Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.uan.edu.co/handle/123456789/2209
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Párraga Meneses, Manuel Fernando | - |
dc.creator | Forero Briceño, Jonnathan Julián | - |
dc.creator | Salazar Ibarra, José Álvaro | - |
dc.date.accessioned | 2021-03-02T13:59:30Z | - |
dc.date.available | 2021-03-02T13:59:30Z | - |
dc.date.created | 2020-07-17 | - |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/2209 | - |
dc.description.abstract | Energy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, technologies capable of taking advantage of this energy are developed, thanks to the creation of self-powered systems that also have a better impact on the environment. Entering in this technology two devices are postulated, the SPV1050 and the ADP5091, capable of storing, managing, and supplying the energy collected by specific transducers: photovoltaic cells and piezoelectric sensors. Simultaneously, the behavior of an acoustic energy harvester is analyzed. From its simulation in the Ansys CAE tool, solving the problem in a decoupled way, the modal response of a Helmholtz resonator with the hexagonal section is obtained. Likewise, the modal and voltage response of the series bimorph piezoelectric cantilever beam is achieved. The analysis carried out has the purpose of finding the behavior of the collection system for future implementation, making use of some of the proposed management systems. | es_ES |
dc.description.tableofcontents | La recolección de energía proveniente del ambiente generalmente de fuentes no utilizadas se hace indispensable en una sociedad con una creciente demanda energética. En la mayoría de casos estas fuentes presentan cantidades limitadas de energía, que puede ser usada en dispositivos de bajo consumo y en áreas con acceso limitado. Como solución a este tipo de problemas se desarrollan tecnologías capaces de aprovechar esta energía, gracias a la creación de sistemas autoalimentados que además presentan un mejor impacto en el ambiente. Incursionando en esta tecnología se postulan dos dispositivos, como lo son el SPV1050 y el ADP5091, capaces de almacenar, gestionar, y suministrar la energía recolectada por transductores específicos: celdas fotovoltaicas y sensores piezoeléctricos. En simultáneo, se analiza el comportamiento de un recolector de energía acústico. A partir de su simulación en la herramienta CAE de Ansys, resolviendo el problema de forma desacoplada, se obtiene la respuesta modal de un resonador Helmholtz con sección hexagonal. Así mismo, se consigue la respuesta modal y en voltaje del voladizo piezoeléctrico bimorfo en serie. El análisis realizado tiene la finalidad de encontrar el comportamiento del sistema de recolección para una implementación futura, haciendo uso de alguno de los sistemas de gestión propuestos. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Antonio Nariño | es_ES |
dc.rights | Atribución-NoComercial 3.0 Estados Unidos de América | * |
dc.rights | Atribución-NoComercial 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/us/ | * |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.subject | Energía | es_ES |
dc.subject | Recolección de energía | es_ES |
dc.subject | Gestión de energía | es_ES |
dc.subject | Sistemas autoalimentados | es_ES |
dc.subject | Generador piezoeléctrico | es_ES |
dc.subject | Viga en voladizo | es_ES |
dc.subject | Vibración | es_ES |
dc.title | Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico | es_ES |
dc.publisher.program | Ingeniería Mecatrónica | es_ES |
dc.rights.accesRights | openAccess | es_ES |
dc.subject.keyword | Energy | es_ES |
dc.subject.keyword | Energy harvesting | es_ES |
dc.subject.keyword | Power managament | es_ES |
dc.subject.keyword | Self-powered systems | es_ES |
dc.subject.keyword | Piezoelectric generator | es_ES |
dc.subject.keyword | Cantilever beam | es_ES |
dc.subject.keyword | Vibration | es_ES |
dc.type.spa | Trabajo de grado (Pregrado y/o Especialización) | es_ES |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.source.bibliographicCitation | Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282 | es_ES |
dc.source.bibliographicCitation | Alghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027 | es_ES |
dc.source.bibliographicCitation | Aloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848 | es_ES |
dc.source.bibliographicCitation | Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001 | es_ES |
dc.source.bibliographicCitation | Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271 | es_ES |
dc.source.bibliographicCitation | Barroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194 | es_ES |
dc.source.bibliographicCitation | Batarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1 | es_ES |
dc.source.bibliographicCitation | Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755 | es_ES |
dc.source.bibliographicCitation | Camilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la física | es_ES |
dc.source.bibliographicCitation | Can, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002 | es_ES |
dc.source.bibliographicCitation | Cansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100 | es_ES |
dc.source.bibliographicCitation | Chapman, S. J. (2014). Máquinas eléctricas | es_ES |
dc.source.bibliographicCitation | Chew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663 | es_ES |
dc.source.bibliographicCitation | Daniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861 | es_ES |
dc.source.bibliographicCitation | Díez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907 | es_ES |
dc.source.bibliographicCitation | Edy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004 | es_ES |
dc.source.bibliographicCitation | Erturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151 | es_ES |
dc.source.bibliographicCitation | Fraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8 | es_ES |
dc.source.bibliographicCitation | Gautschi, G., 2013. Piezoelectric Sensorics. Springer. | es_ES |
dc.source.bibliographicCitation | Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007 | es_ES |
dc.source.bibliographicCitation | Harrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217 | es_ES |
dc.source.bibliographicCitation | Hawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. Nelson | es_ES |
dc.source.bibliographicCitation | Hehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2 | es_ES |
dc.source.bibliographicCitation | Heywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Media | es_ES |
dc.source.bibliographicCitation | Jamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635 | es_ES |
dc.source.bibliographicCitation | Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141 | es_ES |
dc.source.bibliographicCitation | Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132 | es_ES |
dc.source.bibliographicCitation | Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converters | es_ES |
dc.source.bibliographicCitation | Khan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001 | es_ES |
dc.source.bibliographicCitation | Kinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072 | es_ES |
dc.source.bibliographicCitation | Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60 | es_ES |
dc.source.bibliographicCitation | Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184 | es_ES |
dc.source.bibliographicCitation | Luo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276 | es_ES |
dc.source.bibliographicCitation | Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081 | es_ES |
dc.source.bibliographicCitation | Mohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019 | es_ES |
dc.source.bibliographicCitation | Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083 | es_ES |
dc.source.bibliographicCitation | Newnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973 | es_ES |
dc.source.bibliographicCitation | Nikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223 | es_ES |
dc.source.bibliographicCitation | Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-x | es_ES |
dc.source.bibliographicCitation | Noticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.html | es_ES |
dc.source.bibliographicCitation | Obidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57 | es_ES |
dc.source.bibliographicCitation | Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849 | es_ES |
dc.source.bibliographicCitation | Pillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065 | es_ES |
dc.source.bibliographicCitation | Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446 | es_ES |
dc.source.bibliographicCitation | Rossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdf | es_ES |
dc.source.bibliographicCitation | Ruido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruido | es_ES |
dc.source.bibliographicCitation | Rupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, Heidelberg | es_ES |
dc.source.bibliographicCitation | Sarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634 | es_ES |
dc.source.bibliographicCitation | Serhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661 | es_ES |
dc.source.bibliographicCitation | Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010 | es_ES |
dc.source.bibliographicCitation | Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001 | es_ES |
dc.source.bibliographicCitation | Simpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdf | es_ES |
dc.source.bibliographicCitation | Spv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36 | es_ES |
dc.source.bibliographicCitation | Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media | es_ES |
dc.source.bibliographicCitation | Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0 | es_ES |
dc.source.bibliographicCitation | Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159 | es_ES |
dc.source.bibliographicCitation | Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080 | es_ES |
dc.source.bibliographicCitation | Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001 | es_ES |
dc.source.bibliographicCitation | Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073 | es_ES |
dc.source.bibliographicCitation | Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a | es_ES |
dc.source.bibliographicCitation | Yang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: Springer | es_ES |
dc.source.bibliographicCitation | Yu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750 | es_ES |
dc.source.bibliographicCitation | Yuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048 | es_ES |
dc.source.bibliographicCitation | Yunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412 | es_ES |
dc.source.bibliographicCitation | Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011 | es_ES |
dc.source.bibliographicCitation | Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102 | es_ES |
dc.description.degreename | Ingeniero(a) Mecatrónico(a) | es_ES |
dc.description.degreelevel | Pregrado | es_ES |
dc.publisher.faculty | Facultad de Ingeniería Mecánica, Electrónica y Biomédica | es_ES |
dc.description.funder | Costo total del proyecto $1.200.000. Financiación propia $280.000. Financiación UAN $920.000. | es_ES |
dc.description.notes | Presencial | es_ES |
dc.publisher.campus | Bogotá - Sur | - |
Aparece en las colecciones: | Ingeniería mecánica |
Ficheros en este ítem:
Fichero | Tamaño | |
---|---|---|
2020JonnathanJuliánForeroBriceño.pdf | 7.19 MB | Visualizar/Abrir |
2020AutorizacióndeAutores.pdf Restricted Access | 295.03 kB | Visualizar/Abrir Request a copy |
2020AutorizacióndeAutores.pdf Restricted Access | 313.92 kB | Visualizar/Abrir Request a copy |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons