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Abstract—In recent years, functional connectivity has been
studied through electroencephalography signals to analyze the
patterns generated by the electrical conductions of the brain.
In BCI systems, the paradigm of motor imagery has been used
to generate patterns to identify the user’s intention. However,
the study of techniques that allow the correct identification and
classification of such intention is still a challenge due to the low
performance of algorithms for rehabilitation engineering appli-
cations. This study addresses the problem of binary identification
of left and right-hand opening and closing motor imagery tasks.
A method called Power-Based Connectivity (PBC) is proposed
that correlates two reference channels in the central cortex (C3

and C4) with other channels located in the central area of the
brain. The methods were evaluated using an EEG dataset of
six subjects with no previous experience in BCI systems built
at the Antonio Nariño University. The method was compared
with a standard feature extraction method based on Power
Spectral Density (PSD). It was used for evaluation accuracy
and cohen’s Kappa coefficients metrics. Maximum accuracy and
cohen’s Kappa coefficient of 0.7733 and 0.5488, respectively, were
obtained using the Linear Discriminant Analysis (LDA) classifier.
Finally, the proposed method was superior in performance and
presents significant results in the alpha (α) frequency band and
the combination of alpha (α) and beta (β). This leads to the
conclusion that the proposed method is adequate for user intent
identification in a motor imagery-based BCI system of users with
no prior experience.

Index Terms—Electroencephalography (EEG), Brain-
Computer Interface (BCI), Motor Imagery, Power-Based
Connectivity, Functional Connectivity.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a system that provides
a communication channel between the brain and computers
to allow a user to control the environment in a way that
is responsive with the user’s intentions, without the need of
using the peripheral nervous system [1], [2]. Traditionally, a
BCI system is implemented mainly through different phases
including acquisition, signal processing, classification, appli-
cations, among others [3], [4]. BCI systems have a range
of applications in the fields of medicine, education, neuroer-

gonomics, gaming, motor and communication rehabilitation,
robotics, among others [5].

EEG Functional Connectivity can be defined as a relation-
ship between brain sources or sensors located in the brain.
EEG signals are commonly transformed to the frequency
domain to estimate connectivity [6]. The higher the correlation
between the signals, the more synchronized they are at the time
of a movement or paradigm analyzed [7]. In the literature,
it is mentioned that the most used method to estimate the
connectivity between signals is the coherence that correlates
the signals in the frequency domain through auto spectrum’s
and crossed spectrum’s [7], [8].

A widely used paradigm in the literature to modulate
patterns of Electroencephalography (EEG) signals to interact
with a BCI system, correspond to the motor imagery (MI).
MI consists of a mental or cognitive task in which the
subject imagines the movement of one of his/her limbs without
actually executing the movement, being the MI of the left and
right hand one of the most explored [1], [8]. Brain activation
during MI of hand movement elicited an increase or decrease
of the spectral power of EEG signals at the central cortex
of the brain within frequency bands between 8 and 30 Hz
(Alpha (α) and Beta (β) band), that is known as Event-Related
synchronization/desynchronization (ERS/ERD) [1].

In recent years, different EEG processing methods for the
detection, feature extraction, and classification of MI tasks
have been used to detect the user’s intent, including Time-
Frequency Analysis, Spectrum Analysis and Power Spectral
Density (PSD) [9] with a performance average of 75%. Be-
sides, methods based on connectivity have been implemented
for detection of the motor intention of the subject through
Coherence Spectrum, Phase Coupling, Entropy and Mutual In-
formation of EEG signals [8], [10], [11], the Cross-Correlation
with an EEG-reference-channel [12], [13] and the correlation
of EEG with other signals [14] with performance average
above 80%.

An open challenge for the scientific community in the
implementation of MI-BCI systems is to detect the user’s978-1-6654-1668-9/21$31.00 ©2021 IEEE



intention with a high classification rate, at this point, the im-
portance of applying new methods is manifested that through
the extraction of information facilitate the understanding of
the behavior of the central nervous system with respect to
certain stimuli (MI), applying these techniques in different
fields of study, including rehabilitation engineering [15]. In
this study, a method called Power-Based Connectivity (PBC)
that relates EEG channels through correlation methods was
implemented. For this, it was built an EEG dataset with 6
healthy subjects who have no previous BCI experience in the
motor imagery task which consists of opening and closing the
left or right hand. An algorithm based on Spearman’s coef-
ficient method was proposed to correlate the spectral power
features of EEG signals from channels located in the motor
cortex to identify two motor imagery movements. The Linear
Discriminant Analysis (LDA) classifier was used, which was
evaluated using Accuracy and Cohen’s Kappa metrics. The
results of this study allow to identifying that connectivity-
based methods can outperform conventional methods highly
reported in the literature. Additionally, the results show effects
related to the connectivity between the reference electrodes
and those located in the motor cortical area that are produced
in the brain when right-hand or left-hand movements are
imagined.

This article is organized as follows: Section II presents the
experimental methods where the protocol and the algorithmic
proposal are described. Section III presents the results ob-
tained, section IV presents the general discussion and finally,
section V presents the conclusions and future works.

II. METHODOLOGY

A. Protocol

Six healthy subjects between 19 to 37 years old (average
age of 26 years) who signed an informed consent form
participated in this study. All participants were right-handed
and none of them had previous experience in MI-BCI
experiments. EEG acquisition was performed using 32-
channels Nautilus equipment from G.Tec medical engineering
GmbH, according to international 10-20 standard [16] at
a sampling rate of 250 Hz, with gel-based electrodes.
Impedance for all electrodes was kept below 30kΩ by the use
of electrically conductive gel and filtering was used during
acquisition with a filter bandpass between 0.5 and 60 Hz.
The visual indication was performed using a monitor and
the BCI2000 software where the sequence to be performed
was presented and synchronized with the EEG recording
equipment. The protocol consisted of multiple repetitions
(trials) with 9 seconds of duration, following the sequence
presented in Fig. 1.

• The subject has to focus her/his gaze on the screen for 3
seconds.

• A visual instruction appears randomly indicating the limb
to be imagined (left or right), where the subject proceeds
to perform the imagination of opening and closing the

corresponding hand, during 3 seconds. The subject should
try not to blink during this phase.

• The subject enters the rest phase, for 3 seconds. The
subject is allowed to blink.

The procedure was performed 12 times (trials) in one
session (round). Ten sessions were performed, for a total of
120 trials. To avoid physical and mental fatigue, the subject
rested between 1 and 2 minutes between each session.

Fig. 1. EEG signal acquisition protocol sequence for motor imagery.

B. Data Analysis

EEG data analysis was performed to verify the contralateral
behavior of the signals when the subjects imaging right or left-
hand movement. For this purpose, EEG signals from FC5,
FC1, FC2, FC6, C3, Cz , C4, CP5, CP1, CP2 and CP6

channels were filtered using an 8-order Butterworth filter in the
8 − 30 Hz frequency band. Additionally, a Common Average
Reference (CAR) filter was implemented to remove related
noise on the electrodes located in the cortico-motor area.
Subsequently, the Power Spectral Density (PSD) method was
implemented using the Fast Fourier Transform (FFT) with
a Hanning window of 1 second overlapped at 50% and a
frequency resolution of 1 Hz.

After data analysis, a methodology presented in figure 2 was
implemented, which consists of processing the EEG signals,
extracting spectral power features, and correlating them by
the Spearman method to subsequently identify the movement
performed by the subjects.

C. Pre-processing

EEG signals were filtered using an 8-order Butterworth filter
in the 8 − 30 Hz frequency band. Additionally, it was used
a notch filter to remove 60 Hz powerline interference and a
CAR filter was implemented. EEG signals of motor imagery
were segmented between 1 and 2.5 seconds for each trial per
subject analyzed after the start of motor imagination (trigger)
as showed in the Fig. 1.

D. Feature Extraction

Feature extraction was performed using Welch’s power
spectral density method with the configuration of Welch’s
overlapped segment averaging spectral estimation. The PSD
estimated by Welch’s method employs a modified periodogram
for each window segment where the average of these windows
allows to obtain the PSD reducing the variability of the
estimation by the averaging performed [17]. For this purpose,



Fig. 2. Block diagram of the methodology followed for the identification of the hand motor imagery.

MATLAB software (version R2020b, Mathworks Inc) was
used with a Hanning window of 1 second with an overlap of
50%. The spectral features of the EEG signals were divided
into three separate frequency bands, corresponding to alpha
(α, 8 − 13Hz), beta (β, 14 − 30Hz), and both (8 − 30Hz).
The frequency resolution for each band was 0.5 Hz where each
frequency band has a different feature vector size according
to the length of each frequency band. The α band vector is 15
features long, the β band vector is 33 features long, and for
both is of 49 features long.

E. Normalization

After feature extraction, a Min-Max Normalization method
was implemented so that the spectral features span the range
of 0 − 1 for the correlation between the signals [18]. The
normalization method is described by (1), where fi represents
the sample, fmin is the minimum value between features
vector, fmax is the maximum value of the features vector,
and fn is the normalized value.

fn =
fi − fmin

fmax − fmin
(1)

F. Correlation

To estimate the EEG functional connectivity, EEG signals
of electrodes C3 and C4 were used as references according
to obtained results of the data analysis and the literature [11].
Each reference channel was related to channels FC5, FC1,
FC2, FC6, Cz , CP5, CP1, CP2 and CP6 for a total of
18 combinations. To correlate the normalized spectral power
features between EEG channels, first, the normality of data
was evaluated using the Shapiro-Wilk test to determine which
correlation method is appropriate. For functional connectivity,
Spearman’s correlation coefficient method (Spearman’s rho)
was used taking into account that data did not have a normal
distribution. It was set the p − value to 0.05 significance to

perform the analysis of the results with significant correla-
tions. Finally, for each segmented data window, PSD features
were extracted, normalized, and correlated according to the
reference channels.

rho = 1 − 6
∑
d2i

n(n2 − 1)
(2)

Spearman method is described by (2), where rho represents
the correlation values between the range of −1 and 1, n is the
number of the observation and di is the distance between the
ranges of each observation of xi and yi [19]. Furthermore, for
correlation data rho, the absolute value is applied.

G. Evaluation of algorithm proposal

The feature vector for classification of the proposed PBC
method is formed as follows: the number of data (segments
with significant correlations) by the number of channels
combination (18 combinations). The proposed method was
compared with a standard method for the identification of
left and right-hand motor imagery movements [9], [20]. This
method consists of a feature vector of spectral power values
(PSD) of each frequency band for each EEG channel. The
LDA classifier was used to identify the movements for both
the proposed method and the standard method.

To assess the performance of both methods (PBC-LDA and
PSD-LDA) the data was divided into 70% for training and
30% for evaluation where cross-validation with 5 folds was
implemented.

H. Evaluation Metrics

The evaluation metrics implemented for the feature ex-
traction methods validation were the accuracy (Acc) and the
Cohen’s Kappa coefficient (κ). Evaluation metrics are describe
in (3) and (4) which are configured for binary classification
[21], [22].



Acc =

∑l
i=1

TPi+TNi

TPi+FNi+FPi+TNi

l
(3)

κ =

∑l
i=1

Acci−Pei

1−Pei

l
(4)

Where TP are the true positives, TN are the true negatives,
FN are the false negatives, FP are the false positives, Pe is
the aleatory accuracy and l is the total number of classes.

I. Statistical Analysis

For this study, a two-sample t-test using Matlab (version
R2020b, Mathworks Inc.) was implemented to calculate the
significant differences between the results of evaluation met-
rics of the proposed method (PBC-LDA) and the standard
method (PSD-LDA) by each frequency band analyzed. Nev-
ertheless, the type of distribution and the homogeneity of the
variances of the data was determined before applying the t-
test. For this purpose, the Shapiro-Wilk and Levene test was
applied.

A Two-sample t-test was applied after verifying the results
of evaluation metrics follow normal distribution values and
homogeneous variances. A p− value was established at 0.05.
The alternative hypothesis consists in that proposed methods
are significantly better than standard methods to classify
motor imagery of right and left hand, and the null hypothesis
otherwise. For this purpose, the results of the two implemented
metrics are considered for each frequency band implemented
(α, β, and both).

III. RESULTS

Fig. 3 and Fig. 4 present the results of the data analysis,
where Fig. 3 presents the average PSD features for C3 and
C4 channels of subject 4, and Fig. 4 presents the head maps
of the PSD features normalized by the z-score method in the
analyzed channels.

According to [1], the motor imagery of right and left-hand
movements is elicited contralaterally at the cerebral cortex,
mainly in the C3 and C4 channels. This means that in the
frequency band 8−30 Hz an ERD (decrease in power) occurs
in the C4 channel when the subject imagines the left-hand
movement and an ERD occurs in the C3 channel when the
subject imagines the right-hand movement. This behavior can
be seen in Fig. 3 and Fig. 4.

After calculating the correlations between all frequency
bands and channels described in table I, it was identified the
correlations where the highest value was obtained. Fig. 5
shows the connectivity between the EEG channels and
the reference channels for each frequency band analyzed.
Confidence intervals at 95% are presented to identify the
variability of the results among whole subjects. In the figure,
it is presented for α the correlation of the C3 channel
with FC2 and the correlation of C4 with CP5. For β, C3

correlates with FC1 and C4 with CP6. Finally, in both band,
C3 correlates with FC5 and C4 with CP6. It can be observed

Fig. 3. Average PSD of left and right-hand motor imagery of α and β bands
from channels C3 and C4 for the subject 4.

Fig. 4. Head map of left and right-hand motor imagery of α band at motor
cortex channels location for subject 4.

that when the subject imagines the right-hand movement there
is a higher correlation in C3 than in C4, and if the subject
imagines the left-hand movement there is a higher correlation
in C4 than in C3. This means that there is a contralateral
behavior (higher correlation) represented in the correlation
data when imagining hand movements.

TABLE I
CORRELATION OF THE REFERENCE CHANNELS WITH THE CHANNELS

LOCATED AT THE MOTOR CORTEX.

Bands Reference Channels EEG Channels

α (8− 13Hz)
C3

C4 FC5, FC1, FC2,
FC6, Cz , CP5,

CP1, CP2 and CP6

β (14− 30Hz)
C3

C4

α and β (8− 30Hz)
C3

C4

Fig. 6 and Fig. 7 show the behavior of standard methods
based on PSD features and the proposed method based on



Fig. 5. Correlation behavior between channels with 95% confidence intervals
of subject data for each frequency band (α, β, both). It is presented
the correlation of C3 (Reference channel) with channels FC2, FC1 and
FC5, and for C4 (Reference channel) it is presented for CP5, CP6, CP6,
respectively for each band.

PBC. The yellow box represents the behavior of the α band,
the blue box represents the behavior in the β band and the
red box represents the behavior in both bands (8 and 30 Hz).
It can be observed that the proposed method for each band
provides better results according to the evaluation metrics than
the standard method implemented for each band. Furthermore,
the results of the statistical analysis are presented in the table
II.

TABLE II
RESULTS OF STATISTICAL ANALYSIS BETWEEN THE PROPOSED AND

STANDARD METHODS WITH THE LDA CLASSIFIER.

Methods Comparison Accuracy κ

PBC-α vs PSD-α † †
PBC-β vs PSD-β ∼ ∼

PBC-All vs PSD-All † †
Note: ∼ non-significant; † p < 0.05.

Fig. 6. Box diagram of the Accuracy for the evaluated methods in this study
using the LDA classifier.

Fig. 7. Box diagram of the Cohen’s Kappa coefficient (κ) for the evaluated
methods in this study using the LDA classifier.

IV. DISCUSSION

According to the results obtained in this study, the Power-
based connectivity (PBC) methods provide adequate identi-
fication of motor imagery regarded right and left hand with
averages accuracy of approximately: 0.73 ± 0.07 (PBC-α),
0.68 ± 0.09 (PBC-β) and 0.77 ± 0.08 (PBC-Both). While the
standard methods based on PSD obtained average accuracy
of approximately: 0.59 ± 0.10 (PSD-α), 0.57 ± 0.11 (PSD-
β), and 0.60 ± 0.12 (PSD-Both), see Fig. 6. On the other
hand, the proposed method outperforms the standard method
considering Cohen’s Kappa coefficient, where the PBC method
had a behavior of 0.45 ± 0.15, 0.36 ± 0.19 and 0.55 ± 0.15 on
the frequency bands α, β and both respectively. While the PSD
method had a behavior of 0.19 ± 0.20, 0.14 ± 0.21 and 0.19
± 0.20 on the frequency bands α, β and both, respectively.
Fig. 7.

Reported methods in literature based on connectivity
through cross-correlation or coherence using reference chan-
nels [11], have provided accuracy of approximately 0.94 [12],
0.79 [8], 0.85 and 0.66 [13] but using advanced techniques
as spatial filters and complex classifiers. On the other hand,
experiments based on the classification of motor imagery for
subjects with no experience in BCI systems have reported



accuracy of around 0.79 [23]. According to the table II, it
is possible to see that the proposed method has a behavior
significantly better than standard methods on the α band and
using both bands (p−value < 0.05), for the β band the behav-
ior, is superior for PBC but not significant (p−value > 0.05).
Finally, the proposed method had the best performance using
the information of both frequency bands (α+β) and the worst
performance was on the β band, however, the evaluation of
the metrics are acceptable for the classification.

Obtained connectivity results present a contralateral behav-
ior showing a higher correlation in the C3 channel when
the subject imagines the right hand and in C4 when the
subject imagines the left hand. The correlation between the
channels was greater than 0.7 in the ipsilateral results and
greater than 0.8 in the contralateral results according to
Fig. 5. The correlation between the signals increases the
dimensionality of the data, which can lead to an improvement
in the identification of movements. Nevertheless, increasing
the number of reference channels increases the dimensionality
of the data. The proposed method was based on Spearman’s
correlation taking into account the normality conditions for the
application of Pearson’s correlation coefficient. In addition,
to our knowledge, Spearman’s correlation has not yet been
used for connectivity-based command identification. However,
connectivity-based systems for motion identification are still
under investigation to find methods that allow an effective
application in rehabilitation engineering.

V. CONCLUSIONS

It is possible to conclude that the connectivity-based method
can increase the performance in motor imagery task detection
in comparison to the traditional methods. Additionally, the
results show effects related to the connectivity between the
reference electrodes and those located in the motor cortical
area that are produced in the brain when right-hand or left-
hand movements are imagined. For this study, the method
based on Spearman’s correlation was an adequate descriptor
for identifying the user’s intention. This method could be
applied in online BCI system in combination with neurore-
habilitation techniques to benefit people with disabilities,
additionally, it could provide tools for understanding brain-
behavior during other types of stimuli. Further research will
focus on generalizing the method with more sample subjects
and on the experimental implementation of the method.
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