Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.uan.edu.co/handle/123456789/2619
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Alfonso Rodriguez, Camilo | - |
dc.contributor.advisor | González Colmenares, Gretel | - |
dc.creator | Cortés Múnera, Yessica María | - |
dc.creator | Lacera Perez, Ovanys | - |
dc.creator | Pedraza Corrales, Kelly Johanna | - |
dc.date.accessioned | 2021-03-03T22:24:48Z | - |
dc.date.available | 2021-03-03T22:24:48Z | - |
dc.date.created | 2020-11-19 | - |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/2619 | - |
dc.description | Propia | es_ES |
dc.description.abstract | Introduction: Scaffolds must be designed to replicate the native tissue architecture in vitro, so that cells adhere, spread, proliferate, differentiate and mature, in a similar way to what they do in vivo. The objective of this review was to analyze the scientific evidence available on cell proliferation in scaffolds based on fibrin, agarose and fibrin-agarose mixture biomaterials. Materials and methods: Narrative review, bibliographic search of the last 5 years published in Medline-PubMed and Web of Science. during the period of August and September 2020. Inclusion criteria: 1). Experimental studies in vitro, in vivo, ex vivo, 2) Studies that will evaluate cell proliferation in fibrin, agarose and fibrin-agarose mixture scaffolds, 3). Preclinical trials, 4). Bibliographic reviews, 5). Articles published in English and Spanish, 6). Documents published between 2016 and 2020. Thematic analysis was carried out by topics in each scaffold: cell types, types of cell proliferation assays, cell proliferation evaluation times and cell proliferation results. Results: 40 articles, 21 for fibrin, 9 for agarose, 10 for fibrin-agarose. The cells most used in the studies of the three scaffolds were mesenchymal stem cells of various origins. The most widely used types of assay were DNA quantification, the Ki67 proliferation marker and the cellular proliferation nuclear antigen (PCNA). The most used cell proliferation evaluation time period was 1 to 7 days. The qualitative proliferation results were more prevalent than the quantitative ones, finding great diversity in the reports. Conclusions: It is reported that the three scaffolds object of the review in general have the ability to promote cell proliferation. | es_ES |
dc.description.tableofcontents | Introducción: Los andamios debe estar diseñado para replicar in vitro la arquitectura del tejido nativo, para que las células se adhieran, se extiendan, proliferen, se diferencien y maduren, de manera similar a lo que hacen in vivo. El objetivo de esta revisión fue analizar la evidencia científica disponible sobre la proliferación celular en andamios basados en biomateriales de fibrina, agarosa y mezcla de fibrina-agarosa. Materiales y métodos: Revisión narrativa, búsqueda bibliográfica de los últimos 5 años publicada en Medline-PubMed y Web of Science. durante el periodo de agosto y septiembre de 2020. Criterios de inclusión :1). Estudios experimentales in vitro, in vivo, ex vivo, 2) Estudios que evaluaran la proliferación celular en andamios de fibrina, agarosa y mezcla de fibrina-agarosa, 3). Ensayos preclínicos, 4). Revisiones bibliográficas, 5). Artículos publicados en inglés y español, 6). Documentos publicados entre 2016 y 2020. Se realizó análisis temático por tópicos en cada andamio: Tipos celulares, tipos de ensayos de proliferación celular, tiempos de evaluación de la proliferación celular y resultados de la proliferación celular. Resultados: 40 artículos, 21 para fibrina, 9 para agarosa, 10 para fibrina-agarosa. Las células más usadas en los estudios de los tres andamios fueron las células madre mesenquimales de diversos orígenes. Los tipos de ensayo más utilizados fueron la cuantificación de ADN, el marcador de proliferación Ki67 y el antígeno nuclear de proliferación celular (PCNA). El periodo de tiempo de evaluación de la proliferación celular más usado fue de 1 a 7 días. Los resultados de la proliferación cualitativos fueron más prevalentes que los cuantitativos, encontrándose gran diversidad en los reportes. Conclusiones: Se reporta que los tres andamios objeto de la revisión en general tienen la capacidad de promover la proliferación celular. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Antonio Nariño | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.subject | fibrina, agarosa, fibrina-agarosa, proliferación celular, hidrogeles. | es_ES |
dc.title | Proliferación celular en andamios de fibrina, agarosa y fibrina-agarosa: revisión narrativa | es_ES |
dc.publisher.program | Especialización en Periodoncia | es_ES |
dc.rights.accesRights | openAccess | es_ES |
dc.subject.keyword | Fibrin, agarose, fibrin-agarose, cell proliferation, scaffolds, hydrogels. | es_ES |
dc.type.spa | Trabajo de grado (Pregrado y/o Especialización) | es_ES |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.source.bibliographicCitation | 1. Achilleas T, Spyros S, Chrysostomi G, Karamanos K. Extracellular matrix structure. Adv Drug Deliv Rev. 2016; 97: 4-27. | es_ES |
dc.source.bibliographicCitation | 2. Kant G. Interacción entre las células y su ambiente. En: Javier de León Fagra. Biología molecular y celular-Conceptos y experimentos. Sexta edición. México D.F.: McGRAW-HILL INTERAMERICANA EDITORES;2011. p. 230. | es_ES |
dc.source.bibliographicCitation | 3. Campos F, Bonhome-Espinosa A, García-Martínez L, Durán J, López-López M, Alaminos M, Sánchez-Quevedo M, Carriel V. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications.Biomed Mater. 2016; 11(5): 1-12. | es_ES |
dc.source.bibliographicCitation | 4. Caddeo S, Boffito M, Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front. Bioeng. Biotechnol. 2017; 5(40); 1-22. | es_ES |
dc.source.bibliographicCitation | 5. Hunt N, Shelton R, Grover L. An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture. Biotechnol J. 2009; 4(5): 730-7. | es_ES |
dc.source.bibliographicCitation | 6. Stark H, Szabowski A, Fusenig N, Maas-Szabowski N. Organotypic cocultures as skin equivalents: a complex and sophisticated in vitro system. Biol Proced Online. 2004; 6: 55-60. | es_ES |
dc.source.bibliographicCitation | 7. Yang J, Woo SL, Yang G, Wang J, Cui L, Liu W, Cao Y. Construction and clinical application of a human tissue-engineered epidermal membrane. Plast Reconstr Surg. 2010; 125(3): 901-9. | es_ES |
dc.source.bibliographicCitation | 8. Horch R, Debus M, Wagner G, Stark GB. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis. Tissue Eng. 2000; 6(1): 53-67. | es_ES |
dc.source.bibliographicCitation | 9. Echave MC, Sáenz del Burgo L, Pedraz J, Orive G. Gelatin as Biomaterial for Tissue Engineering. Curr Pharm Des. 2017; 23(24): 3567-3584. | es_ES |
dc.source.bibliographicCitation | 10. Sekiya N, Ichioka S, Terada D, Tsuchiya S, Kobayashi H. Efficacy of a poly glycolic acid (PGA)/collagen composite nanofiber scaffold on cell migration and neovascularization in vivo skin defect model. J Plast Surg Hand Surg. 2013; 47(6): 498–502. | es_ES |
dc.source.bibliographicCitation | 11. Narayanan G, Vernekar V, Kuyinu E, Laurencin C. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016; 107(5): 247–276. | es_ES |
dc.source.bibliographicCitation | 12. Gentile P, Chiono V, Carmagnola I, Hatton P. An overview of poly(lactic-co glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014; 15 (3): 3640–3659. | es_ES |
dc.source.bibliographicCitation | 13. Mkhabelal V, Ray S. Poly(epsi;-caprolactone) nanocomposite scaffolds for tissue engineering: a brief overview. J Nanosci Nanotechnol. 2014; 14(1): 535–545. | es_ES |
dc.source.bibliographicCitation | 14. Dash T, Konkimalla V. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012; 158(1): 15–33. | es_ES |
dc.source.bibliographicCitation | 15. Harata M, Watanabe M, Nagata S, Ko E, Ohba S, Takato T, Hikita A, Hoshi K. Improving chondrocyte harvests with poly(2-hydroxyethyl methacrylate) coated materials in the preparation for cartilage tissue engineering. Regenerative Therapy. 2017; 7: 61–71. | es_ES |
dc.source.bibliographicCitation | 16. Pedraza E, Brady A, Fraker C, Stabler C. Synthesis of macroporous poly (dimethylsiloxane) scaffolds for tissue engineering applications. J Biomater Sci Polym Ed. 2013; 24(9): 1041–1056. | es_ES |
dc.source.bibliographicCitation | 17. Chen G, Sato T, Sakane M, Ohgushi H, Ushida T, Tanaka J, Tateishi T. Application of PLGA-collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells. Mater Sci Eng:C. 2004; 24(6-8): 861–866. | es_ES |
dc.source.bibliographicCitation | 18. Sadeghi-avalshahr A, Khorsand-Ghayeni, Nokhasteh M, Molavi A, Naderi-Meshkin H. Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches. J Mater Sci Mater Med. 2017; 28(1): 14. | es_ES |
dc.source.bibliographicCitation | 19. Zhang Y, Wang Q, Yan K, Qi Y, Wang G, Cui Y. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. J Biomed Mater Res A. 2016; 104(8): 1863–1870. | es_ES |
dc.source.bibliographicCitation | 20. Yao R, He J, Meng G, Jiang B, Wu F. Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J Biomater Sci Polym Ed. 2016; 27(9): 824–838. | es_ES |
dc.source.bibliographicCitation | 21. Coimbra P, Santos P, Alves P, Miguel S, Carvalho M, D. de Sá K, Correia I, Ferreira P. Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids Surf B Biointerfaces. 2017; 159: 7–15. | es_ES |
dc.source.bibliographicCitation | 22. Patrício T, Glória A, Bártolo P. Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng Trans. 2013; 32: 1645–1650. | es_ES |
dc.source.bibliographicCitation | 23. Gasperini L, Mano J, Reis R. Natural polymers for the microencapsulation of cells. J R Soc Interface. 2014; 11(100): 1-17. | es_ES |
dc.source.bibliographicCitation | 24. Noori A, Ashrafi S, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster T. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine. 2017; 12: 4937–4961. | es_ES |
dc.source.bibliographicCitation | 25. Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, Scott W, Ferreira A. Synthesis of bioinspired collagen/alginate/fibrin/ based hydrogels for soft tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018; 91: 236-246. | es_ES |
dc.source.bibliographicCitation | 26. Stellwagen J, Stellwagen NC. Internal structure of the agarose gel matrix. J Phys Chem. 1995; 99(12): 4247–4251. | es_ES |
dc.source.bibliographicCitation | 27. Zarrintag P, Manouchehri S, Ahmadi Z, Reza Saeb M, Urbanska A, Kaplan D, Mozafari M. Agarose-based Biomaterials for Tissue Engineering. Carbohydr Polym. 2018; 1(187):66-84. | es_ES |
dc.source.bibliographicCitation | 28. Alaminos M, Sánchez-Quevedo M, Muñoz-Avila M, Serrano J, Medialdea D, Carreras S, Campos A. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest Ophthalmol Vis Sci. 2006; 47(8): 3311-3317. | es_ES |
dc.source.bibliographicCitation | 29. Sánchez-Quevedo M, Alaminos M, Capitan L, Moreu G, Garzón I, Crespo P, Campos A. Histological and histochemical evaluation of human oral mucosa constructs developed by tissue engineering. Histol Histopathol. 2007; 22(6): 631-640. | es_ES |
dc.source.bibliographicCitation | 30. Carriel V, Garzón I, Jiménez J, Oliveira M, Arias-Santiago S, Sánchez-Quevedo M, Alaminos M. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials. Cells, tissues organs. 2012; 196(1): 1-12. | es_ES |
dc.source.bibliographicCitation | 31. Carriel V, Garrido-Gómez J, Hernández-Cortes P, Garzón I, García-García S, Sáez-Moreno J, Sánchez-Quevedo M, Campos A, Alaminos M. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng. 2013:10(2): 026022. | es_ES |
dc.source.bibliographicCitation | 32. Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother. 2014; 14(3): 301-318. | es_ES |
dc.source.bibliographicCitation | 33. Fernández Valadéz Gámez R, Garzón I, Liceras-Liceras E, España-López A, Carriel V, Martin-Piedra M, Muñoz-Miguelsanz M, Sánchez-Quevedo M, Alaminos M, Fernandez-Valades R. Usefulness of a bioengineered oral mucosa model for preventing palate bone alterations in rabbits with a mucoperiostial defect. Biomed Mater. 2016; 11(1): 015015. | es_ES |
dc.source.bibliographicCitation | 34. Jaimes-Parra B, Valle-Diaz de la Guardia F, Arrabal-Polo M, Herrera-Imbroda B, Lara M, Machuca-Santa-Cruz J, Campos A, Alaminos M, Crespo, P, Garzón I. Ex vivo construction of a novel model of bioengineered bladder mucosa: A preliminary study. Int J Urol. 2016; 23(1): 85-92. | es_ES |
dc.source.bibliographicCitation | 35. Martin-Piedra M, Garzón I, Gómez-Sotelo A, García-Abril E, Jaimes-Parra B, López-Cantarero M, Alaminos M, Campos A. Generation and Evaluation of Novel Stromal Cell-Containing Tissue Engineered Artificial Stromas for the Surgical Repair of Abdominal Defects. Biotechnol J. 2017; 12(12): 1-33. | es_ES |
dc.source.bibliographicCitation | 36. García-Martínez L, Campos F, Godoy-Guzmán C, Sánchez-Quevedo M, Garzón I, Alaminos M, Campos A, Carriel V. Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem Cell Biol. 2017; 147(1): 83-95. | es_ES |
dc.source.bibliographicCitation | 37. Campos F, Bonhome-Espinosa A, Vizcaino G, Rodríguez I, Durand-Herrera D, López-López M, Sánchez-Montesinos I, Alaminos M. Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications. Biomed Mater. 2018; 13(2): 025021. | es_ES |
dc.source.bibliographicCitation | 38. Matson J, Cook J. Cell cycle proliferation decisions: the impact of single cell analyses. FEBS J. 2017; 284(3): 362-375. | es_ES |
dc.source.bibliographicCitation | 39. Arahira T, Todo M. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold. J Mech Behav Biomed Mater. 2014; 39: 218-30. | es_ES |
dc.source.bibliographicCitation | 40. Benning L, Gutzweiler L, Tr€ondle K, Riba J, Zengerle R, Koltay P, Zimmermann S, G Stark G,Finkenzeller G . Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J Biomed Mater Res A. 2017; 105(12): 3231-3241. | es_ES |
dc.source.bibliographicCitation | 41. Linsley C, Wu B, Tawl B. Mesenchymal stem cell growth on and mechanical properties of fibrin-based biomimetic bone scaffolds. J Biomed Mater Res A. 2016; 104(12): 2945-2953. | es_ES |
dc.source.bibliographicCitation | 42. Hashemibeni B, Valiani A, Esmaeli M, Kazemi M, Aliakbari M, Iranpour F. Comparison of the efficacy of piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds. Iran J Basic Med Sci .2 018; 21(2): 212–218. | es_ES |
dc.source.bibliographicCitation | 43. Mousavifard A, Pourazizi E, Akhavan M, Anbarlou A, Atashi A. Elevated expression of stemness genes in adipose-derived mesenchymal stem cells cultured on fibrin scaffold. J Biosci. 2020; 45(81): 3-8. | es_ES |
dc.source.bibliographicCitation | 44. Kim B, ShkembiIn F, Lee J. Vitro and In Vivo Evaluation of Commercially Available Fibrin Gel as a Carrier of Alendronate for Bone Tissue Engineering. Biomed Res Int. 2017; 2017: 1-10. | es_ES |
dc.source.bibliographicCitation | 45. Hoberman A, Cirino C, McCarthy M, Cote M, Pauzenberger L, Beitzel K, Mazzoca A, Dyrna F. Bone Marrow-Derived Mesenchymal Stromal Cells Enhanced by Platelet-Rich Plasma Maintain Adhesion to Scaffolds in Arthroscopic Simulation. Arthroscopy: The Journal of Arthroscopic and Related Surgery. 2018; 34(3); 872-881. | es_ES |
dc.source.bibliographicCitation | 46. Mikael P, Golebiowska A, Kumbar S, Nukavarapu S. Evaluation of Autologously Derived Biomaterials and Stem Cells for Bone Tissue Engineering. Tissue Engineering Part A. 2020: 1-33. | es_ES |
dc.source.bibliographicCitation | 47. Cao Z, Yao S, Xiong Y, Zhang Z, Yang Y, He F, Zhao H, Guo Y, Wang G, Xie S, Wang X.Directional axonal regrowth induced by an aligned fibrin nanofiber hydrogel contributes to improved motor function recovery in canine L2 spinal cord injury. J Mater Sci Mater Med. 2020; 31(5): 2-13. | es_ES |
dc.source.bibliographicCitation | 48. Soleimannejad M, Ebrahimi-Barough S, Soleimani M, Nadri S, Tavangar S, Roohipoor R, Yazdankhah M, Bayat N, Riazi-Esfahani M, Ai J. Fibrin gel as a scaffold for photoreceptor cells differentiation from conjunctiva mesenchymal stem cells in retina tissue engineering. Artif Cells Nanomed Biotechnol. 2018; 46(4): 805-814. | es_ES |
dc.source.bibliographicCitation | 49. Nyberg E, Grayson W. Assessing the Minimum Time-Period of Normoxic Preincubation for Stable Adipose Stromal Cell-Derived Vascular Networks. Cell Mol Bioeng. 2018; 11(6): 471-481. | es_ES |
dc.source.bibliographicCitation | 50. Annamalai R, Rioja A, Putnam A, Stegemann J. Vascular Network Formation by Human Microvascular Endothelial Cells in Modular Fibrin Microtissues. ACS Biomater Sci Eng. 2016; 2(11): 1914–1925. | es_ES |
dc.source.bibliographicCitation | 51. Loureiro J, Torres A, Nete T, Aguiar P, Carvalho C, Texeira Pinto M, Freitas Amaral I. Conjugation of the T1 sequence from CCN1 to fibrin hydrogels for therapeutic vascularization. Mater Sci Eng C Mater Biol Appl. 2019; 104: 1-10. | es_ES |
dc.source.bibliographicCitation | 52. Benning L, Gutzweiler L, Tr€ondle K, Riba J, Zengerle R, Koltay P, Zimmermann S, G Stark G,Finkenzeller G. Assessment of hydrogels for bioprinting of endothelial cells. J Biomed Mater Res A. 2018; 106(4): 935-947. | es_ES |
dc.source.bibliographicCitation | 53. Zhang S, Thiebes A, Kreimendahl F, Ruetten S, Buhl E, Wolf M, Jockenhoevel S, Apel A. Extracellular Vesicles-Loaded Fibrin Gel Supports Rapid Neovascularization for Dental Pulp Regeneration. Int J Mol Sci. 2020; 21(12): 1-17. | es_ES |
dc.source.bibliographicCitation | 54. Bento A, Quelhas P, Oliviera M, Pêgo A, Amaral I. Three-dimensional culture of single embryonic stem derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling. J Tissue Eng Regen Med. 2016; 11(12): 3494-3507. | es_ES |
dc.source.bibliographicCitation | 55. Law J, Musa F, Ruszymah Bt, El Haj A, Yang Y. A comparative study of skin cell activities in collagen and fibrin constructs. Med Eng Phys. 2016; 38(9): 854-861. | es_ES |
dc.source.bibliographicCitation | 56. García-Posadas L, Soriano-Romaní L, Lopéz-García Antonio, Diebold Y. An engineered human conjunctival-like tissue to study ocular surface inflammatory diseases. PLoS One. 2017; 12(3): 1-17. | es_ES |
dc.source.bibliographicCitation | 57. Hejbøl E, Sellathurai J, Nair P, Schrøder D. Injectable scaffold materials differ in their cell instructive effects on primary human myoblasts. J Tissue Eng. 2017; 8: 1-11. | es_ES |
dc.source.bibliographicCitation | 58. Cruz M, Hom W, DiStefano T, Merrill R, Torre O, Lin H, Hecht A, Illien-Junger S, Iatridis J. Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs. Tissue Eng Part A. 2018; 24(3-4): 187-198. | es_ES |
dc.source.bibliographicCitation | 59. Mo L, Wang Y, Zhang J, Cao Z, Wang S, Zheng W, Li Q, Zheng T, Wang X, Xu Q, Chen Z. Culture of pyramidal neural precursors, neural stem cells, and fibroblasts on various biomaterials. J Biomater Sci Polym Ed. 2018; 29(17): 2168-2186. | es_ES |
dc.source.bibliographicCitation | 60. Nam K, Dean S, Brown C, Smith Jr. R, Lei P, Andreadis S, Baker O. Synergistic effects of laminin-1 peptides, VEGF and FGF9 on salivary gland regeneration. Acta Bomaterialia. 2019; 19: 186-194. | es_ES |
dc.source.bibliographicCitation | 61. Goldman S, Barabino G. Spatial Engineering of Osteochondral Tissue Constructs Through Microfluidically Directed Differentiation of Mesenchymal Stem Cells. Biores Open Access. 2016; 5(1): 109-17. | es_ES |
dc.source.bibliographicCitation | 62. Lins L, Wianny F, Dehay C, Jestin J, Loh W. Adhesive Sponge Based on Supramolecular Dimers Interactions as Scaffolds for Neural Stem Cells. Biomacromolecules. 2020; 21(8): 3394-3410. | es_ES |
dc.source.bibliographicCitation | 63. Park J, Park M, Kim M, Park Y, Yun J, Cheong H, Kim M, Choi J, Lee E, Lee S. Porcine spermatogonial stem cells self-renew effectively in a three dimensional culture microenvironment. Cell Biol Int. 2017; 41(12): 1316-1324. | es_ES |
dc.source.bibliographicCitation | 64. Miao Z, Lu Z, Wu H, Liu H, Li M, Lei D, Zheng L, Zhao J. Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: A comparative study. J Cell Bioche. 2018; 119(10): 7924-7933. | es_ES |
dc.source.bibliographicCitation | 65. Ogura T, Minas T, Tsuchiya A, Mizuno S. Effects of hydrostatic pressure and deviatoric stress on human articular chondrocytes for designing neo-cartilage construct. J Tissue Eng Regen Med. 2019; 13(7): 1143-1152. | es_ES |
dc.source.bibliographicCitation | 66. Chen Y,Ma M, Teng Y, Cao H, Yang Y, Wang Y, Li X, Sun Y, Liang J, Fan Y, Zhang X. Efficient manufacturing of tissue engineered cartilage in vitro by a multiplexed 3D cultured method. J Mater Chem B. 2020; 8(10): 2082-2095. | es_ES |
dc.source.bibliographicCitation | 67. Groel F, Kalia Y, Jordan O, Bordchar G. Hydrogels in three-dimensional dendritic cell (MUTZ-3) culture as a scaffold to mimic human immuno competent subcutaneous tissue. Int J Pharm. 2018; 544(1): 297-303. | es_ES |
dc.source.bibliographicCitation | 68. Kazi G, Anisur Rahman K, Farahat M, Matsumoto T. Fabrication of single gel with different mechanical stiffness using three-dimensional mold. J Biomed Mater Res A. 2019; 107(1): 6-11. | es_ES |
dc.source.bibliographicCitation | 69. Jiang T, Xu G, Chen X, Huang X, Zhao J, Zheng L. Impact of Hydrogel Elasticity and Adherence on Osteosarcoma Cells and Osteoblasts. Adv Healthc Mater. 2019; 8(9): 1-11. | es_ES |
dc.source.bibliographicCitation | 70. Campos F, Bonhome-Espinosa A, García-Martínez L, Durán J, López-López M M, Alaminos M, Sánchez-Quevedo M, Carriel V. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications. Biomed Mater. 2016.; 11(5): 1-13. | es_ES |
dc.source.bibliographicCitation | 71. González-Quevedo D, Díaz-Ramos M, Chato-Astrain J, Sánchez-Porras D, Tamimi I, Campos A, Campos F, Carriel V. Improving the regenerative microenvironment during tendon healing by using nanostructured fibrin/agarose-based hydrogels in a rat Achilles tendon injury model. Bone Joint J. 2020; 102-B(8): 1095-1106. | es_ES |
dc.source.bibliographicCitation | 72. Blanco-Elices B, España-Guerrero E, Mateu-Sanz M, Sánchez-Porras D, García-García O, Sánchez-Quevedo M, Fernández-Valadés R, Alaminos M, Martín-Piedra M, Garzón I. In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications. Running Title: Fibrin-Agarose Functionalized Scaffolds. Materials (Basel). 2020; 13(7): 2-16. | es_ES |
dc.source.bibliographicCitation | 73. Bonhome-Espinosa A, Campos F, Durand-Herrera D, Sánchez-López J, Schaub S, Durán J, López-López M, Carriel V. In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J Mech Behav Biomed Mater. 2020; 104: 2-10. | es_ES |
dc.source.bibliographicCitation | 74. Garzón I, Chato-Astrain J, González-Gallardo C, Ionescu A, Cardona J, Mateu M, Carda C, Pérez M, Martín-Piedra M, Alaminos M. Long-Term in vivo Evaluation of Orthotypical and Heterotypical Bioengineered Human Corneas. Front Bioeng Biotechnol. 2020; 8: 1-13. | es_ES |
dc.source.bibliographicCitation | 75. Rico-Sánchez L, Garzón I, González-Andrades G , Ruíz-García A, Punzano M, Antonio Lizana-Moreno A, Muñoz-Ávila J, Sánchez-Quevedo M , Martínez-Atienza J, López-Navas L , Sánchez-Pernaute R, Iñaki Oruezaba R, Medialdea S, González-Gallardo M ,Gloria Carmona G, Sanbonmatsu-Gámez S , Perez M, Jiménez P, Cuende N, Campos A, Alaminos M. Successful development and clinical translation of a novel anterior lamellar artificial cornea. J Tissue Eng Regen Med. 2019; 13(12): 2142-2154. | es_ES |
dc.source.bibliographicCitation | 76. Carriel V, Scionti G, Campos F, Roda O, Castro B, Cornelissen M, Garzón I, Alaminos M. In vitro characterization of a nanostructured fibrin agarose bio-artificial nerve substitute. J Tissue Eng Regen Med. 2017; 11(5): 1412-1426. | es_ES |
dc.source.bibliographicCitation | 77. Campos F, Bonhome-Espinosa A, Chato-Astrain J, Sánchez-Porras D, García-García O, Carmona R, López-López M, Alaminos M, Carriel V, Rodríguez I .Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications. Front Bioeng Biotechnol. 2020; 8: 2-16. | es_ES |
dc.source.bibliographicCitation | 78. Zimmerman S, Gretzinger S, Scheeder C, Schwab M, Oelmeier S, Osberghaus A, Gotwald E, Hubbuch J. High-throughput cell quantification assays for use in cell purification development - enabling technologies for cell production. Biotechnol J. 2016; 11(5): 676-86. | es_ES |
dc.source.bibliographicCitation | 79. Li X, Wu Y, Zhang L, Cao Y, Li Y, Li J, Zhu L, Wu G. Comparison of three common DNA concentration measurement methods. Anal Biochem. 2014; 451:1 8-24. | es_ES |
dc.source.bibliographicCitation | 80. Scholzen T, Gerdes J.The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000; 182: 311-322. | es_ES |
dc.source.bibliographicCitation | 81. Miller I, Min M, Yang C, Tian C, Gookin S, Carter D,Spence S. Ki67 is a Graded Rather than a Binary Marker of Proliferation versus Quiescence. Cell Rep. 2018; 24(5): 1105–1112. | es_ES |
dc.source.bibliographicCitation | 82. Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Current Pharmaceutical Biotechnology. 2016; 17: 1213-1221. | es_ES |
dc.source.bibliographicCitation | 83. Asthana A, Kissalita W. Is time an extra dimension in 3D cell culture?. Drug Discov Today. 2016; 21(3): 395-9. | es_ES |
dc.source.bibliographicCitation | 84. Cukierman E, Pankov R, Stevens D, Yamada K. Taking cell-matrix adhesions to the third dimensión. Science. 2001; 294(5547): 1708-12. | es_ES |
dc.source.bibliographicCitation | 85. Wilke H, Neef P, Caimi M, Hoogland T, Claes L. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 1999; 24(8): 755-.62. | es_ES |
dc.source.bibliographicCitation | 86. Brown A, Barker T. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater. 2014; 10(4): 1502-14. | es_ES |
dc.source.bibliographicCitation | 87. Ma B, Wang X, Wu C, Chang J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater. 2014; 1(1):81–9. | es_ES |
dc.source.bibliographicCitation | 88. Umashankar P, Mohanan P, Kumari T. Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium. Toxicol Int. 2012; 19(1): 51-8. | es_ES |
dc.source.bibliographicCitation | 89. Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015; 33(6): 362–9. | es_ES |
dc.source.bibliographicCitation | 90. Ninh C, Iftikhar A, Cramer M, Bettinger C. Diffusion–reaction models of genipin incorporation into fibrin networks. J Mater Chem B. 2015; 3(22): 4607-461. | es_ES |
dc.source.bibliographicCitation | 91. Dare E, Griffith M, Poitras,P, Kaupp J, Waldman S, Carlsson D, Dervin G, Mayoux C, Hincke M. Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration. Cells tissues organs. 2009; 190(6): 313-25. | es_ES |
dc.source.bibliographicCitation | 92. Fessel G, Cadby J, Wunderli S, Weeren R, Snedeker J. Dose- and time-dependent effects of genipin crosslinking on cell viability and tissue mechanics -toward clinical application for tendon repair. Acta Biomater. 2014; 10(5): 1897-1906. | es_ES |
dc.source.bibliographicCitation | 93. Scionti G, Moral M, Toledano M, Osorio R, Durán J, Alaminos M, Campos A, López-López M. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model. J Biomed Mater Res A. 2014; 102(8): 2573-82. | es_ES |
dc.source.bibliographicCitation | 94. Carriel V, Garzón I, Jiménez, Ximenes A, Arias-Santiago S, Campos A, Sánchez-Quevedo M, Alaminos M. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin–agarose biomaterials. Cells Tissues Organs. 2012; 196(1): 1–12. | es_ES |
dc.source.bibliographicCitation | 95. San Martin S, Alaminos M, Zorn T, Sánchez-Quevedo M, Garzón I, Rodríguez I, Campos A.The effects of fibrin and fibrin–garose on the extracellular matrix profile of bioengineered oral mucosa. J Tissue Eng Regen Med 2013; 7(1): 10–19. | es_ES |
dc.source.bibliographicCitation | 96. Garzón I, Martin-Piedra, Alfonso-Rodríguez C, González-Andrades M, Carriel V, Martínez-Gómez C, Campos A, Alaminos M. Generation of a biomimetic human artificial cornea model using Wharton’s jelly mesenchymal stem cells. Invest Ophthalmol Vis Sci. 2014; 55(7): 4073–4083. | es_ES |
dc.source.bibliographicCitation | 97. Cheema U, Brown RA, Alp B, MarcRobert A. Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cell Mol Life Sci. 2008; 65(1): 177–186. | es_ES |
dc.source.bibliographicCitation | 98. Cheema U, Alekseeva T, Abou-Neel E, Brown R. Switching off angiogenic signalling:creating channelled constructs for adequate oxygen delivery in tissue engineered constructs. Eur Cell Mater.2010; 20: 274–280. | es_ES |
dc.source.bibliographicCitation | 99. Garg T, Singh O, Arora S, Murthy R. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012; 29(1): 1-63. | es_ES |
dc.description.degreename | Especialista en Periodoncia | es_ES |
dc.description.degreelevel | Especialización | es_ES |
dc.publisher.faculty | Facultad de Odontología | es_ES |
dc.description.notes | Presencial | es_ES |
dc.creator.orcid | 0000-0001-7243-9272 | es_ES |
dc.creator.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/jsp/report-index.jsp | es_ES |
dc.creator.cedula | 1047374661 | es_ES |
dc.creator.cedula | 1090455555 | es_ES |
dc.creator.cedula | 1067715535 | es_ES |
dc.creator.cedula | 80541239 | es_ES |
dc.creator.cedula | 52144672 | es_ES |
dc.publisher.campus | Bogotá - Circunvalar | - |
Aparece en las colecciones: | Especialización en Periodoncia |
Ficheros en este ítem:
Fichero | Tamaño | |
---|---|---|
2020YessicaCortesMunera.pdf | 374.06 kB | Visualizar/Abrir |
2020AutorizacióndeAutores1.pdf Restricted Access | 407.06 kB | Visualizar/Abrir Request a copy |
2020AutorizacióndeAutores2.pdf Restricted Access | 534.14 kB | Visualizar/Abrir Request a copy |
2020AutorizacióndeAutores3.pdf Restricted Access | 312.56 kB | Visualizar/Abrir Request a copy |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons