Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/2209
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorPárraga Meneses, Manuel Fernando-
dc.creatorForero Briceño, Jonnathan Julián-
dc.creatorSalazar Ibarra, José Álvaro-
dc.date.accessioned2021-03-02T13:59:30Z-
dc.date.available2021-03-02T13:59:30Z-
dc.date.created2020-07-17-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2209-
dc.description.abstractEnergy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, technologies capable of taking advantage of this energy are developed, thanks to the creation of self-powered systems that also have a better impact on the environment. Entering in this technology two devices are postulated, the SPV1050 and the ADP5091, capable of storing, managing, and supplying the energy collected by specific transducers: photovoltaic cells and piezoelectric sensors. Simultaneously, the behavior of an acoustic energy harvester is analyzed. From its simulation in the Ansys CAE tool, solving the problem in a decoupled way, the modal response of a Helmholtz resonator with the hexagonal section is obtained. Likewise, the modal and voltage response of the series bimorph piezoelectric cantilever beam is achieved. The analysis carried out has the purpose of finding the behavior of the collection system for future implementation, making use of some of the proposed management systems.es_ES
dc.description.tableofcontentsLa recolección de energía proveniente del ambiente generalmente de fuentes no utilizadas se hace indispensable en una sociedad con una creciente demanda energética. En la mayoría de casos estas fuentes presentan cantidades limitadas de energía, que puede ser usada en dispositivos de bajo consumo y en áreas con acceso limitado. Como solución a este tipo de problemas se desarrollan tecnologías capaces de aprovechar esta energía, gracias a la creación de sistemas autoalimentados que además presentan un mejor impacto en el ambiente. Incursionando en esta tecnología se postulan dos dispositivos, como lo son el SPV1050 y el ADP5091, capaces de almacenar, gestionar, y suministrar la energía recolectada por transductores específicos: celdas fotovoltaicas y sensores piezoeléctricos. En simultáneo, se analiza el comportamiento de un recolector de energía acústico. A partir de su simulación en la herramienta CAE de Ansys, resolviendo el problema de forma desacoplada, se obtiene la respuesta modal de un resonador Helmholtz con sección hexagonal. Así mismo, se consigue la respuesta modal y en voltaje del voladizo piezoeléctrico bimorfo en serie. El análisis realizado tiene la finalidad de encontrar el comportamiento del sistema de recolección para una implementación futura, haciendo uso de alguno de los sistemas de gestión propuestos.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial 3.0 Estados Unidos de América*
dc.rightsAtribución-NoComercial 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.sourceinstname:Universidad Antonio Nariñoes_ES
dc.sourcereponame:Repositorio Institucional UANes_ES
dc.subjectEnergíaes_ES
dc.subjectRecolección de energíaes_ES
dc.subjectGestión de energíaes_ES
dc.subjectSistemas autoalimentadoses_ES
dc.subjectGenerador piezoeléctricoes_ES
dc.subjectViga en voladizoes_ES
dc.subjectVibraciónes_ES
dc.titleSistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctricoes_ES
dc.publisher.programIngeniería Mecatrónicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordEnergyes_ES
dc.subject.keywordEnergy harvestinges_ES
dc.subject.keywordPower managamentes_ES
dc.subject.keywordSelf-powered systemses_ES
dc.subject.keywordPiezoelectric generatores_ES
dc.subject.keywordCantilever beames_ES
dc.subject.keywordVibrationes_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAhmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282es_ES
dc.source.bibliographicCitationAlghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027es_ES
dc.source.bibliographicCitationAloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848es_ES
dc.source.bibliographicCitationAnjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001es_ES
dc.source.bibliographicCitationBai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271es_ES
dc.source.bibliographicCitationBarroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194es_ES
dc.source.bibliographicCitationBatarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1es_ES
dc.source.bibliographicCitationCaliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755es_ES
dc.source.bibliographicCitationCamilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la físicaes_ES
dc.source.bibliographicCitationCan, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002es_ES
dc.source.bibliographicCitationCansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100es_ES
dc.source.bibliographicCitationChapman, S. J. (2014). Máquinas eléctricases_ES
dc.source.bibliographicCitationChew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663es_ES
dc.source.bibliographicCitationDaniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861es_ES
dc.source.bibliographicCitationDíez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907es_ES
dc.source.bibliographicCitationEdy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004es_ES
dc.source.bibliographicCitationErturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151es_ES
dc.source.bibliographicCitationFraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8es_ES
dc.source.bibliographicCitationGautschi, G., 2013. Piezoelectric Sensorics. Springer.es_ES
dc.source.bibliographicCitationGaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007es_ES
dc.source.bibliographicCitationHarrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217es_ES
dc.source.bibliographicCitationHawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. Nelsones_ES
dc.source.bibliographicCitationHehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2es_ES
dc.source.bibliographicCitationHeywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Mediaes_ES
dc.source.bibliographicCitationJamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635es_ES
dc.source.bibliographicCitationJanek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141es_ES
dc.source.bibliographicCitationKarami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132es_ES
dc.source.bibliographicCitationKazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converterses_ES
dc.source.bibliographicCitationKhan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001es_ES
dc.source.bibliographicCitationKinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072es_ES
dc.source.bibliographicCitationLarsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60es_ES
dc.source.bibliographicCitationLiu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184es_ES
dc.source.bibliographicCitationLuo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276es_ES
dc.source.bibliographicCitationLuo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081es_ES
dc.source.bibliographicCitationMohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019es_ES
dc.source.bibliographicCitationMohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083es_ES
dc.source.bibliographicCitationNewnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973es_ES
dc.source.bibliographicCitationNikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223es_ES
dc.source.bibliographicCitationNoh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-xes_ES
dc.source.bibliographicCitationNoticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.htmles_ES
dc.source.bibliographicCitationObidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57es_ES
dc.source.bibliographicCitationOgunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849es_ES
dc.source.bibliographicCitationPillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065es_ES
dc.source.bibliographicCitationPrauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446es_ES
dc.source.bibliographicCitationRossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdfes_ES
dc.source.bibliographicCitationRuido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruidoes_ES
dc.source.bibliographicCitationRupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, Heidelberges_ES
dc.source.bibliographicCitationSarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634es_ES
dc.source.bibliographicCitationSerhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661es_ES
dc.source.bibliographicCitationShaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010es_ES
dc.source.bibliographicCitationShu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001es_ES
dc.source.bibliographicCitationSimpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdfes_ES
dc.source.bibliographicCitationSpv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36es_ES
dc.source.bibliographicCitationTichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Mediaes_ES
dc.source.bibliographicCitationTran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0es_ES
dc.source.bibliographicCitationTurkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159es_ES
dc.source.bibliographicCitationWang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080es_ES
dc.source.bibliographicCitationWang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001es_ES
dc.source.bibliographicCitationWei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073es_ES
dc.source.bibliographicCitationWei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515aes_ES
dc.source.bibliographicCitationYang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: Springeres_ES
dc.source.bibliographicCitationYu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750es_ES
dc.source.bibliographicCitationYuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048es_ES
dc.source.bibliographicCitationYunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412es_ES
dc.source.bibliographicCitationZakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011es_ES
dc.source.bibliographicCitationZhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102es_ES
dc.description.degreenameIngeniero(a) Mecatrónico(a)es_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaes_ES
dc.description.funderCosto total del proyecto $1.200.000. Financiación propia $280.000. Financiación UAN $920.000.es_ES
dc.description.notesPresenciales_ES
dc.publisher.campusBogotá - Sur-
Aparece en las colecciones: Ingeniería mecánica

Ficheros en este ítem:
Fichero Tamaño  
2020JonnathanJuliánForeroBriceño.pdf7.19 MBVisualizar/Abrir
2020AutorizacióndeAutores.pdf
  Restricted Access
295.03 kBVisualizar/Abrir  Request a copy
2020AutorizacióndeAutores.pdf
  Restricted Access
313.92 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons