Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/1492
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMurillo, Gladys Angélica-
dc.contributor.advisorRincón, Rolando Javier-
dc.creatorLota Mendoza, Camila Alejandra-
dc.date.accessioned2021-02-18T17:53:11Z-
dc.date.available2021-02-18T17:53:11Z-
dc.date.created2020-11-17-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1492-
dc.descriptionInternaes_ES
dc.description.abstractSilver nanoparticles are a novel treatment against bacterial infections that exhibit resistance against traditional antibiotic agents resulting in infectious diseases of complex evolution. However, this type of nanoparticles exhibit cytotoxicity on eukaryotic cells, as well as are a substance that generates contamination in the water where it has been used, due to lack of a mechanism for its removal from the environment. As a solution alternative to these problems, it is proposed to develop a nanocomposite consisting of a magnetic core of iron oxide, coated with silica, and decorated with silver nanoparticles. The capacity of the nanostructured compound produced as a bactericidal agent, was evaluated on Gram positive strains and Gram Negatives. The characterization was carried out through by scanning electron microscopy and scanning transmission electron microscopy to determine its morphology, its chemical composition was determined semi-qualitatively by dispersed energy X-ray spectroscopy and its magnetic properties by vibrant sample magnetometry. The study showed that developed nanocomposites can be applied as bactericidal and/or bacteriostatic agents, being an alternative in disinfection processes for microbial control. Finally, by their magnetic property they would facilitate their removal from the environment in which they have been applied, thus allowing to perform a disinfection process without adding additional contaminants to the environment, preventing the accumulation of these in the environment.es_ES
dc.description.sponsorshipUAN Proyectos de ciencia, tecnología, innovación y creación artísticaes_ES
dc.description.tableofcontentsLas nanopartículas de plata se han ido constituyendo como un tratamiento novedoso contra infecciones bacterianas que presentan resistencia contra los agentes antibióticos tradicionales generando como consecuencia enfermedades infecciosas de evolución compleja. Sin embargo, este tipo de nanopartículas exhiben citotoxicidad sobre células eucariotas, así como generan contaminación en el agua donde han sido empleadas, por falta de un mecanismo para su remoción del medio. Como una alternativa de solución a estas problemáticas, se propone el desarrollo de un nanocompuesto constituido por un núcleo magnético de óxido de hierro, recubierto con sílica y decorado con nanopartículas de plata. La capacidad del compuesto nanoestructurado producido como agente bactericida, fue evaluado sobre cepas Gram positivas y Gram Negativas. La caracterización se realizó a través de microscopia electrónica de barrido y microscopía electrónica de transmisión de barrido para determinar su morfología, su composición química fue determinada de forma semicuantitativa por espectroscopía de rayos X de energía dispersa y las propiedades magnéticas por magnetometría de muestra vibrante. El estudio evidenció que los nanocompuestos desarrollados pueden aplicarse como agentes bactericidas y/o bacteriostáticos, siendo una alternativa en los procesos de desinfección para el control microbiano. Finalmente, por su propiedad magnética facilitarían su remoción del medio en el que han sido aplicadas, permitiendo así realizar un proceso de desinfección sin adicionar agentes contaminantes adicionales al medio, previniendo la acumulación de estos en el ambiente.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectNanocompuesto magnético de plata, biocida, bacteriostático, bacterias multirresistentes, antibióticos.es_ES
dc.titleSíntesis y actividad antibacterial de un nanocompuesto NPIO@SiO2/Ag, evaluando su citotoxicidad en células eucariotas.es_ES
dc.publisher.programBioquímicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordMagnetic silver nanocomposite, biocide, bacteriostatic, multi-resistant bacteria, antibiotics.es_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAlejo Riveros, J. C., Cortes Muños, M. S., Correa Lizarazo, D. X., Klotz Ceberio, B., Herrera Arias, F. C., Martínez Galán, J. P., Rey Rodríguez, J. F., & Vanegas López, M. C. (2011). Evaluación de riesgos de Staphylococcus aureus enterotoxigénico en alimentos preparados no industriales en colombia (Issue November). https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INS/Er-staphylococcus.pdfes_ES
dc.source.bibliographicCitationÁlvarez, D., Negrón, S., Barrionuevo, J., & Romero, P. (2020). Infecciones Urinarias en pacientes geriátricos por presencia de Escherichia coli y Klebsiella spp productoras de betalactamasas de espectro extendido Urinary Infections in geriatric patients by presence of Escherichia coli y Klebsiella spp producers of ex. FACSalud, 4, 14–22.es_ES
dc.source.bibliographicCitationArzate, C. (2016). Efectos de citotoxicidad en microorganismos patógenos expuestos a nanopartículas de plata y óxido de zinc. 48.es_ES
dc.source.bibliographicCitationBarros, G., Melo, C., Oliveira, M., Silva, J., Santos, R., & Oliveira, S. (2020). Impacto financiero de la terapia con antibióticos en la resistencia a múltiples fármacos bacterianos en un hospital de emergencia en Pernambuco, Brasil. Ars Pharmaceutica (Internet), 61(2), 121–126. https://doi.org/10.30827/ars.v61i2.115337es_ES
dc.source.bibliographicCitationBelaroui, L. S., Ouali, A., Bengueddach, A., Lopez Galindo, A., & Peña, A. (2018). Adsorption of linuron by an Algerian palygorskite modified with magnetic iron. Applied Clay Science, 164(March), 26–33. https://doi.org/10.1016/j.clay.2018.03.021es_ES
dc.source.bibliographicCitationBen, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169(November 2018), 483–493. https://doi.org/10.1016/j.envres.2018.11.040es_ES
dc.source.bibliographicCitationBotelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44(April), 100640. https://doi.org/10.1016/j.drup.2019.07.002es_ES
dc.source.bibliographicCitationCalderón, G., & Aguilar, L. (2016). Infectología Resistencia Antimicrobiana : Microorganismos más resistentes y antibióticos. Revista Médica de Costa Rica y Centroamérica LXXIII, 621, 757–763.es_ES
dc.source.bibliographicCitationCardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdfes_ES
dc.source.bibliographicCitationChang, T. Y., Chen, C. C., Cheng, K. M., Chin, C. Y., Chen, Y. H., Chen, X. A., Sun, J. R., Young, J. J., & Chiueh, T. S. (2017). Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. In Colloids and Surfaces B: Biointerfaces (Vol. 155). Elsevier B.V. https://doi.org/10.1016/j.colsurfb.2017.03.054es_ES
dc.source.bibliographicCitationChanganaqui Barrientos, K., Alvarado Iparraguirre, D. E., & Alarcón Cavero, H. A. (2019). Síntesis y caracterización de nanocompuestos Fe3O4/Ag: su efecto contra Enterobacter aerogenes y Enterococcus faecalis. Revista Colombiana de Química, 48(2), 33–39. https://doi.org/10.15446/rev.colomb.quim.v48n2.73724es_ES
dc.source.bibliographicCitationChen, L. Q., Fang, L., Ling, J., Ding, C. Z., Kang, B., & Huang, C. Z. (2015). Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chemical Research in Toxicology, 28(3), 501–509. https://doi.org/10.1021/tx500479mes_ES
dc.source.bibliographicCitationChoi, Y. J., Gurunathan, S., & Kim, J. H. (2018). Graphene oxide-silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. International Journal of Molecular Sciences, 19(3). https://doi.org/10.3390/ijms19030710es_ES
dc.source.bibliographicCitationDadfar, S. M., Roemhild, K., Drude, N. I., von Stillfried, S., Knüchel, R., Kiessling, F., & Lammers, T. (2019). Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews, 138, 302–325. https://doi.org/10.1016/j.addr.2019.01.005es_ES
dc.source.bibliographicCitationDai, X., Zhao, Y., Li, J., Li, S., Lei, R., Chen, X., Zhang, X., & Li, C. (2018). Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. New Journal of Chemistry, 42(2), 1316–1325. https://doi.org/10.1039/c7nj03251jes_ES
dc.source.bibliographicCitationDakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. 7(November), 1–17. https://doi.org/10.3389/fmicb.2016.01831es_ES
dc.source.bibliographicCitationDaşbaşı, B. (2017). The Fractional-Order mathematical modeling of bacterial resistance against multiple antibiotics in case of local bacterial infection. SAÜ Fen Bilimleri Enstitüsü Dergisi, 21(3), 1–1. https://doi.org/10.16984/saufenbilder.298934es_ES
dc.source.bibliographicCitationDey Bhowmik, A., Bandyopadhyay, A., & Chattopadhyay, A. (2019). Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review. Nucleus (India), 62(3), 277–285. https://doi.org/10.1007/s13237-019-00293-0es_ES
dc.source.bibliographicCitationDhafer, C. E. B., Dhahri, M., Mezni, A., & Smiri, L. S. (2018). Surface‐enhanced Raman scattering study of PP /Ag nanocomposite developed to prevent postsurgery infection. Raman Spectrosc, 7.es_ES
dc.source.bibliographicCitationDíaz, S., Martínez, J., & Colino, C. (2018). Incorporación de agentes anti-infecciosos en nanopartículas metálicas de oro y chitosan | DÍAZ SÁNCHEZ | FarmaJournal. http://revistas.usal.es/index.php/2445-1355/article/view/18645es_ES
dc.source.bibliographicCitationEcheverri-Toro, L. M., Rueda, Z. V., Maya, W., Agudelo, Y., & Ospina, S. (2012). Klebsiella pneumoniae multi-resistente, factores predisponentes y mortalidad asociada en un hospital universitario en Colombia. Revista Chilena de Infectología, 29(2), 175–182. https://doi.org/10.4067/S0716-10182012000200009es_ES
dc.source.bibliographicCitationEscobar, A. M., Pizzio, L. R., & P. Romanelli, G. (2018). Catalizadores magnéticos basados en óxidos de hierro: síntesis, propiedades y aplicaciones. Ciencia En Desarrollo, 10(1). https://doi.org/10.19053/01217488.v10.n1.2019.8811es_ES
dc.source.bibliographicCitationFang, W., Zheng, Q., Fang, Y., & Huang, H. (2019). Facile synthesis of silver-decorated magnetic nanospheres used as effective and recyclable antibacterial agents. Current Applied Physics, 19(2), 114–119. https://doi.org/10.1016/j.cap.2018.11.008es_ES
dc.source.bibliographicCitationFreire, P. L. L., Albuquerque, A. J. R., Farias, I. A. P., da Silva, T., Santos Aguiar, J., Galembeck, A., Flores, M. A. P., Sampaio, F. C., Stamford, T. C. M., & Rosenblatt, A. (2016). Antimicrobial and cytotoxicity evaluation of colloidal chitosan – silver nanoparticles – fluoride nanocomposites. International Journal of Biological Macromolecules, 93, 896–903. https://doi.org/10.1016/j.ijbiomac.2016.09.052es_ES
dc.source.bibliographicCitationFuentes García, J. A., Díaz Cano, A. I., Guillen Cervantes, A., & Santoyo Salazar, J. (2018). Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix. Scientific Reports, 8(1), 2–11. https://doi.org/10.1038/s41598-018-23460-wes_ES
dc.source.bibliographicCitationGaviria, A., Correa Luis, Davila, C., Burgos, G., & Gómez Carolina. (2018). Plan nacional de respuesta a la resistencia a los antimicrobianos. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/plan-respuesta-resistencia-antimicrobianos.pdfes_ES
