Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/1494
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorLosada Barragán, Mónica-
dc.contributor.advisorLlamosa Pérez, Daniel-
dc.creatorMedina Castillo, Yehidi Julieth-
dc.date.accessioned2021-02-18T18:33:52Z-
dc.date.available2021-02-18T18:33:52Z-
dc.date.created2020-11-18-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1494-
dc.descriptionInternaes_ES
dc.description.abstractNeuroinflammation is characterized by presenting alterations in the blood-brain barrier, and activation of glial cells, leading to brain tissue alterations generating a pathology, this has led to the need to improve the magnetic resonance imaging technique that allows understanding the development and progression of alterations of the blood-brain barrier in real time, under neuroinflammatory conditions. As an alternative to this solution, it is proposed to establish the binding of a neuroinflammation marker peptide with its target protein and its conjugation with superparamagnetic nanoparticles. The results show that the magnetic nanoparticles have a spherical shape with a size of 54 ± 10 nm, the chemical composition Fe @ SiO2 and a magnetic hysteresis curve indicating a superparamagnetic behavior; The evaluation of the binding of peptide-88 with its possible receptor protein showed a greater binding between peptide-88 with laminin β1, likewise the binding of peptide-88 with the nanoparticles was studied, demonstrating a greater binding unlike the target. The present study showed that by establishing the functionalization of superparamagnetic nanoparticles conjugated to a neuroinflammation biomarker peptide, they can be used for early diagnosis and real-time evolution of the mechanisms triggered under neuroinflammatory conditions.es_ES
dc.description.sponsorshipUAN Proyectos de ciencia, tecnología, innovación y creación artísticaes_ES
dc.description.tableofcontentsLa neuroinflamación es caracterizada por presentar alteraciones en la barrera hematoencefálica, y activación de las células glía, conduciendo a eventos patológicos, esto ha llevado a la necesidad de mejorar la técnica de imagen por resonancia magnética que permitan comprender el desarrollo y progresión de las alteraciones de la barrera hematoencefálica en tiempo real, bajo condiciones neuroinflamatorias. Como una alternativa a esta solución, se propone establecer la unión de un péptido marcador de neuroinflamación con su proteína blanco y su conjugación con nanopartículas superparamagnéticas. Los resultados muestran que las nanopartículas magnéticas presentan una forma esférica con un tamaño 54 ± 10 nm, la composición química Fe@SiO2 y una curva de histéresis magnética indicando un comportamiento superparamagnético; la evaluación de la unión del péptido-88 con su posible proteína receptora mostró una mayor unión entre el peptido-88 con laminina β1, igualmente se estudió la unión del péptido-88 con las nanopartículas demostrando una mayor unión a diferencia del blanco. El presente estudio evidenció que al establecer la funcionalización de nanopartículas superparamagnéticas conjugadas a un péptido biomarcador de neuroinflamación, pueden ser utilizadas para el diagnóstico temprano y evolución en tiempo real de los mecanismos desencadenados bajo condiciones neuroinflamatorias.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectNeuroinflamación, barrera hematoencefálica, nanopartículas superparamagnéticas, péptido biomarcador, proteínas blanco, cultivos in vitro.es_ES
dc.titleEvaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticases_ES
dc.publisher.programBioquímicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordNeuroinflammation, blood-brain barrier, superparamagnetic nanoparticles, biomarker peptide, target proteins, in vitro cultures.es_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAbbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41–53. https://doi.org/10.1038/nrn1824es_ES
dc.source.bibliographicCitationAli, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. https://doi.org/10.2147/NSA.S99986es_ES
dc.source.bibliographicCitationAlvear, D., Galeas, S., & Debut, A. (2017). Síntesis y Caracterización de Nanopartículas de Magnetita. Revista Politécnica, 39(2), 61–66. https://doi.org/10.33333/rp.v39i2.545es_ES
dc.source.bibliographicCitationBalistreri, C. R., Carruba, G., Calabrò, M., Campisi, I., Carlo, D. Di, Lio, D., Colonna-Romano, G., Candore, G., & Caruso, C. (2009). CCR5 proinflammatory allele in prostate cancer risk: A pilot study in patients and centenarians from sicily. Annals of the New York Academy of Sciences, 1155, 289–292. https://doi.org/10.1111/j.1749-6632.2008.03691.xes_ES
dc.source.bibliographicCitationBarkhof, F., Calabresi, P. A., Miller, D. H., & Reingold, S. C. (2009). Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nature Reviews Neurology, 5(5), 256–266. https://doi.org/10.1038/nrneurol.2009.41es_ES
dc.source.bibliographicCitationBerger, C., Hiestand, P., Kindler-Baumann, D., Rudin, M., & Rausch, M. (2006). Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR in Biomedicine, 19(1), 101–107. https://doi.org/10.1002/nbm.1007es_ES
dc.source.bibliographicCitationBerry, C. C. (2005). Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. Journal of Materials Chemistry, 15(5), 543–547. https://doi.org/10.1039/b409715ges_ES
dc.source.bibliographicCitationBoiziau, C., Nikolski, M., Mordelet, E., Aussudre, J., Vargas-Sanchez, K., & Petry, K. G. (2018). A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis. Inflammation, 41(3), 932–947. https://doi.org/10.1007/s10753-018-0748-0es_ES
dc.source.bibliographicCitationby Dove Press, published. (2014). Oh NPark J. 51–63. http://dx.doi.org/10.2147/IJN.S26592es_ES
dc.source.bibliographicCitationChen, Fang, Hableel, G., Zhao, E. R., & Jokerst, J. V. (2018). Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. Journal of Colloid and Interface Science, 521, 261–279. https://doi.org/10.1016/j.jcis.2018.02.053es_ES
dc.source.bibliographicCitationChen, Feng, Bu, W., Chen, Y., Fan, Y., He, Q., Zhu, M., Liu, X., Zhou, L., Zhang, S., Peng, W., & Shi, J. (2009). A Sub-50-nm Monosized Superparamagnetic Fe 3 O 4 @SiO 2 T 2 -Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core-Shell Nanostructures. Chemistry - An Asian Journal, 4(12), 1809–1816. https://doi.org/10.1002/asia.200900276es_ES
dc.source.bibliographicCitationZhang, L., Shao, H. ping, Zheng, H., Lin, T., & Guo, Z. meng. (2016). Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. International Journal of Minerals, Metallurgy and Materials, 23(9), 1112–1118. https://doi.org/10.1007/s12613-016-1329-6es_ES
dc.source.bibliographicCitationZhang, S., Li, J., Lykotrafitis, G., Bao, G., & Suresh, S. (2009). Size-dependent endocytosis of nanoparticles. Advanced Materials, 21(4), 419–424. https://doi.org/10.1002/adma.200801393es_ES
dc.source.bibliographicCitationZinnhardt, B., Wiesmann, M., Honold, L., Barca, C., Schäfers, M., Kiliaan, A. J., & Jacobs, A. H. (2018). In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics, 8(10), 2603–2620. https://doi.org/10.7150/thno.24128es_ES
dc.source.bibliographicCitationZlokovic, B. V. (2008). Review The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. 2, 178–201. https://doi.org/10.1016/j.neuron.2008.01.003es_ES
dc.source.bibliographicCitationCosta, C., Brandão, F., Bessa, M. J., Costa, S., Valdiglesias, V., Kiliç, G., Fernández-Bertólez, N., Quaresma, P., Pereira, E., Pásaro, E., Laffon, B., & Teixeira, J. P. (2016). In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. Journal of Applied Toxicology, 36(3), 361–372. https://doi.org/10.1002/jat.3213es_ES
dc.source.bibliographicCitationDaneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412es_ES
dc.source.bibliographicCitationDeutscher, S. L. (2010). Phage display in molecular imaging and diagnosis of cancer. Chemical Reviews, 110(5), 3196–3211. https://doi.org/10.1021/cr900317fes_ES
dc.source.bibliographicCitationDi Russo, J., Luik, A., Yousif, L., Budny, S., Oberleithner, H., Hofschröer, V., Klingauf, J., Bavel, E., Bakker, E. N., Hellstrand, P., Bhattachariya, A., Albinsson, S., Pincet, F., Hallmann, R., & Sorokin, L. M. (2017). Endothelial basement membrane laminin 511 is essential for shear stress response. The EMBO Journal, 36(2), 183–201. https://doi.org/10.15252/embj.201694756es_ES
dc.source.bibliographicCitationDi Virgilio, F., Ceruti, S., Bramanti, P., & Abbracchio, M. P. (2009). Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 32(2), 79–87. https://doi.org/10.1016/j.tins.2008.11.003es_ES
dc.source.bibliographicCitationDijkhuizen, R. M. (2011). Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury. Translational Stroke Research, 2(4), 524–532. https://doi.org/10.1007/s12975-011-0130-0es_ES
dc.source.bibliographicCitationDijkhuizen, R. M., & Nicolay, K. (2003). Magnetic Resonance Imaging in Experimental Models of Brain Disorders. Journal of Cerebral Blood Flow and Metabolism, 23(12), 1383–1402. https://doi.org/10.1097/01.WCB.0000100341.78607.EBes_ES
dc.source.bibliographicCitationDing, H. L., Zhang, Y. X., Wang, S., Xu, J. M., Xu, S. C., & Li, G. H. (2012). Fe 3 O 4 @SiO 2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chemistry of Materials, 24(23), 4572–4580. https://doi.org/10.1021/cm302828des_ES
dc.source.bibliographicCitationDomogatskaya, A., Rodin, S., & Tryggvason, K. (2012). Functional diversity of laminins. Annual Review of Cell and Developmental Biology, 28, 523–553. https://doi.org/10.1146/annurev-cellbio-101011-155750es_ES
dc.source.bibliographicCitationDousset, V., Brochet, B., Deloire, M. S. A., Lagoarde, L., Barroso, B., Caille, J. M., & Petry, K. G. (2006). MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. American Journal of Neuroradiology, 27(5), 1000–1005.es_ES
dc.source.bibliographicCitationDresco, P. A., Zaitsev, V. S., Gambino, R. J., & Chu, B. (1999). Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir, 15(6), 1945–1951. https://doi.org/10.1021/la980971ges_ES
dc.source.bibliographicCitationEngelhardt, B., & Ransohoff, R. M. (2012). Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends in Immunology, 33(12), 579–589. https://doi.org/10.1016/j.it.2012.07.004es_ES
dc.source.bibliographicCitationEstelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070–8101. https://doi.org/10.3390/ijms16048070es_ES
dc.source.bibliographicCitationEstrada-rojo, F., Escoto, S. I., & Navarro, L. (2018). Neuroin amación : el ying-yang de la neuroinmunología. 44–53. http://www.scielo.org.mx/pdf/facmed/v61n5/2448-4865-facmed-61-05-44.pdfes_ES
dc.source.bibliographicCitationFilippi, M., Preziosa, P., & Rocca, M. A. (2014). Magnetic resonance outcome measures in multiple sclerosis trials: Time to rethink? Current Opinion in Neurology, 27(3), 290–299. https://doi.org/10.1097/WCO.0000000000000095es_ES
dc.source.bibliographicCitationFloris, S., Blezer, E. L. A., Schreibelt, G., Do, E., Dijkstra, K. N. C. D., & Vries, H. E. De. (2004). Blood ± brain barrier permeability and monocyte in ® ltration in experimental allergic encephalomyelitis A quantitative MRI study. 127(3), 616–627. https://doi.org/10.1093/brain/awh068es_ES
dc.source.bibliographicCitationGarre Olmo, J. (2018). Epidemiología de la enfermedad de Alzheimer y otras demencias. Revista de Neurología, 66(11), 377. https://doi.org/10.33588/rn.6611.2017519es_ES
dc.source.bibliographicCitationGauberti, M., Montagne, A., Marcos-Contreras, O. A., Le Béhot, A., Maubert, E., & Vivien, D. (2013). Ultra-Sensitive Molecular MRI of Vascular Cell Adhesion Molecule-1 Reveals a Dynamic Inflammatory Penumbra After Strokes. Stroke, 44(7), 1988–1996. https://doi.org/10.1161/STROKEAHA.111.000544es_ES
dc.source.bibliographicCitationGendelman, H. E. (2002). Neural immunity: Friend or foe? Journal of NeuroVirology, 8(6), 474–479. https://doi.org/10.1080/13550280290168631es_ES
dc.source.bibliographicCitationGhosh, D., Upmanyu, N., Shukla, T., & Shrivastava, T. P. (2019). Cell and organ drug targeting. In Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00015-1es_ES
dc.source.bibliographicCitationGupta, A. K., & Wells, S. (2004). Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies. IEEE Transactions on Nanobioscience, 3(1), 66–73. https://doi.org/10.1109/TNB.2003.820277es_ES
dc.source.bibliographicCitationHan, Q., Li, B., Feng, H., Xiao, Z., Chen, B., Zhao, Y., Huang, J., & Dai, J. (2011). The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials, 32(22), 5077–5085. https://doi.org/10.1016/j.biomaterials.2011.03.072es_ES
dc.source.bibliographicCitationHe, J., Huang, M., Wang, D., Zhang, Z., & Li, G. (2014). Magnetic separation techniques in sample preparation for biological analysis: A review. Journal of Pharmaceutical and Biomedical Analysis, 101, 84–101. https://doi.org/10.1016/j.jpba.2014.04.017es_ES
dc.source.bibliographicCitationHeneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Heneka, M. (2015). Neuroinflammation in Alzheimer’s Disease HHS Public Access. Lancet Neurol, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5es_ES
dc.source.bibliographicCitationHilger, I., Frühauf, S., Linß, W., Hiergeist, R., Andrä, W., Hergt, R., & Kaiser, W. A. (2003). Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. Journal of Magnetism and Magnetic Materials, 261(1–2), 7–12. https://doi.org/10.1016/S0304-8853(01)00258-Xes_ES
dc.source.bibliographicCitationHirsch, E. C., Vyas, S., St´, S., & Hunot, S. (2012). Parkinsonism and Related Disorders 18S1 (2012) S210-S212. 1, 210–212. https://doi.org/10.1016/S1353-8020(11)70065-7es_ES
dc.source.bibliographicCitationHusemann, J., Loike, J. D., Anankov, R., Febbraio, M., & Silverstein, S. C. (2002). Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system. Glia, 40(2), 195–205. https://doi.org/10.1002/glia.10148es_ES
dc.source.bibliographicCitationIssa, B., & M. Obaidat, I. (2019). Magnetic Nanoparticles as MRI Contrast Agents. Magnetic Resonance Imaging, 1–16. https://doi.org/10.5772/intechopen.84649es_ES
dc.source.bibliographicCitationIv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., & Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10(6), 993–1008. https://doi.org/10.2217/nnm.14.203es_ES
dc.source.bibliographicCitationJeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177es_ES
dc.source.bibliographicCitationJi, K., & Tsirka, S. E. (2012a). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9, 1–12. https://doi.org/10.1186/1742-2094-9-159es_ES
dc.source.bibliographicCitationJi, K., & Tsirka, S. E. (2012b). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9(1), 610. https://doi.org/10.1186/1742-2094-9-159es_ES
dc.source.bibliographicCitationJo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(7), 1603–1611. https://doi.org/10.1016/j.nano.2015.04.015es_ES
dc.source.bibliographicCitationKandelaki, E., Kavlashvili, N., Kherkheulidze, M., & Chkhaidze, I. (2015). Prevalence of Atopic Dermatitis Symptoms in Children With Developmental and Behavioral Problems. Georgian Medical News, 6(243), 29–33.es_ES
dc.source.bibliographicCitationKarina, J., & Sanchez, V. (2013). IN VIVO PEPTIDE BIOMARKER SCREENING FOR MOLECULAR IMAGING IN EAE NEUROINFLAMMATION. the Bordeaux Segalen University.es_ES
dc.source.bibliographicCitationKarlik, S. J., Roscoe, W. A., Patinote, C., & Contino-pépin, C. (2012). Targeting Vascular Changes in Lesions in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. 7–14.es_ES
dc.source.bibliographicCitationKeenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science and Technology, 43(12), 4555–4560. https://doi.org/10.1021/es9006383es_ES
dc.source.bibliographicCitationKharisov, B. I., Rasika Dias, H. V., Kharissova, O. V., Manuel Jiménez-Pérez, V., Olvera Pérez, B., & Muñoz Flores, B. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325. https://doi.org/10.1039/c2ra20812aes_ES
dc.source.bibliographicCitationKiliç, G., Fernández-Bertólez, N., Costa, C., Brandão, F., Teixeira, J. P., Pásaro, E., Laffon, B., & Valdiglesias, V. (2016). The Application, Neurotoxicity, and Related Mechanism of Iron Oxide Nanoparticles. In Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804598-5.00006-4es_ES
dc.source.bibliographicCitationKoffie, R. M., Farrar, C. T., Saidi, L. J., William, C. M., Hyman, B. T., & Spires-Jones, T. L. (2011). Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18837–18842. https://doi.org/10.1073/pnas.1111405108es_ES
dc.source.bibliographicCitationKrishnan, K. M. (2010). Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Transactions on Magnetics, 46(7), 2523–2558. https://doi.org/10.1109/TMAG.2010.2046907es_ES
dc.source.bibliographicCitationLewczuk, P., Mroczko, B., Fagan, A., & Kornhuber, J. (2015). Biomarkers of Alzheimer’s disease and mild cognitive impairment: A current perspective. Advances in Medical Sciences, 60(1), 76–82. https://doi.org/10.1016/j.advms.2014.11.002es_ES
dc.source.bibliographicCitationLi, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1), 9894. https://doi.org/10.1038/s41598-017-09897-5es_ES
dc.source.bibliographicCitationLombardo, S. M., Schneider, M., Türeli, A. E., & Türeli, N. G. (2020). Key for crossing the BBB with nanoparticles: The rational design. Beilstein Journal of Nanotechnology, 11(866), 866–883. https://doi.org/10.3762/BJNANO.11.72es_ES
dc.source.bibliographicCitationLourenço, I. M., Pieretti, J. C., Nascimento, M. H. M., Lombello, C. B., & Seabra, A. B. (2019). Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energy, Ecology and Environment, 4(6), 261–270. https://doi.org/10.1007/s40974-019-00134-5es_ES
dc.source.bibliographicCitationLucchinetti, C. F. (2008). Multiple sclerosis and the spectrum of CNS inflammatory demyelinating diseases. Seminars in Neurology, 28(1), 3–6. https://doi.org/10.1055/s-2007-1019123es_ES
dc.source.bibliographicCitationLuo, B., Song, X. J., Zhang, F., Xia, A., Yang, W. L., Hu, J. H., & Wang, C. C. (2010). Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. In Langmuir (Vol. 26, Issue 3, pp. 1674–1679). https://doi.org/10.1021/la902635kes_ES
dc.source.bibliographicCitationMahmoudi, M., Simchi, A., & Imani, M. (2009). Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. Journal of Physical Chemistry C, 113(22), 9573–9580. https://doi.org/10.1021/jp9001516es_ES
dc.source.bibliographicCitationMaldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications (pp. 47–71). https://doi.org/10.1007/978-1-4939-6840-4_4es_ES
dc.source.bibliographicCitationMathieu, Coppel, Respaud, Nguyen, Boutry, Laurent, Stanicki, Henoumont, Novio, Lorenzo, Montpeyó, & Amiens. (2019). Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules, 24(24), 4629. https://doi.org/10.3390/molecules24244629es_ES
dc.source.bibliographicCitationMcAteer, M. A., Sibson, N. R., von zur Muhlen, C., Schneider, J. E., Lowe, A. S., Warrick, N., Channon, K. M., Anthony, D. C., & Choudhury, R. P. (2007). In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nature Medicine, 13(10), 1253–1258. https://doi.org/10.1038/nm1631es_ES
dc.source.bibliographicCitationMcConnell, H. L., Schwartz, D. L., Richardson, B. E., Woltjer, R. L., Muldoon, L. L., & Neuwelt, E. A. (2016). Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(6), 1535–1542. https://doi.org/10.1016/j.nano.2016.03.009es_ES
dc.source.bibliographicCitationMcQualter, J. L., & Bernard, C. C. A. (2007). Multiple sclerosis: A battle between destruction and repair. Journal of Neurochemistry, 100(2), 295–306. https://doi.org/10.1111/j.1471-4159.2006.04232.xes_ES
dc.source.bibliographicCitationMenezes, M. J., McClenahan, F. K., Leiton, C. V., Aranmolate, A., Shan, X., & Colognato, H. (2014). The Extracellular Matrix Protein Laminin 2 Regulates the Maturation and Function of the Blood-Brain Barrier. Journal of Neuroscience, 34(46), 15260–15280. https://doi.org/10.1523/JNEUROSCI.3678-13.2014es_ES
dc.source.bibliographicCitationMillward, J. M., Schnorr, J., Taupitz, M., Wagner, S., Wuerfel, J. T., & Infante-Duarte, C. (2013). Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation. ASN Neuro, 5(2), 89–98. https://doi.org/10.1042/AN20120081es_ES
dc.source.bibliographicCitationMiner, J. H., Li, C., Mudd, J. L., Go, G., & Sutherland, A. E. (2004). Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development, 131(10), 2247–2256. https://doi.org/10.1242/dev.01112es_ES
dc.source.bibliographicCitationMirzaei, S., Hadadi, Z., Attar, F., Mousavi, S. E., Zargar, S. S., Tajik, A., Saboury, A. A., Rezayat, S. M., & Falahati, M. (2018). ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics, 36(16), 4235–4245. https://doi.org/10.1080/07391102.2017.1411832es_ES
dc.source.bibliographicCitationMoghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-Circulating and Target-Specific Nanoparticles : Theory to Practice. 53(2), 283–318.es_ES
dc.source.bibliographicCitationMoura, M. De, & Houten, B. Van. (2010). Review Article. Environmental and Molecular Mutagenesis, 405(April), 391–405. https://doi.org/10.1002/emes_ES
dc.source.bibliographicCitationNaegele, M., & Martin, R. (2014). The good and the bad of neuroinflammation in multiple sclerosis. In Handbook of Clinical Neurology (1st ed., Vol. 122, Issue 0). Elsevier B.V. https://doi.org/10.1016/B978-0-444-52001-2.00003-0es_ES
dc.source.bibliographicCitationNeuberger, T., Scho, B., Hofmann, M., & Rechenberg, B. Von. (2005). Superparamagnetic nanoparticles for biomedical applications : Possibilities and limitations of a new drug delivery system. 293, 483–496. https://doi.org/10.1016/j.jmmm.2005.01.064es_ES
dc.source.bibliographicCitationNirwane, A., & Yao, Y. (2019). Laminins and their receptors in the CNS. Biological Reviews, 94(1), 283–306. https://doi.org/10.1111/brv.12454es_ES
dc.source.bibliographicCitationPatil, R. M., Thorat, N. D., Shete, P. B., & Bedge, P. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 13(December 2017), 63–72. https://doi.org/10.1016/j.bbrep.2017.12.002es_ES
dc.source.bibliographicCitationPetry, K. G., Boiziau, C., Dousset, V., & Brochet, B. (2007). Magnetic Resonance Imaging of Human Brain Macrophage Infiltration. Neurotherapeutics, 4(3), 434–442. https://doi.org/10.1016/j.nurt.2007.05.005es_ES
dc.source.bibliographicCitationPetry, K., VARGAS-SANCHEZ, K., & VEKRIS, A. (2016). DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomarker Insights, 19.https://doi.org/10.4137/BMI.S32188es_ES
dc.source.bibliographicCitationQuenault, A., Martinez de Lizarrondo, S., Etard, O., Gauberti, M., Orset, C., Haelewyn, B., Segal, H. C., Rothwell, P. M., Vivien, D., Touzé, E., & Ali, C. (2017). Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain : A Journal of Neurology, 140(1), 146–157. https://doi.org/10.1093/brain/aww260es_ES
dc.source.bibliographicCitationRamge, P., Petrov, V., Hamm, S., Gelperina, S. E., Engelhardt, B., Alyautdin, R., Von, H., & Begley, D. J. (2003). Direct Evidence that Poly ( Butylcyanoacrylate ) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles. Pharmaceutical Research, 20(3), 409–416.es_ES
dc.source.bibliographicCitationRoco, M. C. (2011). Erratum to: The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years (Journal of Nanoparticle Research (2011) 13, (427-445) DOI: 10.1007/s11051-010-0192-z). Journal of Nanoparticle Research, 13(3), 1335. https://doi.org/10.1007/s11051-011-0323-1es_ES
dc.source.bibliographicCitationRojas, H. A., Martínez, J. J., & Vargas, A. Y. (2014). Selección de soportes magnéticos para la inmovilización de Ureasa Magnetic supports selection for Urease inmobilization. Ingeniería y Competitividad, 296(2), 289–296. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332014000200026es_ES
dc.source.bibliographicCitationSchéele, S., Nyström, A., Durbeej, M., Talts, J. F., Ekblom, M., & Ekblom, P. (2007). Laminin isoforms in development and disease. Journal of Molecular Medicine, 85(8), 825–836. https://doi.org/10.1007/s00109-007-0182-5es_ES
dc.source.bibliographicCitationSharifi, S., Seyednejad, H., Laurent, S., Atyabi, F., Saei, A. A., & Mahmoudi, M. (2015). Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media and Molecular Imaging, 10(5), 329–355. https://doi.org/10.1002/cmmi.1638es_ES
dc.source.bibliographicCitationSicotte, N. L. (2011). Neuroimaging in Multiple Sclerosis : Neurotherapeutic Implications. 8(January), 54–62. https://doi.org/10.1007/s13311-010-0008-yes_ES
dc.source.bibliographicCitationSong, J., Zhang, X., Buscher, K., Wang, Y., Wang, H., Di Russo, J., Li, L., Lütke-Enking, S., Zarbock, A., Stadtmann, A., Striewski, P., Wirth, B., Kuzmanov, I., Wiendl, H., Schulte, D., Vestweber, D., & Sorokin, L. (2017). Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Reports, 18(5), 1256–1269. https://doi.org/10.1016/j.celrep.2016.12.092es_ES
dc.source.bibliographicCitationStoll, G., & Bendszus, M. (2009). Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience, 158(3), 1151–1160. https://doi.org/10.1016/j.neuroscience.2008.06.045es_ES
dc.source.bibliographicCitationVan Rooy, I., Cakir-Tascioglu, S., Couraud, P. O., Romero, I. A., Weksler, B., Storm, G., Hennink, W. E., Schiffelers, R. M., & Mastrobattista, E. (2010). Identification of peptide ligands for targeting to the blood-brain barrier. Pharmaceutical Research, 27(4), 673–682. https://doi.org/10.1007/s11095-010-0053-6es_ES
dc.source.bibliographicCitationVan Rooy, I., Cakir-Tascioglu, S., Hennink, W. E., Storm, G., Schiffelers, R. M., & Mastrobattista, E. (2011). In vivo methods to study uptake of nanoparticles into the brain. Pharmaceutical Research, 28(3), 456–471. https://doi.org/10.1007/s11095-010-0291-7es_ES
dc.source.bibliographicCitationVaratharaj, A., & Galea, I. (2017). The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity, 60, 1–12. https://doi.org/10.1016/j.bbi.2016.03.010es_ES
dc.source.bibliographicCitationVellinga, M. M., Oude Engberink, R. D., Seewann, A., Pouwels, P. J. W., Wattjes, M. P., Van Der Pol, S. M. A., Pering, C., Polman, C. H., De Vries, H. E., Geurts, J. J. G., & Barkhof, F. (2008). Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain, 131(3), 800–807. https://doi.org/10.1093/brain/awn009es_ES
dc.source.bibliographicCitationWahajuddin, & Arora. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 3445. https://doi.org/10.2147/IJN.S30320es_ES
dc.source.bibliographicCitationWeissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., & Josephson, L. (1990). Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology, 175(2), 489–493. https://doi.org/10.1148/radiology.175.2.2326474es_ES
dc.source.bibliographicCitationWillner, I., & Willner, B. (2002). Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure and Applied Chemistry, 74(9), 1773–1783.es_ES
dc.source.bibliographicCitationWong, H. L., Wu, X. Y., & Bendayan, R. (2012a). Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews, 64(7), 686–700. https://doi.org/10.1016/j.addr.2011.10.007es_ES
dc.source.bibliographicCitationWong, H. L., Wu, X. Y., & Bendayan, R. (2012b). Nanotechnological advances for the delivery of CNS therapeutics. In Advanced Drug Delivery Reviews (Vol. 64, Issue 7, pp. 686–700). https://doi.org/10.1016/j.addr.2011.10.007es_ES
dc.source.bibliographicCitationXiao, Y. (2019). Superparamagnetic nanoparticles for biomedical applications. https://doi.org/10.1039/c9tb01955ces_ES
dc.source.bibliographicCitationYi, P., Chen, G., Zhang, H., Tian, F., Tan, B., Dai, J., Wang, Q., & Deng, Z. (2013). Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials, 34(12), 3010–3019. https://doi.org/10.1016/j.biomaterials.2013.01.022es_ES
dc.source.bibliographicCitationZaharchuk, G. (2007). Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. American Journal of Neuroradiology, 28(10), 1850–1858. https://doi.org/10.3174/ajnr.A0831es_ES
dc.description.degreenameBioquímico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Cienciases_ES
dc.description.funderCT-672-2018, código 123377757091es_ES
dc.description.notesPresenciales_ES
dc.creator.cedula1030649417es_ES
dc.publisher.campusBogotá - Circunvalar-
Aparece en las colecciones: Bioquímica

Ficheros en este ítem:
Fichero Tamaño  
2020YehidiJuliethMedinaCastillo.pdf1.23 MBVisualizar/Abrir
2020AutorizaciondeAutores.pdf
  Restricted Access
275.7 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons