005	4	30	545	23	551	30	558	30	536	24	420	30	716	29	334			30	608
2005	5	31	883	14	828	31	795	31	544	31	582	31	133 4	28	413			31	813
2005	6	30	512	27	707	30	599	30	498	28	468	30	968	29	446			30	751
2005	7	31	519	27	530	31	498	31	316	24	283	31	849	30	303			31	707
2005	8	31	372	31	381	31	367	31	269	25	275	31	533	30	306			31	473
2005	9	30	303	30	484	30	355	30	270	30	310	30	689	30	293	30	211	30	687
2005	10	31	630	31	595	31	567	31	470	31	580	31	839	31	158	31	183	31	350
2005	11	30	498	30	485	30	518	28	218	30	418	30	690	29	126	30	107	30	369
2005	12	31	86	31	58	31	83	31	16	31	30	31	342	31	48	31	14	31	169
2006	1	31	224	31	172	31	124	31	224	25	86	31	390	31	112	31	100	31	289

2006	2	28	22	28	38	28	36	28	0	28	15	28	70	28	31	28	22	28	80
2006	3	31	695	26	426	31	404	31	375	26	348	31	522	31	249	31	171	31	422
2006	4	30	559	30	575	16	511	30	416	26	489	30	832	30	235	30	204	30	484
2006	5	31	682	29	679	29	555	31	703	31	637	31	785	30	300	31	324	31	542
2006	6	30	477	29	636	30	449	30	371	24	494	30	881	30	404	30	319	30	569
2006	7	31	343	31	391	31	310		247	31	291	31	723	31	328	31	224	31	510
2006	8	31	333	31	355	31	271		217	31	260	31	647	30	446	31	201	31	766
2006	9	30	444	30	212	30	246	23	191	30	258	30	503	30	277	30	198	30	600
2006	10	31	441	29	558	24	429	30	767	23	562	31	827	31	204	31	187	31	405
2006	11	30	776	30	611	30	591	30	429	30	559	30	732	30	161	30	159	30	325
2006	12	31	210	31	239	31	201	20	165	31	178	31	322	31	40	31	3	31	113
2007	1	31	12	31	4	31	12		21	31	13	31	49	31	11	31	10	31	50
2007	2	28	13	28	13	28	13	27	5	28	16	28	41	28	21	28	32	28	29
2007	3	31	284	31	242	31	296	31	329	31	321	31	367	31	166	31	197	31	236
2007	4	30	667	27	375	30	383		303	30	420	30	782	30	198	30	204	30	524
2007	5	31	659	31	729	31	727	24	371	31	660	31	908	31	250	31	352	31	439
2007	6	30	639		622		578	30	406		453	30	859	30	437	30	311	30	726
2007	7	31	408	31	360	31	371	31	375	31	347	31	507	31	257	31	354	31	513
2007	8	31	329	31	474	31	400	31	360	31	429	31	574	31	426	31	280	31	630
2007	9	30	280	30	417	30	354	28	284	30	272	30	565	30	268	30	204	30	467
2007	10	31	424	29	557	31	481	31	398	31	492	31	681	31	116	31	134	31	323
2007	11	30	353	20	381	30	337	30	111	29	243	30	597	30	149	30	138	30	448
2007	12	31	135	31	153	31	149		125	26	123	31	334		84	31	119	30	163
2008	1	31	87	31	62	31	60	15	58	21	31	31	125	31	28	31	28	31	19
2008	2	29	61	29	36	29	26	29	19	29	20	29	46	29	76	29	70	29	71
2008	3	31	42	31	75	31	62	31	62	31	32	31	101	31	47	17	28	31	112
2008	4	30	312	30	395	30	469	28	357	16	405	30	610	30	167	29	142	30	211

2008	5	31	749	29	907	31	715	31	551	22	383	31	141 5	31	356	30	303	31	818
2008	6	30	557	30	595	30	504	30	453	20	341	30	104 2		328	29	300		597
2008	7	31	546	22	610	31	537	31	425	19	471	31	796	31	439	30	322	31	767
2008	8	31	371	30	383	31	360	31	285	30	355	31	690	31	243	30	287	31	526
2008	9	30	511	28	525	30	543	30	476	28	432	30	638	30	295	29	233	30	485
2008	10	31	608	16	625	31	570	31	388	31	443	31	755	31	168	30	191	31	433
2008	11	30	580	22	407	30	558	30	366	30	512	30	750	30	191			30	291
2008	12	31	244	17	289	31	330	31	103	21	119	31	445	31	93				221
2009	1	31	114	23	65	31	116	31	132	20	88	31	323	30	99			31	157
2009	2	28	67	28	86	28	53	28	55	28	67	28	117	28	38			28	74
2009	3	31	388	18	410	31	174	31	256	30	251	31	468	30	165	31	176	31	369
2009	4	30	522	2	524	30	513	30	480	29	454	30	968	29	231	30	207	30	525
2009	5	31	635	2	619	31	594	31	360	28	425	31	954	30	178	31	195	31	339
2009	6	30	637	30	702	30	722	30	613	28	677	30	819	30	439	30	259		776
2009	7	31	453	29	522	31	456	31	497	31	535	31	632	30	310	31	198	31	493
2009	8	31	495	31	595	31	366	31	402	31	469	31	600	30	382	31	266	31	604
2009	9	30	277	30	326	30	283	30	187	30	277	30	530	30	229	30	113	29	454
2009	10	31	362	31	619	31	474	31	232	22	455	31	608	31	134	31	126	31	278
2009	11	30	322	29	332	30	263	30	106	30	304	30	483	29	72	30	53	30	190
2009	12	31	82	31	80	24	84	31	32	31	99	31	178	31	55	31	4	31	102
2010	1	31	0	31	1	31	2	31	0	31	1	31	0	31	5	31	6	31	0
2010	2	28	155	28	201	28	121	28	169	27	135	28	236	26	88	28	74	28	215
2010	3	31	447	31	544	31	425	31	239	27	332	31	563	30	271	31	112	31	398
2010	4	30	537	30	761	30	715	30	663	30	683	30	736	30	362	30	166	29	522
2010	5	31	689	26	554	31	588	31	440	31	493	31	890	31	301	31	205	31	623
2010	6	30	622	30	630	30	557	30	606	30	480	30	828	30	302	30	308	29	595
2010	7	31	613	26	639	31	588	31	460	31	484	31	947	31	487	31	340	31	707

			I						1						1		1	1	
2010	8	31	388	30	394	31	414	31	333	31	422	31	458	31	235	31	158	31	364
2010	9	30	339	30	339	30	304	30	208	30	303	30	655	30	234	30	128	30	339
2010	10	31	398	31	362	31	355	31	498	31	453	31	512	31	176	1	0	31	277
2010	11	30	691	30	440	30	399	30	341	30	397	30	716	30	153			30	341
2010	12	31	609	31	432	30	405	16	319	31	364	31	510	31	215			31	388
2011	1	31	95	31	186	31	143	31	47	31	92	31	142	31	32	2	0	31	86
2011	2	28	93	28	148	28	123	28	96	28	138	28	149	28	64	28	184	28	41
2011	3	31	290	31	205	31	161	31	85	31	109	31	380	31	189	31	283	31	215
2011	4	30	830	30	610	30	519	30	663	28	452	30	739	30	218	1	0	30	457
2011	5	31	632	31	643	31	617	31	432	31	641	31	934	31	382			31	691
2011	6	30	531	29	591	30	593	30	402	30	541	30	718	30	199			30	471
2011	7	31	359	30	393	31	326	31	326	31	399	31	705	31	346			31	511
2011	8	31	343	31	451	31	419	31	311	31	423	31	477	31	213			31	403
2011	9	30	285	30	532	30	545	30	329	30	455	30	642	30	229			30	424
2011	10	31	447	31	475	29	408	31	327	31	413	31	625	31	240			31	236
2011	11	30	589	30	648	30	591	30	399	30	608	30	101 4	30	192			30	347
2011	12	31	462	31	419	31	383	31	168	31	401	31	779	31	115			31	159
2012	1	31	82	31	128	31	51	23	17	31	32	31	70	31	22			31	7
2012	2	29	95	29	128	29	107	29	64	29	87	29	168	29	91			29	127
2012	3	31	660	31	625	31	655	31	530	31	653	31	948	31	260			31	338
2012	4	30	542	30	568	30	585	30	489	30	558	30	838	30	316			30	551
2012	5		726	31	597	31	591	31	473	31	671	31	968	31	360			31	612
2012	6		484	30	457	30	355	30	466	30	448	30	750	30	396			30	596
2012	7		560	31	631	31	571	31	405	31	517	31	911	31	426			31	588
2012	8	15	440	31	380	31	333	31	284	31	407	31	532	31	365			31	560
2012	9	30	288	30	409	30	366	30	158	30	287	30	507	30	249			30	371
2012	10	31	559	31	502	31	537	31	524	31	507	31	514	31	215			31	349

2012 12 31 205 31 430 31 356 31 329 31 394 31 564 31 122 31 103 31 32 2013 1 31 0 31 2 31 0 31 0 30 3 31 8 31 2 31 6 2013 2 28 99 28 92 82 28 107 28 152 28 126 28 95 28 15 2013 3 31 298 31 292 31 283 227 31 243 31 450 31 136 31 99 31 32 2013 4 30 534 30 629 30 537 419 30 603 30 853 30 221 30 139 30 438 2013 6 30								1					I	1			I			
2013 1 31 0 31 2 31 0 31 0 30 3 31 8 31 2 31 6 2013 2 28 90 28 98 28 92 82 28 107 28 152 28 126 28 95 28 15 2013 3 31 298 31 292 31 283 227 31 243 31 450 31 136 31 99 31 32 2013 4 30 534 30 629 30 537 419 30 603 30 895 30 221 30 139 30 48 2013 5 31 769 31 825 31 794 614 31 894 31 136 31 48 31 262 2013 70 31 481<	2012	11	30	560	30	358	30	319	30	272	30	284	28	475	30	117	1	0	30	278
2013 2 28 90 28 98 28 92 82 28 107 28 152 28 126 28 95 28 152 2013 3 31 298 31 292 31 283 227 31 243 31 450 31 136 31 99 31 32 2013 4 30 534 30 629 30 537 419 30 603 30 895 30 221 30 139 30 488 2013 6 30 652 30 560 30 452 355 30 465 30 750 30 236 30 180 30 488 2013 7 31 437 31 31 31 480 16 376 31 445 31 844 31 177 31 400 2013 <th>2012</th> <th>12</th> <th>31</th> <th>205</th> <th>31</th> <th>430</th> <th>31</th> <th>356</th> <th>31</th> <th>329</th> <th>31</th> <th>394</th> <th>31</th> <th>564</th> <th>31</th> <th>122</th> <th>31</th> <th>103</th> <th>31</th> <th>322</th>	2012	12	31	205	31	430	31	356	31	329	31	394	31	564	31	122	31	103	31	322
2013 3 31 298 31 292 31 283 227 31 243 31 450 31 136 31 99 31 32 2013 4 30 534 30 629 30 537 419 30 603 30 895 30 221 30 139 30 488 2013 5 31 769 31 825 31 794 614 31 894 31 104 3 31 403 31 285 31 62 2013 6 30 652 30 560 30 452 355 30 465 30 750 30 236 30 180 30 488 2013 7 31 437 31 31 321 3480 16 376 31 445 31 844 31 <t>447 31 192 31</t>	2013	1	31	0	31	2	31	0	31	0	31	0	30	3	31	8	31	2	31	6
2013 4 30 534 30 629 30 537 419 30 603 30 895 30 221 30 139 30 48 2013 5 31 769 31 825 31 794 614 31 894 31 104 31 403 31 285 31 62 2013 6 30 652 30 560 30 452 355 30 465 30 236 30 180 30 48 2013 7 31 437 31 527 31 480 16 376 31 445 31 844 31 447 31 192 30 48 2013 9 30 203 30 279 30 243 30 367 30 118 30 41 2013 10 31 506 31 425<	2013	2	28	90	28	98	28	92		82	28	107	28	152	28	126	28	95	28	150
2013 5 31 769 31 825 31 794 614 31 894 31 104 3 3 31 403 31 285 31 62 2013 6 30 652 30 560 30 452 355 30 465 30 750 30 236 30 180 30 48 2013 7 31 437 31 527 31 480 16 376 31 445 31 192 31 713 445 31 347 31 447 31 192 31 711 31 403 31 261 31 428 31 177 31 40 2013 9 30 203 30 279 30 243 30 367 30 172 30 118 30 2013 10 31 506 31 425 31 <	2013	3	31	298	31	292	31	283		227	31	243	31	450	31	136	31	99	31	328
2013 5 31 769 31 825 31 794 614 31 894 31 3 31 403 31 285 31 62 2013 6 30 652 30 560 30 452 355 30 465 30 750 30 236 30 180 30 488 2013 7 31 437 31 527 31 480 16 376 31 445 31 844 31 447 31 192 31 71 2013 8 31 326 31 313 31 281 31 327 31 293 31 361 31 248 31 177 31 40 2013 10 31 506 31 425 31 496 31 264 31 435 31 585 31 169 31 85<	2013	4	30	534	30	629	30	537		419	30	603	30	895	30	221	30	139	30	488
2013 7 31 437 31 527 31 480 16 376 31 445 31 844 31 447 31 192 31 71 2013 8 31 326 31 313 31 281 31 327 31 293 31 361 31 248 31 177 31 40 2013 9 30 203 30 270 30 192 30 279 30 243 30 367 30 172 30 118 30 41 2013 10 31 506 31 425 31 496 31 264 31 435 31 585 31 169 31 85 31 35 2013 11 30 487 30 606 30 499 30 464 30 417 30 574 30 113	2013	5	31	769	31	825	31	794		614	31	894	31	_	31	403	31	285	31	622
2013 8 31 326 31 313 31 281 31 327 31 293 31 361 31 248 31 177 31 40 2013 9 30 203 30 270 30 192 30 279 30 243 30 367 30 172 30 118 30 411 2013 10 31 506 31 425 31 496 31 264 31 435 31 585 31 169 31 85 31 35 2013 11 30 487 30 606 30 499 30 464 30 417 30 574 30 113 30 95 30 169 2013 12 31 225 31 163 31 178 31 162 31 31 <t>101 31 40 31<</t>	2013	6	30	652	30	560	30	452		355	30	465	30	750	30	236	30	180	30	484
2013 9 30 203 30 270 30 192 30 279 30 243 30 367 30 172 30 118 30 42 2013 10 31 506 31 425 31 496 31 264 31 435 31 585 31 169 31 85 31 35 2013 11 30 487 30 606 30 499 30 464 30 417 30 574 30 113 30 95 30 16 2013 12 31 215 31 265 31 163 31 178 31 162 31 331 31 40 31 199 2014 1 31 266 31 55 31 36 28 9 31 41 31 41 31 27 31 21	2013	7	31	437	31	527	31	480	16	376	31	445	31	844	31	447	31	192	31	711
2013 10 31 506 31 425 31 496 31 264 31 435 31 585 31 169 31 85 31 35 2013 11 30 487 30 606 30 499 30 464 30 417 30 574 30 113 30 95 30 160 2013 12 31 215 31 225 31 163 31 178 31 162 31 331 31 40 31 19 2014 1 31 26 31 55 31 36 28 9 31 41 31 41 31 27 31 21 31 91 2014 2 28 166 28 130 28 129 28 94 28 100 28 183 28 77 28 85	2013	8	31	326	31	313	31	281	31	327	31	293	31	361	31	248	31	177	31	403
2013 11 30 487 30 606 30 499 30 464 30 417 30 574 30 113 30 95 30 16 2013 12 31 215 31 225 31 163 31 178 31 162 31 331 31 40 31 199 2014 1 31 26 31 55 31 36 28 9 31 41 31 41 31 27 31 21 31 91 2014 2 28 166 28 130 28 129 28 94 28 100 28 183 28 77 28 85 28 95 2014 3 31 201 31 268 31 256 31 132 31 211 31 286 31 105 31 42	2013	9	30	203	30	270	30	192	30	279	30	243	30	367	30	172	30	118	30	413
2013 12 31 215 31 225 31 163 31 178 31 162 31 331 31 40 31 190 2014 1 31 26 31 55 31 36 28 9 31 41 31 41 31 27 31 21 31 91 2014 2 28 166 28 130 28 129 28 94 28 100 28 183 28 77 28 85 28 95 2014 3 31 201 31 268 31 256 31 132 31 211 31 286 31 105 31 42 31 19 2014 4 30 499 30 578 30 534 30 646 30 511 30 798 30 333 30 222	2013	10	31	506	31	425	31	496	31	264	31	435	31	585	31	169	31	85	31	358
2014 1 31 26 31 55 31 36 28 9 31 41 31 41 31 27 31 21 31 91 2014 2 28 166 28 130 28 129 28 94 28 100 28 183 28 77 28 85 28 95 2014 3 31 201 31 268 31 256 31 132 31 211 31 286 31 105 31 42 31 19 2014 4 30 499 30 578 30 534 30 646 30 511 30 798 30 333 30 222 30 655 2014 5 25 418 31 508 31 445 31 369 31 468 31 266 31 165	2013	11	30	487	30	606	30	499	30	464	30	417	30	574	30	113	30	95	30	166
2014 2 28 166 28 130 28 129 28 94 28 100 28 183 28 77 28 85 28 95 2014 3 31 201 31 268 31 256 31 132 31 211 31 286 31 105 31 42 31 19 2014 4 30 499 30 578 30 534 30 646 30 511 30 798 30 333 30 222 30 650 2014 5 25 418 31 508 31 445 31 369 31 468 31 266 31 165 31 460 2014 6 22 450 30 770 30 696 30 500 30 696 30 926 30 447 30 434 <th>2013</th> <th>12</th> <th>31</th> <th>215</th> <th>31</th> <th>225</th> <th>31</th> <th>163</th> <th>31</th> <th>178</th> <th>31</th> <th>162</th> <th>31</th> <th>331</th> <th>31</th> <th>101</th> <th>31</th> <th>40</th> <th>31</th> <th>190</th>	2013	12	31	215	31	225	31	163	31	178	31	162	31	331	31	101	31	40	31	190
2014 3 31 201 31 268 31 256 31 132 31 211 31 286 31 105 31 42 31 19 2014 4 30 499 30 578 30 534 30 646 30 511 30 798 30 333 30 222 30 655 2014 5 25 418 31 508 31 445 31 369 31 468 31 266 31 165 31 468 2014 6 22 450 30 770 30 696 30 500 30 696 30 926 30 447 30 434 30 859 2014 7 31 520 31 377 31 373 31 324 31 343 31 617 31 412 31 23	2014	1	31	26	31	55	31	36	28	9	31	41	31	41	31	27	31	21	31	91
2014 4 30 499 30 578 30 534 30 646 30 511 30 798 30 333 30 222 30 656 2014 5 25 418 31 508 31 445 31 369 31 468 31 266 31 165 31 468 2014 6 22 450 30 770 30 696 30 500 30 696 30 926 30 447 30 434 30 859 2014 7 31 520 31 377 31 373 31 324 31 343 31 617 31 412 31 233 31 76 2014 8 31 274 31 328 31 273 27 239 31 291 31 546 31 428 31 1	2014	2	28	166	28	130	28	129	28	94	28	100	28	183	28	77	28	85	28	95
2014 5 25 418 31 508 31 445 31 369 31 468 31 266 31 165 31 466 2014 6 22 450 30 770 30 696 30 500 30 696 30 447 30 434 30 859 2014 7 31 520 31 377 31 373 31 324 31 343 31 617 31 412 31 233 31 769 2014 8 31 274 31 328 31 273 27 239 31 291 31 546 31 428 31 173 31 577 2014 9 30 160 30 323 30 304 25 198 30 327 30 437 30 184 30 125 30	2014	3	31	201	31	268	31	256	31	132	31	211	31	286	31	105	31	42	31	191
2014 6 22 450 30 770 30 696 30 500 30 696 30 926 30 447 30 434 30 859 2014 7 31 520 31 377 31 373 31 324 31 343 31 617 31 412 31 233 31 76 2014 8 31 274 31 328 31 273 27 239 31 291 31 546 31 428 31 173 31 57 2014 9 30 160 30 323 30 304 25 198 30 327 30 437 30 184 30 125 30 32 2014 10 370 31 353 31 308 31 322 31 347 31 158 31 97 31	2014	4	30	499	30	578	30	534	30	646	30	511	30	798	30	333	30	222	30	656
2014 7 31 520 31 377 31 373 31 324 31 343 31 617 31 412 31 233 31 76 2014 8 31 274 31 328 31 273 27 239 31 291 31 546 31 428 31 173 31 57 2014 9 30 160 30 323 30 304 25 198 30 327 30 437 30 184 30 125 30 324 2014 10 370 31 353 31 308 31 322 31 342 31 471 31 158 31 97 31 264 2014 11 413 30 487 30 308 30 382 30 755 30 84 30 59 30 19	2014	5	25	418	31	508	31	445	31	369	31	468	31	655	31	266	31	165	31	468
2014 8 31 274 31 328 31 273 27 239 31 291 31 546 31 428 31 173 31 57 2014 9 30 160 30 323 30 304 25 198 30 327 30 437 30 184 30 125 30 32 2014 10 370 31 353 31 308 31 322 31 342 31 471 31 158 31 97 31 26 2014 11 413 30 484 30 487 30 308 30 382 30 755 30 84 30 59 30 199	2014	6	22	450	30	770	30	696	30	500	30	696	30	926	30	447	30	434	30	859
2014 9 30 160 30 323 30 304 25 198 30 327 30 437 30 184 30 125 30 32 2014 10 370 31 353 31 308 31 322 31 342 31 471 31 158 31 97 31 26 2014 11 413 30 484 30 487 30 308 30 382 30 755 30 84 30 59 30 199	2014	7	31	520	31	377	31	373	31	324	31	343	31	617	31	412	31	233	31	767
2014 10 370 31 353 31 308 31 322 31 342 31 471 31 158 31 97 31 261 2014 11 413 30 484 30 487 30 308 30 382 30 755 30 84 30 59 30 199	2014	8	31	274	31	328	31	273	27	239	31	291	31	546	31	428	31	173	31	577
2014 11 413 30 484 30 487 30 308 30 382 30 755 30 84 30 59 30 199	2014	9	30	160	30	323	30	304	25	198	30	327	30	437	30	184	30	125	30	326
	2014	10		370	31	353	31	308	31	322	31	342	31	471	31	158	31	97	31	265
2014 12 31 285 31 309 31 227 31 114 31 160 31 368 31 93 31 75 31 19	2014	11		413	30	484	30	487	30	308	30	382	30	755	30	84	30	59	30	199
	2014	12	31	285	31	309	31	227	31	114	31	160	31	368	31	93	31	75	31	191
2015 1 31 123 31 210 31 191 31 120 31 158 31 283 31 89 31 38 31 210	2015	1	31	123	31	210	31	191	31	120	31	158	31	283	31	89	31	38	31	215

2045	2	20	20	20	26	20	25	20	4.5	20	20	20	00	20	C 4			20	C.F.
2015	2	28	20	28	26	28	25	28	15	28	29	28	99	28	64			28	65
2015	3	31	247	31	214	31	204	31	237	31	176	31	232	31	136	31	92	31	196
2015	4	30	649	30	524	30	438	29	364	30	470	30	750	30	304			30	469
2015	5	31	570	31	437	31	418	31	313	31	447	31	521	31	241	26	214	31	633
2015	6	30	396	30	421	30	453	30	374	30	468	30	583	30	443	30	343	30	550
2015	7	31	577	31	506	31	473	31	378	31	474	31	766	31	446	31	172	31	717
2015	8	31	246	31	404	31	333	31	221	31	302	31	520	31	312	31	184	31	511
2015	9	30	242	30	321	30	371	30	290	30	362	30	473	30	164	27	48	30	355
2015	10	31	284	31	480	31	445	31	260	31	418	31	460	31	171	25	46	31	310
2015	11	30	520	30	467	30	450	23	290	30	424	30	542	30	144	30	47	30	393
2015	12	31	215	31	147	24	147	31	167	31	182	31	213	31	76			31	216
2016	1	31	0	31	2	31	4	21	4	31	4	31	9	31	5			31	2
2016	2	29	38	29	50	29	58	29	18	29	55	29	106	29	65			29	50
2016	3	31	199	31	234	31	195	31	150	31	191	31	315	31	120			31	171
2016	4	30	841	30	742	30	730	30	719	30	755	30	110 3	30	299			30	719
2016	5	31	631	31	620	31	622	31	493	31	536	31	847	31	402	29	245	31	669
2016	6	30	341	30	384	30	333	30	245	30	381	30	680	30	312	30	248	30	471
2016	7	31	380	31	456	31	387	31	451	31	389	31	559	31	279	31	237	31	506
2016	8	31	841	31	802	31	701	31	626	31	662	31	116 6	31	586	31	281	31	948
2016	9	30	390	30	370	30	334	30	257	30	406	30	696	30	285	30	82	30	576
2016	10	31	588	31	560	31	482	25	362	31	511	31	752	31	178	31	117	31	361
2016	11	30	551	30	683	30	672	30	431	30	611	30	727	30	124	30	40	30	453
2016	12	31	468	31	509	31	527	16	411	31	439	31	660	31	96	31	46	31	369
2017	1	31	114	31	74	31	58	21	51	31	81	31	225	31	91	27	31	31	134
2017	2	28	77	28	158	28	118	28	86	28	90	28	172	28	90	28	69	28	89
2017	3	31	313	31	457	31	434	31	293	31	381	31	799	31	195	31	198	31	544
2017	4	30	319	30	322	30	270	30	257	30	325	30	520	30	190	30	195	30	395

2017	5	31	662	31	894	31	865	31	598	31	706	31	123 8	31	478	31	151	31	107 5
2017	6	30	517	30	580	30	519	25	427	30	538	30	108 4	30	422	30	230	30	857
2017	7	31	246	31	420	31	342	31	260	31	382	31	710	31	515	31	143	31	670
2017	8	31	222	31	488	31	394	31	223	31	309	31	682	31	272	31	116	31	575
2017	9	30	252	30	355	30	336	30	168	30	244	30	595	30	301	30	137	30	600
2017	10	31	469	31	607	31	558	31	350	31	520	31	727	31	238	31	111	31	458
2017	11	30	383	30	710	30	608	30	346	30	543	30	835	30	170	30	116	30	378
2017	12	31	192	31	92	31	102	31	36	31	96	31	232	31	68	31	57	31	191
2018	1	31	184	28	137	31	135	30	129	31	112	31	240	31	75	31	18	31	170
2018	2	28	7	28	4	28	4	28	7	28	3	28	4	28	5	28	4	28	11
2018	3	31	235	31	242	31	197	31	258	31	228	31	411	31	63	31	18	31	217
2018	4	30	538	30	498	30	512	30	471	30	487	30	599	30	248	30	154	30	436
2018	5	31	842	31	666	31	631	31	517	31	604	31	115 1	31	526	31	228	31	108 3
2018	6	30	713	30	645	30	662	16	514	30	571	30	943	30	397	30	199	30	837
2018	7	31	390	31	525	31	515	12	402	31	507	31	732	31	386	31	124	31	674
2018	8	31	646	31	594	31	521	31	325	31	508	31	843	31	506	31	93	31	892
2018	9	30	421	30	369	30	278	30	287	30	291	30	710	30	246			30	665
2018	10	31	567	31	673	31	633	31	444	31	541	31	772	31	192	31	84	31	346
2018	11	30	269	30	352	30	308	30	217	30	293	30	748	30	113	30	2	30	223
2018	12	31	51	31	58	31	61	31	21	31	54	31	136	31	36	31	2	31	72
2019	1	31	44	31	19	31	16	30	17	31	27	31	83	31	57	31	114	31	104
2019	2	28	62	28	48	28	23	28	7	28	16	28	41	28	18	28	5	28	38
2019	3	31	334	31	283	31	263	31	258	31	273	31	297	31	148	31	4	31	400
2019	4	30	849	30	466	30	527	30	284	30	468	30	624	30	144	30	52	30	364
2019	5	31	709	31	819	31	763	31	442	31	718	31	971	31	386	31	152	31	623
2019	6	30	493	30	502	30	513	29	407	30	461	30	722	30	523	30	18	30	794

2019	7	31	570	31	571	31	546	23	288	31	507	31	812	31	570	31	77	31	101 5
2019	8	31	367	31	438	31	418	23	296	31	409	31	579	31	390	31	49	31	507
2019	9	30	395	30	386	30	359	30	277	30	300	30	569	30	213	30	23	30	706
2019	10	31	237	31	465	31	420	31	441	31	416	31	590	31	160	31	101	31	488
2019	11	30	446	30	396	30	373	30	255	30	376	30	639	30	136	30	34	30	378
2019	12	31	370	31	205	31	165	29	130	31	150	31	282	31	93	30	7	31	246
2020	1	31	26	31	30	31	24	15	30	31	21	31	115	31	36	31	43	31	70
2020	2	29	17	29	16	29	10	29	2	29	8	29	52	29	33	29	7	29	65
2020	3	31	211	15	261	15	219	31	182	15	233	31	162	31	63	31	33	31	113
2020	4	30	490		497		453	30	293		342	30	474	30	177	30	19	30	327
2020	5	31	655		636		591	31	438		484	31	815	31	461	31	102	31	734
2020	6	30	583		575		531	30	326		374	30	885	30	350	30	145	30	618
2020	7	31	634		618		574	31	489		534	31	974	31	492	31	145	31	914
2020	8	31	363		389		346	31	348		396	31	398	31	405	31	33	31	319
2020	9	30	314		348		305	30	167		219	30	436	30	412	30	33	30	520
2020	10	31	350		378		336	29	258		308	30	637	31	176	31	20	31	294
2020	11	30	454		466		423	30	504		549	28	781	30	111	30	97	30	198
2020	12	31	321		354		311	18	248		298	30	529	31	66			31	165
2021	1	31	99		166		125	13	107		160	31	173	31	75			31	198
2021	2	28	15		95		55	28	35		90	28	55	27	59			28	100
2021	3	31	239	31	186		243	31	166	30	195	31	277	31	114			31	159
2021	4	30	914	30	650		808	26	601	30	656	30	968	30	329			30	758
2021	5	31	772	31	933	31	754	31	590	31	673	31	913	29	220			31	697
2021	6	30	739	30	832	30	720	29	455	30	677	30	962	28	267			30	640
2021	7	28	540	25	343	25	346	31	323	25	346	31	731	31	434			31	701

Anexo D

Cálculo de temperatura media mensual multianual

Temperatura media mensual - Estación Unillanos												
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1995	26,4	27,2	26,3	26,1	25,4	24,3	24,6	25,3	25,5	25,7	25,9	25,8
1996	26,2	26,0	25,8	26,1	24,7	24,5	24,2	25,0	25,1	25,5	25,7	25,2
1997	26,3	25,6	26,3	25,6	25,1	25,3	24,2	25,0	25,8	26,5	26,1	27,0
1998	28,4	27,0	27,2	26,5	25,8	24,8	25,0	25,5	25,7	26,6	25,8	26,3
1999	25,6	25,2	25,9	24,7	25,0	24,4	24,1	24,4	25,5	25,5	26,1	25,9
2000	25,7	25,8	26,2	25,4	25,1	24,9	24,2	24,6	25,0	25,7	25,5	25,0
2001	26,1	26,8	26,4	25,5	25,2	23,9	24,5			26,1	26,7	26,1
2002	26,1	27,8	26,6	25,4	24,9	24,1	24,5	24,8	25,7	25,4	26,0	26,4
2003	27,6	27,8	26,8	25,7	24,9	24,8	24,4	24,9	25,2	25,9	26,0	26,0
2004	26,6	27,2	26,5	25,8	25,4	24,4	24,4	25,1	25,5	25,6	25,8	25,6
2005	26,1	25,8	26,2	25,3	25,6	24,5	24,1	24,7	24,6	25,6	25,2	26,2
2007		28,6	26,8	26,4	24,7	23,6	25,2	24,7	25,3	25,8	25,9	26,2
2008	27,4	27,3	27,7	26,3	25,3	24,4	24,7	25,5	25,6	26,1	26,0	25,9
2009	25,8	26,2	26,2	25,6	25,9	24,8	24,1	25,4	25,7	25,9	26,2	26,3
2010	27,6	28,6	26,8	25,9	26,0	25,0	24,7	24,8	25,9	25,9	25,6	25,9
2011	26,5	26,6	26,1	25,5	25,0	25,0	24,8	25,5	25,7	25,9	25,7	25,6
2012	26,3	26,4	25,4	25,4	25,3	24,8	24,5	24,7	25,6	26,2	26,5	26,8
2013	27,2	28,0	27,0	26,7	25,2	25,2	24,7	25,0	25,9	26,8	26,3	27,1
2014	27,5	28,0	27,2	26,1	26,2	24,6	24,8	25,0	26,3	25,7	26,4	26,7
2015	26,4	27,2	27,1	26,3	26,6	25,1	25,3	25,3	26,9	26,9	26,3	26,8
2016	27,8	28,2	28,1	26,0	25,7	25,2	24,4	25,2	26,0	26,0	25,9	26,2
2017	25,9	26,7	26,1	26,4	26,1	25,3	24,4	26,0	26,5	26,1	26,6	26,6
2018	26,3	27,2	26,7	25,0	25,6	24,6	24,9	25,4	26,5	26,5	26,3	26,0
2019	27,3	28,1	26,9	26,3	25,6	24,8	25,2	24,4	26,4	26,0	26,1	26,5
2020	27,2	27,7	27,6	26,3	25,7	25,3	25,4	25,6	26,6	26,0	25,6	25,8
2021	26,3	27,0	26,2	26,1	25,2	24,8	24,4					
Promedio Multianual	26,7	27,1	26,6	25,9	25,4	24,7	24,6	25,1	25,8	26,0	26,0	26,2