dc.source.bibliographicCitationGhiuță, I., Cristea, D., Croitoru, C., Kost, J., Wenkert, R., Vyrides, I., Anayiotos, A., & Munteanu, D. (2018). Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Applied Surface Science, 438, 66–73. https://doi.org/10.1016/j.apsusc.2017.09.163es_ES
dc.source.bibliographicCitationGonzáles Flores, M. (2017). Efecto bactericida de nanopartículas de plata y desinfectantes sobre bacterias multirresistentes. Universidad Autónoma de México.es_ES
dc.source.bibliographicCitationGoyeneche, L. M. (2018). Determinación del tamaño de rayos X ( Determination of particle size by X-Ray diffraction ). Universidad de Cantabria.es_ES
dc.source.bibliographicCitationGuadarrama-Reyes, S. C. (2013). Efecto antibacteriano de las nanopartículas de plata versus clorhexidina sobre Streptococcus mutans y Lactobacillus casei. 151.es_ES
dc.source.bibliographicCitationGupta, N., Pant, P., Gupta, C., Goel, P., Jain, A., Anand, S., & Pundir, A. (2018). Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: a review. Materials Research Innovations, 22(7), 434–450. https://doi.org/10.1080/14328917.2017.1334846es_ES
dc.source.bibliographicCitationHappy Agarwal, Menon, S., Venkat Kumar, S., & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286(March), 60–70. https://doi.org/10.1016/j.cbi.2018.03.008es_ES
dc.source.bibliographicCitationHerrera, M. (2018). Aumentó cifra de bacterias resistentes a los antibióticos en Colombia | La FM. https://www.lafm.com.co/salud/en-colombia-se-desperdician-9-millones-de-toneladas-de-alimentos-faoes_ES
dc.source.bibliographicCitationHsieh, P. W., Tseng, C. L., & Kuo, D. H. (2015). Preparation of SiO2-protecting metallic Fe nanoparticle/SiO2 composite spheres for biomedical application. Materials, 8(11), 7691–7701. https://doi.org/10.3390/ma8115416es_ES
dc.source.bibliographicCitationHuang, D., Yan, X., Yan, M., Zeng, G., Zhou, C., Wan, J., Cheng, M., & Xue, W. (2018). Graphitic Carbon Nitride-Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight [Review-article]. ACS Applied Materials and Interfaces, 10(25), 21035–21055. https://doi.org/10.1021/acsami.8b03620es_ES
dc.source.bibliographicCitationIDDEX. (2018). Guía microbiológica para interpretar la concentración mínima inhibitoria (CMI). Cmi, 3. https://www.idexx.es/files/mic-guía-microbiológica-es.pdfes_ES
dc.source.bibliographicCitationIvashchenko, O., Woźniak, A., Coy, E., Peplinska, B., Gapinski, J., & Jurga, S. (2017). Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: An interdependent relationship. Colloids and Surfaces B: Biointerfaces, 152, 85–94. https://doi.org/10.1016/j.colsurfb.2017.01.009es_ES
dc.source.bibliographicCitationJuhas, M. (2019). Genomic Islands and the Evolution of Multidrug-Resistant Bacteria. Horizontal Gene Transfer, 143–153. https://doi.org/10.1007/978-3-030-21862-1_4es_ES
dc.source.bibliographicCitationKane, S. N., Mishra, A., & Dutta, A. K. (2017). Magentite nanoparticle for arsenic remotion. Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001es_ES
dc.source.bibliographicCitationKhan, M. (Ed.). (2018). Silver Nanoparticles: Fabrication, Characterization and Applications (Vol. 1). Croatia. https://books.google.com.co/books?hl=es&lr=&id=iHuQDwAAQBAJ&oi=fnd&pg=PA71&dq=gravity+of+silver+nanocomposites&ots=RxqturpW6N&sig=wZ2_WWCgICxew43mbLy2dRln9AM&redir_esc=y#v=onepage&q=gravity of silver nanocomposites&f=falsees_ES
dc.source.bibliographicCitationKharisov, B. I., Dias, H. V. R., & Kharissova, O. V. (2019). Mini-review : Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7), 1234–1246. https://doi.org/10.1016/j.arabjc.2014.10.049es_ES
dc.source.bibliographicCitationKolavekar, S. B., Ayachit, N. H., Jagannath, G., NagaKrishnakanth, K., & Venugopal Rao, S. (2018). Optical, structural and Near-IR NLO properties of gold nanoparticles doped sodium zinc borate glasses. Optical Materials, 83(May), 34–42. https://doi.org/10.1016/j.optmat.2018.05.083es_ES
dc.source.bibliographicCitationKulkarni, S. K. (2015). Nanotechnology : Principles and Practices (3rd Editio). Springer International Publishing.es_ES
dc.source.bibliographicCitationLee, D. W., Fatima, H., & Kim, K. S. (2018). Preparation of silica coated magnetic nanoparticles for bioseparation. Journal of Nanoscience and Nanotechnology, 18(2), 1414–1418. https://doi.org/10.1166/jnn.2018.14888es_ES
dc.source.bibliographicCitationLi, Yan, Qin, T., Ingle, T., Yan, J., He, W., Yin, J. J., & Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1), 509–519. https://doi.org/10.1007/s00204-016-1730-yes_ES
dc.source.bibliographicCitationLi, Yanlin, Duan, W., Lu, X., Yang, S., & Wen, X. (2019). Synthesis of strawberry-like Fe3O4@SiO2@Ag composite colloidal particles for constructing responsive photonic crystals. Optical Materials, 94(May), 423–429. https://doi.org/10.1016/j.optmat.2019.06.002es_ES
dc.source.bibliographicCitationLindmeier, C. (2018). OMS | Datos recientes revelan los altos niveles de resistencia a los antibióticos en todo el mundo. WHO. https://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/es/es_ES
dc.source.bibliographicCitationLiu, E., Zhang, M., Cui, H., Gong, J., Huang, Y., Wang, J., Cui, Y., Dong, W., Sun, L., He, H., & Yang, V. C. (2018). Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharmaceutica Sinica B, 8(6), 956–968. https://doi.org/10.1016/j.apsb.2018.07.012es_ES
dc.source.bibliographicCitationLizarazo Salcedo, C. G., González Jiménez, E. E., Arias Portela, C. Y., & Guarguati Ariza, J. (2018). Nanomateriales: un acercamiento a lo básico Nanomaterials: Being Closer to Basics. In Nanomateriales: Artículo especial Med Segur Trab (Internet) (Vol. 64, Issue 251).es_ES
dc.source.bibliographicCitationLLamosa, D. (2018). Nanomundo (1st ed.). Universidad Antonio Nariño.es_ES
dc.source.bibliographicCitationLópez-Carrizales, M., Mendoza-Mendoza, E., Peralta-Rodriguez, R. D., Pérez-Díaz, M. A., Portales-Pérez, D., Magaña-Aquino, M., Aragón-Piña, A., Infante-Martínez, R., Barriga-Castro, E. D., Sánchez-Sánchez, R., Martínez-Castañon, G. A., & Martinez-Gutierrez, F. (2020). Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids and Surfaces B: Biointerfaces, 196. https://doi.org/10.1016/j.colsurfb.2020.111292es_ES
dc.source.bibliographicCitationLópez-Esparza, J., Francisco Espinosa-Cristobal, L., Donohue-Cornejo, A., & Reyes-López, S. Y. (2016). Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Industrial and Engineering Chemistry Research, 55(49), 12532–12538. https://doi.org/10.1021/acs.iecr.6b02300es_ES
dc.source.bibliographicCitationMasri, A., Anwar, A., Khan, N. A., Shahbaz, M. S., Khan, K. M., Shahabuddin, S., & Siddiqui, R. (2019). Antibacterial Effects of Quinazolin-4(3H)-One Functionalized-Conjugated Silver Nanoparticles. Antibiotics, 4, 19.es_ES
dc.source.bibliographicCitationMichael, F., & Christopher, W. (2009). Antibiotics for Emerging Pathogens. Science, 325(5944), 1089–1093. https://doi.org/10.1126/science.1159961es_ES
dc.source.bibliographicCitationMiranda, C. V., & Costa Almeida, R. (2020). A importância do farmacêutico na dispensação e controle de medicamentos classificados como antimicrobianos. Saúde Multidisciplinar, 1–12.es_ES
dc.source.bibliographicCitationMoghayedi, M., Goharshadi, E. K., Ghazvini, K., Ahmadzadeh, H., Ranjbaran, L., Masoudi, R., & Ludwig, R. (2017). Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite. Colloids and Surfaces B: Biointerfaces, 159, 366–374. https://doi.org/10.1016/j.colsurfb.2017.08.001es_ES
dc.source.bibliographicCitationNabila, M. I., & Kannabiran, K. (2018). Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatalysis and Agricultural Biotechnology, 15, 56–62. https://doi.org/10.1016/j.bcab.2018.05.011es_ES
dc.source.bibliographicCitationNayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles : Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science & Engineering C, 58, 44–52. https://doi.org/10.1016/j.msec.2015.08.022es_ES
dc.source.bibliographicCitationNeciosup Zavaleta, C. P., & Ulloa Zavaleta, J. L. (2019). Efecto del porcentaje molar de Ag y temperatura de recocido sobre el tamaño de grano y conductividad eléctrica en películas semiconductoras de ZnO por el método Sol-Gel. In Lexus (Vol. 4, Issue None). Universidad Nacional de Trujillo.es_ES
dc.source.bibliographicCitationOMS. (2017, September 20). Un informe de la OMS confirma que el mundo se está quedando sin antibióticos. 2. http://www.calvo.qb.fcen.uba.ar/proteinas.htmes_ES
dc.source.bibliographicCitationOng, C., Lim, J. Z. Z., Ng, C., Li, J. J., Yung, L. L., & Bay, B. (2013). Silver Nanoparticles in Cancer : Therapeutic Efficacy and Toxicity. 772–781.es_ES
dc.source.bibliographicCitationOuahid Hessissen, A. (2016). Nanotecnología y sus potenciales aplicaciones en microbiología. Universidad de Sevilla.es_ES
dc.source.bibliographicCitationPadilla Cruz, A. L. (2018). Biosíntesis de nanopartículas bimetálicas (Ag-Fe), caracterización y evaluación de sus propiedades bactericidas.es_ES
dc.source.bibliographicCitationPalem, R. R., Saha, N., Shimoga, G. D., Kronekova, Z., Sláviková, M., & Saha, P. (2017). Chitosan–silver nanocomposites: New functional biomaterial for health-care applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(1), 1–10. https://doi.org/10.1080/00914037.2017.1291516es_ES
dc.source.bibliographicCitationPeralta, M. E., Ocampo, S., Funes, I. G., Medina, F. O., Parolo, M. E., & Carlos, L. (2020). Nanomaterials with tailored magnetic properties as adsorbents of organic pollutants from wastewaters. Inorganics, 8(4), 1–27. https://doi.org/10.3390/inorganics8040024es_ES
dc.source.bibliographicCitationPieretti, J. C., Rolim, W. R., Ferreira, F. F., Lombello, C. B., Nascimento, M. H. M., & Seabra, A. B. (2020). Synthesis, Characterization, and Cytotoxicity of Fe3O4@Ag Hybrid Nanoparticles: Promising Applications in Cancer Treatment. Journal of Cluster Science, 31(2), 535–547. https://doi.org/10.1007/s10876-019-01670-0es_ES
dc.source.bibliographicCitationPiras, C. C., Mahon, C. S., & Smith, D. K. (2020). Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. In Chemistry - A European Journal (Vol. 26, Issue 38, pp. 8452–8457). https://doi.org/10.1002/chem.202001349es_ES
dc.source.bibliographicCitationPorenczuk, A., Grzeczkowicz, A., Maciejewska, I., Gołaś, M., Piskorska, K., Kolenda, A., Gozdowski, D., Kopeć-swoboda, E., Granicka, L., & Olczak-kowalczyk, D. (2019). An initial evaluation of cytotoxicity , genotoxicity and antibacterial effectiveness of a disinfection liquid containing silver nanoparticles alone and combined with a glass-ionomer cement and dentin bonding systems. https://doi.org/10.17219/acem/76160es_ES
dc.source.bibliographicCitationPósniak, M. (2020). Emerging Chemical Risks in the Work Environment (TAY, Vol. 1). Taylor & Francis Group. https://books.google.com.co/books?id=sZ7qDwAAQBAJ&pg=PA9&dq=nanolayers+(with+one+outer+nano-scale+dimension),+nanotubes+(two+outer+nano-scale+dimensions)+and+nanoparticles+(three+outer+nano-scale+dimensions)&hl=es&sa=X&ved=2ahUKEwjLvfzkub_rAhUsw1kKHYnzAkses_ES
dc.source.bibliographicCitationPuntes, V. (2015). Uso de nanopartículas de hierro en la digestión anaeróbica, una revolución que multiplica exponencialmente la producción de biogás . https://www.Retema.Es/.es_ES
dc.source.bibliographicCitationRajeev, L. (2018). Antibiotic Discovery. Materials and Methods, 8. https://doi.org/10.13070/mm.en.8.2671es_ES
dc.source.bibliographicCitationReyes, P. (2012). Síntesis y caracterización de nanopartículas de cobre y óxido de cobre y su incorporación en una matriz polimérica y el estudio de sus propiedades anti bacterianas [Centro de investigación en química aplicada]. https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/166/1/Pamela Yajaira Reyes Rodriguez maestria.pdfes_ES
dc.source.bibliographicCitationRuíz, M., Cermeño, C., & Benites, E. (2019). Magnetite nanoparticles for reduction of hexavalent chrome in soil of an industrial park, Cerro Colorado - Arequipa. Journal of Nanotechnology, 3(1), 12–17.es_ES
dc.source.bibliographicCitationSánchez, E. P., Núñez, D., Cruz, R. O., Torres, M. A., & Herrera, E. V. (2017). Simulación y Conteo de Unidades Formadoras de Colonias. ReCIBE, 6(1), 97–111. http://recibe.cucei.udg.mx/revista/es/vol6-no1/pdf/computacion06.pdfes_ES
dc.source.bibliographicCitationSánchez Lerma, L., Pavas Escobar, N. C., Rojas Gulloso, A., & Pérez Gutiérrez, N. (2016). Infecciones por Staphylococcus aureus resistente a la meticilina adquirido en la comunidad en pacientes de Villavicencio, Colombia. Revista Cubana de Medicina Tropical, 68(1), 0–0.es_ES
dc.source.bibliographicCitationShah, A., Ali Buabeid, M., Arafa, E. S. A., Hussain, I., Li, L., & Murtaza, G. (2019). The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. International Journal of Pharmaceutics, 564(April), 22–38. https://doi.org/10.1016/j.ijpharm.2019.04.046es_ES
dc.source.bibliographicCitationSilva Calpa, L. de R., Correia, T. O. F., Netto Ferreira, J. C., Kuriyama, S. N., Letichevsky, S., & de Avillez, R. R. (2020). Stable and highly active zero-valent iron-nickel nanofilaments/silica for the hexavalent chromium reduction. Environmental Nanotechnology, Monitoring and Management, 14, 100332. https://doi.org/10.1016/j.enmm.2020.100332es_ES
dc.source.bibliographicCitationSilva Santos, K., Barbosa, A. M., Da Costa, L. P., Pinheiro, M. S., Oliveira, M. B. P. P., & Ferreira Padilha, F. (2016). Silver nanocomposite biosynthesis: Antibacterial activity against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Molecules, 21(9), 1–7. https://doi.org/10.3390/molecules21091255es_ES
dc.source.bibliographicCitationSingh, M. K., & Mehata, M. S. (2019). Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles. Optik, 193(June), 163011. https://doi.org/10.1016/j.ijleo.2019.163011es_ES
dc.source.bibliographicCitationSobhani-Nasab, A., Zahraei, Z., Akbari, M., Maddahfar, M., & Hosseinpour-Mashkani, S. M. (2017). Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite. Journal of Molecular Structure, 1139, 430–435. https://doi.org/10.1016/j.molstruc.2017.03.069es_ES
dc.source.bibliographicCitationSsekatawa, K., Byarugaba, D. K., Kato, C. D., Ejobi, F., Tweyongyere, R., Lubwama, M., Kirabira, J. B., & Wampande, E. M. (2020). Nanotechnological solutions for controlling transmission and emergence of antimicrobial-resistant bacteria, future prospects, and challenges: a systematic review. Journal of Nanoparticle Research, 22(5). https://doi.org/10.1007/s11051-020-04817-7es_ES
dc.source.bibliographicCitationSuslick, K. S., Didenko, Y., Fang, M. M., Hyeon, T., Kolbeck, K. J., McNamara, W. B., Mdleleni, M. M., & Wong, M. (1999). Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357(1751), 335–353. https://doi.org/10.1098/rsta.1999.0330es_ES
dc.source.bibliographicCitationTravieso, M., Rubio, A., Corzo, M., & Pino, O. (2018). Nanopartículas de plata obtenidas a partir del extracto residual de la hidrodestilación de Thymus vulgaris L. y su efecto sobre Xanthomonas phaseoli pv. phaseoli. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522018000300007es_ES
dc.source.bibliographicCitationTung, L. M., Cong, N. X., Huy, L. T., Lan, N. T., Phan, V. N., Hoa, N. Q., Vinh, L. K., Thinh, N. V., Tai, L. T., Ngo, D. T., Mølhave, K., Huy, T. Q., & Le, A. T. (2016). Synthesis, characterizations of superparamagnetic Fe3O4-Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. Journal of Nanoscience and Nanotechnology, 16(6), 5902–5912. https://doi.org/10.1166/jnn.2016.11029es_ES
dc.source.bibliographicCitationValderrama, S., González, P., Caro, M., Ardila, N., Ariza, B., Gil, F., & Álvarez, C. (2016). Factores de riesgo para bacteriemia por Pseudomonas aeruginosa resistente a carbapenémicos adquirida en un hospital colombiano. Biomédica : Revista Del Instituto Nacional de Salud, 36.es_ES
dc.source.bibliographicCitationVallabani, N. V. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 8(6), 1–23. https://doi.org/10.1007/s13205-018-1286-zes_ES
dc.source.bibliographicCitationVellore, T., & Nadu, T. (2016). Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles. 59(December), 1–8.es_ES
dc.source.bibliographicCitationVentola, C. L. (2015). The antibiotic resistance crisis. P & T : A Peer-Reviewed Journal for Formulary Management, 40(4), 277–283. http://www.ncbi.nlm.nih.gov/pubmed/25859123es_ES
dc.source.bibliographicCitationVeprek, S., & Veprek-Heijman, M. G. J. (2012). Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature. Thin Solid Films, 522, 274–282. https://doi.org/10.1016/j.tsf.2012.08.048es_ES
dc.source.bibliographicCitationVera Nuñez, L. del C., & Tamo Cornejo, J. O. (2018). Biosíntesis y caracterización de nanopartículas de plata (AgNPs) CON Thelypteris glandulosolanosa (RAQUI-RAQUI) y evaluación de su efecto anticancerígeno en línea celular de cáncer de mama MCF-7.es_ES
dc.source.bibliographicCitationWang, K., Ji, Q., Li, H., Guan, F., Zhang, D., Feng, H., & Fan, H. (2017). Synthesis and antibacterial activity of silver@carbon nanocomposites. Journal of Inorganic Biochemistry, 166, 64–67. https://doi.org/10.1016/j.jinorgbio.2016.11.002es_ES
dc.source.bibliographicCitationYano, T., Tsuchimoto, Y., Zaccaria, R. P., Toma, A., Portela, A., & Hara, M. (2017). Enhanced optical magnetism for reversed optical binding forces between silicon nanoparticles in the visible region. Optics Express, 25(1), 431. https://doi.org/10.1364/oe.25.000431es_ES
dc.source.bibliographicCitationYuan, Y. G., & Gurunathan, S. (2017). Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. International Journal of Nanomedicine, 12, 6537–6558. https://doi.org/10.2147/IJN.S125281es_ES
dc.source.bibliographicCitationZhang, L., Wu, L., Si, Y., & Shu, K. (2018). Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE, 13(12), 1–18. https://doi.org/10.1371/journal.pone.0209020es_ES
dc.source.bibliographicCitationZhao, L., Li, H., Zhu, Z., Wakefield, M. R., Fang, Y., & Ye, Y. (2017). Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance. Infection, Genetics and Evolution, 50, 20–24. https://doi.org/10.1016/j.meegid.2017.02.001es_ES
dc.source.bibliographicCitationZiabka, M., Dziadek, M., & Pielichowska, K. (2020). Surface and structural properties of medical acrylonitrile butadiene styrene modified with silver nanoparticles. Polymers, 12(1). https://doi.org/10.3390/polym12010197es_ES
dc.description.degreenameBioquímico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Cienciases_ES
dc.description.funderEl trabajo de grado fue financiado por el proyecto de la convocatoria interna de la Universidad Antonio Nariño No. 2019204es_ES
dc.description.notesPresenciales_ES
dc.creator.cedula1.013.687.747es_ES
dc.creator.cedula52.067.713es_ES
dc.creator.cedula79.885.996es_ES
dc.publisher.campusBogotá - Circunvalar-
Aparece en las colecciones: Bioquímica

Ficheros en este ítem:
Fichero Tamaño  
2020AutorizacióndeAutores.pdf
  Restricted Access
367.8 kBVisualizar/Abrir  Request a copy
2020CamilaAlejandraLotaMendoza.pdf2 MBVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons