Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/2241
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorFalk de Losada, Mary-
dc.creatorMariño, Luis Fernando-
dc.date.accessioned2021-03-02T16:57:14Z-
dc.date.available2021-03-02T16:57:14Z-
dc.date.created2020-11-20-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2241-
dc.descriptionPropiaes_ES
dc.description.abstractVariational thinking has been categorized from different contexts and perspectives; to some researchers, reasoning is a way of thinking and they refer to variational thinking in terms of variational, co-variational, quantitative and parametric reasoning. To other authors, thinking is functional and representational. The aim of this research was to contribute to the characterization of variational thinking arising from the formulation and resolution of problems in a group of 24 trainee mathematics professors following a qualitative perspective from a grounded theory approach. Three processes of intervention were implemented composed of ten didactic activities, one retrospective interview, three codification cycles and data analysis focused on the constant comparison method which leads up to the sampling and theory saturation. A theory was built based on the data which characterizes variational thinking as a process of formulation and problem resolution as well as a process used to understand and think about problems. Among the findings, the participants’ variational thinking is highlighted when it addresses how the values of the variable x change following a pattern while the values of the variable y change following another pattern but both values change at the same time among infinite solutions to problems that involve Diophantic equations of the form ax+by=c. Along with the evolution of students’ thinking, the results suggest that it is possible to keep moving forward in the characterization of variational thinking from the contexts studied.es_ES
dc.description.tableofcontentsEl pensamiento variacional ha sido caracterizado desde diferentes contextos y perspectivas. Para algunos investigadores el razonamiento es una forma de pensar y se refieren al pensamiento variacional como razonamiento variacional, covariacional, cuantitativo y paramétrico. Para otros autores el pensamiento es funcional y representacional. El objetivo de la investigación fue aportar en la caracterización del pensamiento variacional emergente del planteo y resolución de problemas en un grupo 24 de profesores de matemáticas en formación siguiendo un enfoque cualitativo desde la teoría fundamentada. Se implementó un proceso de tres intervenciones compuesto por diez actividades didácticas, una entrevista retrospectiva, tres ciclos de codificación y análisis de datos centrado en el método de comparación constante que condujo al muestreo y saturación teórica. Se construyó una teoría desde los datos, que caracteriza al pensamiento variacional como proceso en el planteo y resolución de problemas y como proceso al entender y pensar sobre problemas. Entre los hallazgos se destaca la forma de pensar variacional de los participantes acerca de cómo los valores de la variable x cambian siguiendo un patrón, mientras los de la variable y cambian siguiendo otro patrón, pero ambos cambian al mismo tiempo en las infinitas soluciones a problemas que involucran ecuaciones diofánticas de la forma ax+by=c. Junto a la evolución en el desarrollo del pensamiento de los estudiantes, los resultados implican que es posible seguir avanzando en caracterizar el pensamiento variacional desde estos contextos.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectPensamiento Variacional, Resolución de Problemas, Planteo de Problemas, Ecuaciones Diofánticas, Teoría Fundamentadaes_ES
dc.titleAvances en la caracterización del pensamiento variacional emergente en el contexto del planteo y resolución de problemas en profesores de matemáticas en formaciónes_ES
dc.publisher.programDoctorado en Educación Matemáticaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordVariational Thinking, Problem Solving, Problem Posing, Diophantine Equations, Grounded Theoryes_ES
dc.type.spaTesis y disertaciones (Maestría y/o Doctorado)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationBlanton , M., & Kaput, J. (2011). Functional Thinking as a Route Into Algebra in the Elementary Grades. En J. Cai , & E. Knuth (Edits.), Early Algebraization. Advances in Mathematics Education. Berlin,Heidelberg: Springer.es_ES
dc.source.bibliographicCitationBreckler, S. (1984). Empirical validation of affect, behavior, and cognition as distinct components of attitude. Journal of personality and social psychology, 47(6), 1191.es_ES
dc.source.bibliographicCitationBrown, S., & Walter , M. (2005). The Art of problem posing (3 ed.). (L. Hawver, Ed.) Londres, UK: Lawrence Erlbaum Associates, Publisheres_ES
dc.source.bibliographicCitationBryant, A., & Charmaz, K. (2019). The SAGE Handbook of Current Developments in Grounded Theory. 55 City Road, London: SAGE Publications. doi:10.4135/9781526485656es_ES
dc.source.bibliographicCitationBurton, L. (1984). Mathematical Thinking: The Struggle for Meaning. Journal for Research in Mathematics. Education, 15(1), 35-49. doi:10.2307/748986es_ES
dc.source.bibliographicCitationCaballero, M., & Cantoral, R. (2013). Una caracterización de los elementos del pensamiento y lenguaje variacional. En R. Flores (Ed.), Acta latinoamericana de Matemática Educativa (págs. 1197-1205). México, DF: Comité Latinaoamaericano de Matemática Educativa.es_ES
dc.source.bibliographicCitationCai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401-421.es_ES
dc.source.bibliographicCitationCai, J., & Hwang, S. (2019). Learning to teach through mathematical problem posing: Theoretical considerations, methodology, and directions for future research. International Journal of Educational Research.es_ES
dc.source.bibliographicCitationCai, J., Hwang, S., & Silber, S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. En Mathematical problem posing (págs. 3-34). New York, NY: Springer.es_ES
dc.source.bibliographicCitationCai, J., Jiang, C., Hwang, S., & Hu, D. (2016). How do textbooks incorporate mathematical problem posing? An international comparative study. En Posing and solving mathematical problems (págs. 3-22). Cham: Springer.es_ES
dc.source.bibliographicCitationCarlson, M. (1998). A cross-sectional investigation of the development of the function concept. Research in collegiate mathematics education. III. CBMS issues in mathematics education,, 114-162.es_ES
dc.source.bibliographicCitationCarlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education,, 352-378. doi:10.2307/4149958es_ES
dc.source.bibliographicCitationCarlson, M., Larsen, S., & Jacobs, S. (2001). An investigation of covariational reasoning and its role in learning the concepts of limit and accumulation. En Education, Proceedings of the 23rd annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics (Vol. 1, págs. 145-153)es_ES
dc.source.bibliographicCitationCastillo-Garsow, C. (2010). Teaching the Verhulst model: A teaching experiment in covariational reasoning and exponential growth. Tempe, AZ: Arizona State University.es_ES
dc.source.bibliographicCitationCastillo-Garsow, C. (2012). Continuous quantitative reasoning. En R. Mayes, R. Bonilla, L. Hatfield, & S. Belbase (Edits.), Quantitative reasoning: Current state of understanding, (Vol. 2, págs. 55-73). Laramie: University of Wyoming.es_ES
dc.source.bibliographicCitationCastillo-Garsow, C., Johnson, H., & Moore, K. (2013). Chunky and smooth images of change. For the Learning of Mathematics, 33(3), 31-37es_ES
dc.source.bibliographicCitationCharmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. London: Sage Publicationses_ES
dc.source.bibliographicCitationCharmaz, K. (2014). Constructing grounded theory (2 ed.). Thousand Oaks, CA: Sage.es_ES
dc.source.bibliographicCitationCobb, P., Confrey , J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational researcher, 32(1), 9-13.es_ES
dc.source.bibliographicCitationConfrey, J. (1991). The concept of exponential functions: A student’s perspective. En L. Steffe (Ed.), Epistemological Foundations of Mathematical Experience. Recent Research in Psychology (págs. 124-159). New York, NY: Springeres_ES
dc.source.bibliographicCitationConfrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative. Educational Studies in Mathematics, 26, 135-164.es_ES
dc.source.bibliographicCitationConfrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education, 26, 66-86es_ES
dc.source.bibliographicCitationConfrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education, 26, 66-86es_ES
dc.source.bibliographicCitationCorbin, J., & Strauss, A. (1990). Basics of qualitative research. Sage publications.es_ES
dc.source.bibliographicCitationCorbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA, USA: Sage Publications, Inc.es_ES
dc.source.bibliographicCitationCorbin, J., & Strauss, A. (2014). Conceptos básicos de la investigación cualitativa: técnicas y procedimientos para desarrollar la teoría fundamentada (4 ed.). Thousand Oaks, California, United States of America: SAGE Publications.es_ES
dc.source.bibliographicCitationCorbin, J., & Strauss, A. (2017). Conceptos básicos de la investigación cualitativa: técnicas y procedimientos para desarrollar la teoría fundamentada (4 ed.). Thousand Oaks, California, United States of America: SAGE Publications.es_ES
dc.source.bibliographicCitationDenzin, N. K., & Lincoln, Y. S. (2018). Introduction: The discipline and practice of qualitative. En N. Denzin, & Y. Lincon (Edits.), The Sage handbook of qualitative research (5 ed.). Thousand Oaks, CA, USA: SAGE Publications.es_ES
dc.source.bibliographicCitationDreyfus, T. (2002). Advanced mathematical thinking processes. En T. David (Ed.), Advanced mathematical thinking (Vol. 11, págs. 25-41). Springer, Dordrecht.es_ES
dc.source.bibliographicCitationEllis, A. (2007). The influence of reasoning with emergent quantities on students' generalizations. Cognition and Instruction, 25(4), 439-478.es_ES
dc.source.bibliographicCitationErnest, P. (1993). Constructivism, the psychology of learning, and the nature of mathematics: Some critical issues. Science & Education, 2(1), 87-93.es_ES
dc.source.bibliographicCitationFalk de Losada, M. (1994). Enseñanzas acerca de la naturaleza y el desarrollo del pensamiento matemático extraídas de la historia del álgebra. Boletín de Matemáticas, 1(1), 35-59es_ES
dc.source.bibliographicCitationFelmer, P., Pehkonen, E., & Kilpatrick, J. (2016). Posing and solving mathematical problems. Springer International Publishing.es_ES
dc.source.bibliographicCitationGinsburg, H. (1981). The clinical interview in psychological research on mathematical thinking: Aims, rationales, techniques. For the learning of mathematics, 1(3), 4-11.es_ES
dc.source.bibliographicCitationGlaser, B. (1978). Theoretical sensitivity: Advances in the methodology of grounded theory. Mill Valley, CA: Sociology Press.es_ES
dc.source.bibliographicCitationGlaser, B., & Strauss, A. (2017). Discovery of grounded theory: Strategies for qualitative research. New York, USA: Routledge.es_ES
dc.source.bibliographicCitationGlasser, B., & Strauss, A. (1967). The development of grounded theory. Chicago: IL: Alden.es_ES
dc.source.bibliographicCitationGravemeijer, K. (2004). Local instruction theories as a means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6, 105-128. doi:10.1207/s15327833mtl0602_3es_ES
dc.source.bibliographicCitationHarel, G. (2008a). DNR Perspective on Mathematics Curriculum and Instruction: Focuson Proving,Part I. ZDM—The International Journal on Mathematics Education, 47, 487-500.es_ES
dc.source.bibliographicCitationHarel, G. (2008b). DNR Perspective on Mathematics Curriculum and Instruction, Part II. ZDM—The International Journal on Mathematics Education.es_ES
dc.source.bibliographicCitationHarel, G. (2010). DNR-based instruction in mathematics as a conceptual framework. En Theories of mathematics education (págs. 343-367). Berlin, Heidelberg: Springer.es_ES
dc.source.bibliographicCitationHarel, G., & Sowder, L. (2005). Advanced Mathematical-Thinking at Any Age: Its Nature and Its Development. 7(1), 27-50. doi:10.1207/s15327833mtl0701_3es_ES
dc.source.bibliographicCitationHeath, T. (1910). Diophantus of Alexandria: A study in the history of Greek algebra. CUP Archive.es_ES
dc.source.bibliographicCitationHunting, R. (1997). Clinical interview methods in mathematics education research and practice. The Journal of Mathematical Behavior, 16(2), 145-165.es_ES
dc.source.bibliographicCitationJohnson, B., & Christensen, L. (2013). Educational research: Quantitative, qualitative and mixed approaches. Thousand Oaks, CA: Sage.es_ES
dc.source.bibliographicCitationJoshua, S., Musgrave, S., Hatfield, N., & Thompson, P. (2015). Conceptualizing and reasoning with frames of reference. En 2015, T. Fukawa-Connelly, N. Infante, K. Keene , & M. Zandieh (Edits.), Proceedings of the 18th Meeting of the MAA Special Interest Group on Research in Undergraduate Mathematics Education (págs. 31-44). Pittsburgh, RA: RUME.es_ES
dc.source.bibliographicCitationKilpatrick, J. (1987). Formulating the problem: Where do good problems come from? En A. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (págs. 123-147). Hillsdale, NJ: Lawrence Erlbaum Associates.es_ES
dc.source.bibliographicCitationLakatos, I. (1978). The Metodology of Scientif Reaseerch programmes-Philosophical Papers (Vol. 1). (J. Worrall, & G. Currie, Edits.) New York, USA: Cambridge University Press.es_ES
dc.source.bibliographicCitationLakatos, I., & Alcañiz, J. (1982). La crítica y la metodología de programas científicos de investigación. Instituto de Lógica y Metodología, Facultad de Filosofía. Universidad de Valencia.es_ES
dc.source.bibliographicCitationLeung, S. (2016). Mathematical problem posing: A case of elementary school teachers developing tasks and designing instructions in Taiwan. En Posing and Solving Mathematical Problems (págs. 327-344). Springer, Cham.es_ES
dc.source.bibliographicCitationLikert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22 140, 55.es_ES
dc.source.bibliographicCitationMason, J., Burton, L., & Stacey, K. (2010). Thinking Mathematically (2 ed.). Harlow, UK: Pearson Education Limited.es_ES
dc.source.bibliographicCitationMcGuire, W. (1989). The structure of individual attitudes and attitude systems. Attitude structure and function, 37-69.es_ES
dc.source.bibliographicCitationMinisterio de Educación Nacional de Colombia. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Recuperado el 30 de 05 de 2020, de http://cms.mineducacion.gov.co/static/cache/binaries/articles-340021_recurso_1.pdf?binary_rand=1223es_ES
dc.source.bibliographicCitationPaoletti, T., & Moore, K. (2017). The parametric nature of two studens´ covariational reasoning. The journal of Mathematical Behavoir, 48, 137-151.es_ES
dc.source.bibliographicCitationPolya, G. (1945). Cómo plantear y resolver problemas. Editorial Trillas. México: Editorial Trillas.es_ES
dc.source.bibliographicCitationQSR, International. (2002). NVivo. Version 12. Análisis de datos cualitativos (QDA).es_ES
dc.source.bibliographicCitationRolfe, G. (2006). Validity, trustworthiness and rigour: quality and the idea of qualitative research. Journal of advanced nursing, 53(3), 304-310.es_ES
dc.source.bibliographicCitationRosenberg, M. (1960). A structural theory of attitude dynamics. Public Opinion Quarterly, 24(2), 319-340.es_ES
dc.source.bibliographicCitationSaldanha, L., & Thompson, P. (1998). Re-thinking covariation from a quantitative perspective: Simultaneous continuous variation. En Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education.es_ES
dc.source.bibliographicCitationSchoenfeld, A. (2000). Purposes and methods of research in mathematics education. Notices of the AMS, 47(6), 641-649.es_ES
dc.source.bibliographicCitationSchoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196(2), 1- 38.es_ES
dc.source.bibliographicCitationSilver, E. A. (2013). Problem-posing research in mathematics education: Looking back, looking around, and looking ahead. Educational Studies in Mathematics, 83(1), 157-162.es_ES
dc.source.bibliographicCitationSimon , M. (1995). Reconstructing Mathematics Pedagogy from a Constructivist Perspective. Journal for Research in Mathematics Educatio, 26(2), 114-145.es_ES
dc.source.bibliographicCitationSimon , M., & Tzur, R. (2004). Explicating the Role of Mathematical Tasks in Conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory. Mathematical Thinking and Leraning, 6(2), 91-104.es_ES
dc.source.bibliographicCitationSmith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. En J. J. KAPUT (Ed.), Algebra in the Early Grades (págs. 133-160). New York, USA: Routledge Publishers.es_ES
dc.source.bibliographicCitationSmith, E. (2017). Representational thinking as a framework for introducing functions in the elementary curriculum. En J. Kaput, D. Carraher, & M. Blanton (Edits.), Algebra in the early grades (págs. 155-182). Routledge.es_ES
dc.source.bibliographicCitationStacey, K. (2006). WHAT IS MATHEMATICAL THINKING AND WHY IS IT IMPORTANT?es_ES
dc.source.bibliographicCitationSteffe, K., Thompson, P., & Von Glasersfeld, E. (2000). Teaching experiment methodology: Underlying principles and essential elements. Handbook of research design in mathematics and science education, 267-306.es_ES
dc.source.bibliographicCitationStrauss, A., & Corbin, J. (1990). Basics of qualitative research. Sage publications.es_ES
dc.source.bibliographicCitationTallman, M., & Frank, K. (2020). Angle measure, quantitative reasoning, and instructional coherence: an examination of the role of mathematical ways of thinking as a component of teachers’ knowledge base. Journal of Mathematics Teacher Education, 23(1), 69-95.es_ES
dc.source.bibliographicCitationThompson, P. (1990). A theoretical model of quantity-based reasoning in arithmetic and algebraic. Center for Research in Mathematics & Science Education.es_ES
dc.source.bibliographicCitationThompson, P. (2011). Quantitative reasoning and mathematical modeling. En L. Hatfield, S. Chamberlain, & S. Belbase (Edits.), New perspectives and directions for collaborative research in mathematics education. WISDOMe Mongraphs (Vol. 1, págs. 33-57). Laramie, WY: University of Wyoming.es_ES
dc.source.bibliographicCitationThompson, P. W., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. (J. Cai , Ed.) Compendium for research in mathematics education, 421-456.es_ES
dc.source.bibliographicCitationThompson, P., & Thompson, A. (1992, Abril). Images of rate. Paper presented at the Annual Meeting of the American Educational Research Association. San Francisco. Recuperado el 17 de 06 de 2020, de http://pat-thompson.net/PDFversions/1992Images.pdfes_ES
dc.source.bibliographicCitationThompson, P., Carlson, M., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with magnitudes: A hypothesis about foundational reasoning abilities in algebra 1, 2, 3. En L. Steffe, L. Hatfield, & K. Moore (Ed.), Epistemic algebraic students: Emerging models of students' algebraic knowing, 4, págs. 1-24.es_ES
dc.source.bibliographicCitationThompson, P., Hatfield, N., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among US and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95-111.es_ES
dc.source.bibliographicCitationVasco, C. (2003). El pensamiento variacional y la modelación matemática. In Anais eletrônicos do CIAEM–Conferência Interamericana de Educação Matemática. 9, págs. 2009-2010. Blumenau: Brasil.es_ES
dc.source.bibliographicCitationYemen-Karpuzcu, S., Ulusoy, F., & Işıksal-Bostan, M. (2017). Prospective middle school mathematics teachers’ covariational reasoning for interpreting dynamic events during peer interactions. International Journal of Science and Mathematics, 15(1), 89-108.es_ES
dc.description.degreenameDoctor(a) en Educación Matemáticaes_ES
dc.description.degreelevelDoctoradoes_ES
dc.publisher.facultyFacultad de Educaciónes_ES
dc.description.notesPresenciales_ES
dc.creator.orcidhttps://orcid.org/0000-0002-3438-6963es_ES
dc.creator.orcidhttps://orcid.org/0000-0002-6380-0481es_ES
dc.creator.cvlachttps://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/inicio.does_ES
dc.creator.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000049255es_ES
dc.creator.googlescholarhttps://scholar.google.es/citations?hl=es&user=Nw62cWYAAAAJes_ES
dc.creator.cedula13642624es_ES
dc.publisher.campusBogotá - Federmán-
Aparece en las colecciones: Doctorado en Educación matemática

Ficheros en este ítem:
Fichero Tamaño  
2020LuisFernandoMariño.pdf3.89 MBVisualizar/Abrir
2020AutorizacióndeAutores.pdf
  Restricted Access
914.05 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons