Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/2267
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorAvila León, Iván Alejandro-
dc.creatorBecerra Correa, Karen Stefanny-
dc.date.accessioned2021-03-02T17:55:35Z-
dc.date.available2021-03-02T17:55:35Z-
dc.date.created2020-11-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2267-
dc.descriptionPropiaes_ES
dc.description.abstractHydrocarbons are a xenobiotic and persistent pollutant in the soil due to their low solubility in water as well as their stable polycondensed structure. These organic pollutants are derived from the burning of fossil fuels and waste from industrial activities, as well as pesticides that are also persistent organic pollutants in soils and water but generated by activities of agricultural origin. Due to the presence of these pollutants, bioremediation arises as an alternative for the degradation of these substances into simpler compounds. The objective of the research is to determine the most promising techniques for the use of the Trichoderma fungus, used in bioremediation though a literature review of research articles, in order to guide new studies on the subject. The database used for the collection of information was Scopus. Within the review, relevant aspects were found such as the species most used for bioremediation, the most frequented culture medium as well as the potential for degradation, its enzymatic activity and the medium of the different techniques of this process.es_ES
dc.description.tableofcontentsLos hidrocarburos son un contaminante xenobiótico y persistente en el suelo por su baja solubilidad en agua, así como su estructura policondensada estable. Estos contaminantes orgánicos son derivados de la quema de combustibles fósiles y de desechos de actividades industriales, al igual que los plaguicidas que son contaminantes también orgánicos persistentes en suelos y agua, pero generados por actividades de origen agrícola. Debido a la presencia de estos contaminantes, la biorremediación surge como una alternativa de degradación de estas sustancias en compuestos más simples. El objetivo de la revisión será determinar las técnicas más prometedoras para el uso de Trichoderma en procesos de biorremediación, esto por medio de artículos de investigación obtenidos por la base de datos de Scopus, con el fin de guiar nuevos estudios en el tema. Dentro de la revisión se encontraron aspectos relevantes tales como la especie más usada para la biorremediación, el medio de cultivo más frecuentado, así como el potencial de degradación, su actividad enzimática y las diferentes técnicas de este proceso.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjectTrichoderma, Biorremediación, Hidrocarburos, Pesticidases_ES
dc.titleAnálisis cualitativo de literatura sobre las técnicas de biorremediación de suelos por hidrocarburos y contaminantes orgánicos persistentes empleando el hongo Trichoderma sp.es_ES
dc.publisher.programIngeniería Ambientales_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordTrichoderma, bioremediation, hydrocarbons, pesticideses_ES
dc.type.spaTrabajo de grado (Pregrado y/o Especialización)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationArgumedo-Delira, R., Alarcón, A., Ferrera-Cerrato, R., & Peña-Cabriales, J. J. (2009). El género fúngico Trichoderma y su relación con los contaminantes orgánicos e inorgánicos. Revista internacional de contaminación ambiental, 25(4), 257-269.es_ES
dc.source.bibliographicCitationArias, J. A. V. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de investigación Agraria y Ambiental, 8(1), 151-167.es_ES
dc.source.bibliographicCitationAsemoloye, M. D., Ahmad, R., & Jonathan, S. G. (2018). Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environmental Pollution, 235, 55-64.es_ES
dc.source.bibliographicCitationClavijo,1998. Estudio de la actividad quitinolitica en procesos de control biológico de Rhizoctonia solani Kuhn en tomate (Lycopersicum sculentum), mediante tratamientos de pregerminación controlada de semillas en presencia de Trichoderma koningii Oudemans. Tesis (Bio) Pontificia Universidad Javeriana 1998 Il. Dat. num. 124 ref .es_ES
dc.source.bibliographicCitationCerniglia, C.E.; Sutherland, G.R. Degradation of polycyclic aromatic hydrocarbons by fungi. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin, Germany, 2010.es_ES
dc.source.bibliographicCitationCocaign, A., Bui, L. C., Silar, P., Tong, L. C. H., Busi, F., Lamouri, A., ... & Dairou, J. (2013). Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants. Applied and environmental microbiology, 79(15), 4719-4726.es_ES
dc.source.bibliographicCitationCobas, M., Ferreira, L., Tavares, T., Sanromán, M. A., & Pazos, M. (2013). Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere, 91(5), 711-716.es_ES
dc.source.bibliographicCitationCoello, J. M., & Burgos, F. (2012). Aplicación del hongo Pleurotus ostreatus como alternativa para la biorremediación de suelos contaminados con metales pesados. Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales.es_ES
dc.source.bibliographicCitationChan-Cheng, M., Cambronero-Heinrichs, J. C., Masís-Mora, M., & Rodríguez-Rodríguez, C. E. (2020). Ecotoxicological test based on inhibition of fungal laccase activity: Application to agrochemicals and the monitoring of pesticide degradation processes. Ecotoxicology and Environmental Safety, 195, 110419.es_ES
dc.source.bibliographicCitationde Lima Souza, H. M., Sette, L. D., Da Mota, A. J., do Nascimento Neto, J. F., Rodrigues, A., de Oliveira, T. B., ... & Zanotto, S. P. (2016). Filamentous fungi isolates of contaminated sediment in the Amazon region with the potential for benzo (a) pyrene degradation. Water, Air, & Soil Pollution.es_ES
dc.source.bibliographicCitationDaccò, C., Nicola, L., Temporiti, MEE, Mannucci, B., Corana, F., Carpani, G. y Tosi, S. (2020). Trichoderma: Evaluación de sus capacidades degradantes para la biorremediación de mezclas de complejos de hidrocarburos. Ciencias Aplicadas , 10 (9), 3152.es_ES
dc.source.bibliographicCitationEssabri, A. M., Aydinlik, N. P., & Williams, N. E. (2019). Bioaugmentation and biostimulation of total petroleum hydrocarbon degradation in a petroleum-contaminated soil with fungi isolated from olive oil effluent. Water, Air, & Soil Pollution, 230(3), 76es_ES
dc.source.bibliographicCitationElshafie, HS, Camele, I., Sofo, A., Mazzone, G., Caivano, M., Masi, S. y Caniani, D. (2020). Efecto de micorremediación de la cepa T22 de Trichoderma harzianum combinado con ozonización en arena contaminada con diesel. Chemosphere , 126597.es_ES
dc.source.bibliographicCitationFierro, F. F., & Onofre, M. V. (2011). Impacto de la biología molecular y las nuevas tecnologías en el conocimiento de la función celular y sus aplicaciones. pp. 103.es_ES
dc.source.bibliographicCitationHatvani, N., Kredics, L., Antal, Z., & Mécs, I. (2002). Changes in activity of extracellular enzymes in dual cultures of Lentinula edodes and mycoparasitic Trichoderma strains. Journal of applied microbiology, 92(3), 415-423.es_ES
dc.source.bibliographicCitationHofrichter, M. (2002). lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial technology, 30(4), 454-466.es_ES
dc.source.bibliographicCitationHowell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease, 87(1), 4-10.es_ES
dc.source.bibliographicCitationHusaini, A., Roslan, H. A., Hii, K. S. Y., & Ang, C. H. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal of Microbiology and Biotechnology, 24(12), 2789-2797.es_ES
dc.source.bibliographicCitationHenao, J. D. V. (2015). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura. Parte 4. Dyna, 82(190), 9-12.es_ES
dc.source.bibliographicCitationJiménez DJ, Medina SA, Gracida JN. (2010). Propiedades, aplicaciones y producción de biotensoactivos. Rev. Int. Contam. Ambient. 26 (1) 65-84.es_ES
dc.source.bibliographicCitationLladó, S. (Septiembre de 2012). Biorremediación de suelos contaminados por hidrocarburos pesados y caracterización de comunidades microbianas implicadas, 34-35.es_ES
dc.source.bibliographicCitationMagan, N. Fungi in extreme environment. In The Mycota Environmental and Microbial Relationships; Esser, K., Lemke, P.A., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2007.es_ES
dc.source.bibliographicCitationMartínez, B., Infante, D., & Peteira, B. (2015). Taxonomía polifásica y variabilidad en el género Trichoderma. Revista de Protección Vegetal, 30.es_ES
dc.source.bibliographicCitationOrtiz, E., Núñez, R., Fonseca, E., Oramas, J., Almazán, V., Cabranes, Y., ... & Borges, G. (2005). Biorremediacion de suelos contaminados con hidrocarburos. Rev. Contribución a la Educación y la Protección del Medio Ambiente (6): 51-60. Pág. 51-60.es_ES
dc.source.bibliographicCitationOkafor, U. , T. Floretta y M. Florence . 2009 . Potencial de degradación de hidrocarburos de aislados de hongos indígenas de suelos contaminados con petróleo . Revista Internacional de. Ciencias físicas 3 Otiniano-García, N. M. (2013).es_ES
dc.source.bibliographicCitationEfecto de la fuente nitrogenada sobre la capacidad de degradación del petróleo diesel 2 por Pseudomonas sp. Memorias del II Congreso Binacional de Investigación, Ciencia y Tecnología de las Universidades.es_ES
dc.source.bibliographicCitationPlohl K, and Leskovsek H. (2002). Biological degradation of motor oil in water. Acta Chim. Slov., 49, 279-289 Pesántez, M., & Castro, R. (2016). Potencial de cepas de Trichoderma spp. para la biorremediación de suelos contaminados con petróleo. Biotecnología Vegetal, 16(4).es_ES
dc.source.bibliographicCitationParedes Sandoval, M. K. (2017). Evaluación de la biodegradación de un insecticida carbamato en muestras de suelo de cultivo de papa, mediante Trichoderma harzianum y Pleurotus ostreatus.es_ES
dc.source.bibliographicCitationTissot, BP y Welte, DH (2013). Formación y aparición de petróleo. Springer Science & Business Media. pp. 699.es_ES
dc.source.bibliographicCitationRosales, E., Pérez-Paz, A., Vázquez, X., Pazos, M., & Sanromán, M. A. (2012). Isolation of novel benzo [a] anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioprocess and biosystems engineering, 35(5), 851-855.es_ES
dc.source.bibliographicCitationRamoutar, S., Mohammed, A., & Ramsubhag, A. (2019). Laboratory-scale bioremediation potential of single and consortia fungal isolates from two natural hydrocarbon seepages in Trinidad, West Indies. Bioremediation Journal, 23(3), 131-141.es_ES
dc.source.bibliographicCitationSánchez-Meca, J., & Botella, J. (2010). Revisiones sistemáticas y meta-análisis: Herramientas para la práctica profesional. Papeles del psicólogo.es_ES
dc.source.bibliographicCitationSharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., ... & Singla, N. (2020). Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, 110812es_ES
dc.source.bibliographicCitationVelasco, J. A., & Sepúlveda, T. L. V. (2003). El composteo: una alternativa tecnológica para la biorremediación de suelos en México. Gaceta Ecológicaes_ES
dc.source.bibliographicCitationViñas Canals, M. (2005). Biorremediación de suelos contaminados por hidrocarburos: caracterización microbiológica, química y ecotoxicológica. Universitat de Barcelona.es_ES
dc.source.bibliographicCitationVenice, F., Davolos, D., Spina, F., Poli, A., Prigione, V. P., Varese, G. C., & Ghignone, S. (2020). Genome Sequence of Trichoderma lixii MUT3171, A Promising Strain for Mycoremediation of PAH-Contaminated Sites. Microorganisms, 8(9), 1258.es_ES
dc.source.bibliographicCitationWesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology advances, 22(1-2), 161-187.es_ES
dc.source.bibliographicCitationWei, S. H. I., ZHANG, X. N., JIA, H. B., FENG, S. D., YANG, Z. X., ZHAO, O. Y., & LI, Y. L. (2017). Effective remediation of aged HMW-PAHs polluted agricultural soil by the combination of Fusarium sp. and smooth bromegrass (Bromus inermis Leyss.). Journal of integrative agriculture, 16 (1), 199-209es_ES
dc.source.bibliographicCitationYao, L., Teng, Y., Luo, Y., Christie, P., Ma, W., Liu, F., ... & Li, Z. (2015). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Trichoderma reesei FS10-C and effect of bioaugmentation on an aged PAH-contaminated soil. Bioremediation Journal, 19 (1), 9-17.es_ES
dc.source.bibliographicCitationZafra, G., Moreno-Montaño, A., Absalón, Á. E., & Cortés-Espinosa, D. V. (2015). Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environmental Science and Pollution Research.es_ES
dc.description.degreenameIngeniero(a) Ambientales_ES
dc.description.degreelevelPregradoes_ES
dc.publisher.facultyFacultad de Ingeniería Ambientales_ES
dc.description.notesPresenciales_ES
dc.creator.cedula1030682179es_ES
dc.publisher.campusBogotá - Sur-
Aparece en las colecciones: Ingeniería ambiental

Ficheros en este ítem:
Fichero Tamaño  
2020KarenStefannyBecerraCorrea.pdf1.12 MBVisualizar/Abrir
2020AutorizacióndeAutores.pdf
  Restricted Access
597.31 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons